Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление пара синтеза

    Изменение логарифма равновесного давления пара синтеза полупроводников на несколько единиц (например, на 5—6) влечет за собой изменения логарифма электропроводности также на несколько единиц. [c.387]

    Изменение логарифма равновесного давления пара синтеза полупроводников на несколько единиц (например, на 5—6) влечет за собой изменения логарифма электропроводности также на несколько единиц. Ход зависимости lg а — lg Рв, как показано в нашей лаборатории, не всегда линейный, что связано с изменением подвижности. [c.557]


    В целом получение карбамида — гетерогенный процесс в системе Г—Ж, протекающий в кинетической области, причем скорость его лимитируется протекающей наиболее медленно стадией дегидратации карбамата аммония в расплаве. На равновесие и скорость синтеза карбамида влияют давление, температура и состав системы. Поскольку карбамат аммония обладает высоким давлением паров и, кроме того, синтез в целом протекает с уменьшением объема газа, то равновесный выход карбамида растет с увеличением давления (рис. 59). Скорость процесса и фактический выход карбамида также резко увеличиваются с повышением давления в результате возрастания движущей силы процесса, т. е. возрастания концентрацин газообразных реагентов. Скорость процесса, в частности скорость лимитирующей стадии (б), резко возрастает с повышением температуры, в результате чего растет фактический выход карбамида. Из рис. 60 видно, что выше 180°С кривые выхода проходят через максимум. При дальнейшем увеличении времени пребывания реакционной смеси в зоне нагрева выход карбамида падает из-за усиления побочных реакций. Выход продукта можно также увеличить применением избытка аммиака в исходной смеси по отношению к стехиометрическому соотношению [c.157]

    Газ синтеза проходит через реактор сверху вниз продукты реакции отбирают из нижней части короба. Температуру реакции обычно поддерживают на уровне 180—200°, причем тепло, выделяющееся при реакции, используют для получения пара в водяных трубках. Температуру пара регулируют давлением в паросборнике. В этом отношении реактор действует как многотрубный паровой котел. Обычно часовая нагрузка на реактор составляет 1000 нм (1 нм = л при нормальных температуре и давлении) газа синтеза . Под газом синтеза подразумевается только окись углерода и водород к этим газам всегда бывает примешано 15—20% инертных газов. При многоступенчатой системе, состоящей из двух-трех последовательно соединенных реакторов, общий выход жидких продуктов (Сз-углеводороды и выше) из 1 нл газа синтеза равняется 150—160 г (теоретически должно быть 208 г). Такая производительность получается при прохождении газа через несколько реакторов. Если бы такое же количество жидких продуктов образовывалось при однократном пропускании газа через один реактор, то производительность последнего составляла бы 3,5 т жидких продуктов. По сравнению с производительностью многих других промышленных каталитических процессов такой суточный съем продуктов с одного реактора следует считать небольшим. [c.60]


    Закон постоянства состава. Состав молекулярного соединения остается постоянным независимо от способа его получения. В отсутствие молекулярной структуры в данном агрегатном состоянии его состав зависит от условий получения и предыдущей обработки. Возьмем, к примеру, аммиак. Независимо от способов получения (прямой синтез из элементов, разложение аммонийных солей, действие кислот на нитриды активных металлов и т. п.) состав молекулы аммиака всегда постоянен и неизменен на атом азота приходится 3 атома водорода. А для оксида титана (2-[-) состав соединения зависит от условий получения температуры и давления пара кислорода. В молекуле аммиака, состоящей лишь из четырех атомов, исключается изменчивость состава. Оксид же титана (2-f) представляет собой фазу, состоящую из огромного числа атомов (порядка постоянной Авогадро), которая и определяет свойства этого соединения. Это— ярчайший пример перехода количества в качество коллектив из колоссального числа частиц обладает уже новым качеством — непостоянством состава. [c.24]

    Для проведения практикума рекомендуется лаборатория, включающая два помещения по 36—40 м . При размещении оборудования целесообразно предусмотреть отделение участков синтеза и подготовки материалов от участков физико-химических и электрических исследований. Работа в физико-химической лаборатории требует соблюдения ряда мер предосторожности. Важным этапом является подбор и подготовка контейнерного материала при синтезе. Универсальным контейнерным материалом считается плавленый кварц. Поскольку некоторые практические работы связаны с высоким давлением пара в ампуле, последняя должна быть достаточно прочной. Прочность ампулы увеличивается прямо пропорционально толщине стенок и обратно пропорционально квадрату диаметра (при прочих равных условиях). Однако эти зависимости часто не соблюдаются при наличии воздушных пузырьков, которые создают так называемую полосчатость кварцевого стекла. Поэтому для ответственных работ (связанных со значительными давлениями) необходимо использовать кварцевый контейнер с минимальным количеством воздушных включений, а еще лучше — кварцевое стекло двойной плавки, практически не содержащее включений. [c.4]

    Режим синтеза СиР . Сначала медленно в течение 1,5—2,0 ч поднимают температуру горячей зоны до 900° С, что превышает температуру плавления СиРа, одновременно нагревая холодную зону до 480— 500°. При установившемся режиме холодной и горячей зон выдерживают ампулу не менее 3 ч. За это время основная масса фосфора про реагирует с медью. По истечении этого времени осторожно повышают температуру фосфорной зоны до значения, при котором давление пара фосфора достигает 15 атм. Эту температуру определяют из зависимости упругости насыш,енного пара фосфора от температуры (см. табл. [c.71]

    Фосфид и арсенид галлия обладают существенным давлением диссоциации при температуре плавления. Конгруэнтное плавление этих соединений и, наоборот, кристаллизация из стехиометрических расплавов возможны только под давлением паров летучего компонента, равным давлению диссоциации. Это сильно осложняет как синтез соединений из компонентов, так и их кристаллофизическую очистку. [c.269]

    Для создания в сосуде, в котором происходит синтез, давления летучего компонента пользуются трехзонным или двухзонным методом (рис. 56, а). В трехзонном методе давление пара летучего компонента создают, нагревая его избыточную навеску <3, помещенную в холодную зону ампулы, до температуры, при которой давление пара равно давлению диссоциации синтезируемого соединения. В горячую зону печи I при температуре несколько выше температуры плавления сое- [c.269]

    В двухзонном методе давления в ампуле регулируют не конденсатом летучего компонента, а его загрузкой. Здесь также металл помещают в лодочку, находящуюся в горячей зоне установки, тогда как летучий компонент может находиться в любом месте ампулы. Количество летучего компонента подбирают так, чтобы его хватило как для образования стехиометрического соединения, так и для создания нужного давления паровой фазы (избыточного конденсата при этом не остается). Давление в ампуле мало зависит от колебаний температуры и соблюдается с достаточной точностью. Температура второй, менее нагретой зоны должна быть ниже температуры плавления синтезируемого соединения и выше температуры конденсации летучего компонента. Возникновение метастабильных модификаций мышьяка или фосфора не мешает процессу. Скорость образования соединений и соответственно скорость нагрева ампулы в конечном счете определяются прочностью ампулы, так как синтез выгоднее вести при максимальном давлении паров летучего компонента. Уже через несколько минут после достижения конечной температуры, лежащей немного выше температуры плавления соединения, можно начинать направленную кристаллизацию, передвигая ампулу во вторую печь [128]. [c.271]


    Цель химического синтеза заключается в получении чистого вещества, продукты же реакции обычно бывают загрязнены остатками исходных веществ и продуктами побочных реакций. Поэтому их следует очистить. Выбор метода очистки веществ, полученных в результате реакции зависит от физических и химических свойств этих веществ. Жидкости очищают путем перегонки, твердые вещества-кристаллизацией или сублимацией. Вещества, обладающие высокими давлениями пара, перегоняют при обычном давлении, труднолетучие и слаборастворимые в воде очищают путем перегонки с водяным паром, а также путем перегонки в вакууме. Предварительное разделение веществ обычна производят посредством экстракции. [c.101]

    В качестве реакторов в процессе Кольбеля—Рейнпрейссен применяют аппараты высокого давления с внутренними поверхностями, охлаждаемыми водой или другим теплоотводящим агентом, температура в реакторах регулируется давлением пара. Она примерно на 20° ниже температуры реактора. Синтез-газ вводят в реактор в виде мелких пузырьков и образуют дисперсную систему с жидкостью, что имеет существенное значение для процесса. Реактор заполняют суспензией катализатора в масле примерно на /з его объема. [c.119]

    Все чаще используются парофазпые процессы, так как они позволяют получать очень тонкие неагломерированные порошки, част1щы которых нередко имеют сферическую форму. Но синтезом м1югокомпонентиых систем управлять трудно, поскольку входящие в них компоненты различаются по давлению паров. Недостаток парофазных процессов при их крупномасштабном применении состоит в том, что получаемые порошки обычно удерживают много газов и поэтому требуются очень большие газосборные системы. [c.18]

    Синтез МСС с К, Rb и Св получают нагреванием в запаянной ампуле смесей графита с этими металлами. При ЗОО С образуется соецинение МеСв, при 360-400 С — МеСг4- Внелре-ние К зависит от давления его паров. При постоянной температуре графита (400-450 С) и изменении температуры расплавленного калия от 200 до 400-440 С образуются МСС различного состава. С повышением температуры графита для образования МСС того же состава требуется увеличение давления паров калия. [c.259]

    В круглодонную колбу с пришлифованной капельной воронкой и газоотводной трубкой помещают тетрагидронафталин, к которому добавлено немного чистых железных опилок, и медленно приливают по каплям бром. Перед применением тетрагидронафталин высушивают обезвоженным N32804 и перегоняют (7 кип=207 °С давление паров при 15 °С 40 Па). Поскольку вначале синтез проводят при охлаждении, круглодонную колбу погружают в водяную баню, которую при замедлении реакции можно нагреть до 30—40 С, Образовавшийся газ длЯ очистки от незначительных количеств брома пропускают через промывную склянку, заполненную, тетрагидронафталином (также предварительно высушенным и перегнанным), а для поглот щения оставшихся следов влаги — через ловушку, охлажденную до —60°С. Можно выморозить продукт жидким воздухом в следующей ловушке и по окончании реакции запаять ее в отделить от установки для получения газа. [c.570]

    Все халькогениды являются фазами переменного состава, причем область гомогенности у монохалькогенидов шире, чем у дихалькогенидов. Их состав, а следовательно, и свойства сильно зависят от условий получения (температуры и парциального давления пара халькогена в процессе синтеза). Поэтому на диаграммах состояния иногда регистрируется существование фаз более сложного состава, [c.406]

    Нитриды железа, кобальта и никеля в отличие от нитридов предшествующих d-элементов фазами внедрения не являются. Об этом свидетельствуют их низкая термическая устойчивость и способность к последовательной диссоциации при иагревании с отщеплением азота и образованием все более бедных азотом соединений. Склонностью к термической диссоциации с последовательным отщеплением летучего компонента обладают также фосфиды и арсениды, причем первые — в большей степени. Для стибидов это свойственно в меньшей степени в силу небольшой летучести сурьмы. Фосфиды, арсениды и стибиды получают прямым синтезом из компонентов в эвакуированных и запаянных ампулах. Состав продукта зависит от исходного соотношения компонентов, температуры и давления пара летучего компонента в ампуле. Эти соединения разнообразны по составу, однако наиболее типичные фазы Э3П, Э2П, ЭП и ЭП. . Для кобальта и никеля известны фосфиды ЭР3. Высшие фосфиды ЭРз и ЭРз, а также арсенид FeAsj — полупроводники, остальные пниктогениды обладают полуметаллическими и металлическими свойствами. [c.407]

    Объекты исследования, предлагаемые в работах, выбраны с учетом их физико-химических свойств и требований техники безопасности при работе в учебных лабораториях (сравнительно невысокие температуры плавления и давление пара). Кроме того, авторы старались использовать, по возможности, недавно изученные соединения, свойства которых представляют определенный интерес. Поэтому наряду с классическими полупроводниковыми материалами (германий, кремний, соединения типа ) рекомендуются такие фазы, как СиР , ОеАз, В .,Тез, и др. Для некоторых же традиционных материалов предлагаются нетрадиционные методы синтеза (например, синтез ОаР из расплава в висмуте). Это позволяет повысить интерес студентов к практическим занятиям, расширить их кругозор и внести элементы исследовательской работы в учебный процесс. В зависимости от специфики научных исследований кафедры и возможностей учебной паборатории могут быть использованы и другие объекты с аналогичными свойствами. [c.3]

    Все установки для синтеза, измерения давления пара и т. п. должны быть снабжены предохранительными металлическими сетками во избежание несчастного случая при возможном взрыве ампулы. При закалке образцов в воде необходимо использовать защитные очки или предохранительную маску из оргстекла. Вскрытие ампул для извлечения слитка следует производить, обернув их во влажное полотенце и одев защитные очки. Разбивают ампулу или в месте отпайки (одно-темп ратурный синтез), или в средней части (двухтемпературный синтез). Это позволяет сохранить слиток и избежать самовоспламенения фосфора, сконденсировавшегося в холодной части ампулы при двух-гемпературном синтезе (для получения фосфидов). Остатки красного фосфора (с примесью белого),сконденсировавшегося на стенках ампулы, необходимо сразу же сжечь в вытяжном шкафу. Все работы, связанные с применением агрессивных реагентов и образованием летучих гоксичных веществ (жидкостное, хлорное травление и т. п.), не-эбходимо проводить в вытяжном шкафу. [c.5]

    Прямой однотемпературный синтез может быть применен лишь к соединениям, образующимся в условиях нонвариантного равновесия, т. е. когда состав практически не зависит от давл-ния. Для обоснованного выбора режима синтеза необходимо знать лишь Г—х-диаграмму состояния данной системы. Этот метод можно иногда использовать и для получения соединения из компонентов, обладающих заметной летучестью, при условии, что давление диссоциации соединения намного меньше, чем давление пара компонентов при той же температуре (и составляет не более 0,1 атм). При этом нагревание необходимо производить осторожно, постепенно поднимая температуру в соответствии со скоростью реакции во избежание разрушения ампулы. [c.63]

    Режим синтеза 1пАз. В горячей зоне устанавливают температуру 950° С, в холодной температура соответствует давлению пара Аз, равному упругости диссоциации 1пАз при температуре плавления (см. табл. 1 приложения). Поскольку взаимодействие происходит в расплаве индия, то равновесие устанавливается быстро. Время выдержки в заданных условиях составляет 1—2 ч. Режим охлаждения аналогичен приведенному для СиРа. [c.71]

    Зонная плавка и выращивание монокристаллов фосфида из стехиометрических расплавов связаны с теми же трудностями, что и при синтезе, которые определяются высоким давлением диссоциации. Горизонтальная зонная плавка осуществляется только в установках высокого давления. Бестигельную зонную плавку из-за малого диаметра слитка (8 мм) можно проводить на таких же установках, как и в случае арсенида галлия. Малый внутренний диаметр ампулы ( 12 мм) позволяет ей выдерживать давление паров фосфора 25 атм без внешнего противодавления. После 3—4 проходов зоны со скоростью 1—3 см/ч на такой установке могут быть получены прозрачные монокристалли-ческие слитки фосфида галлия высокой чистоты. Особенно уменьшается содержание углерода, который удаляется в виде летучих соединений с фосфором и оседает на более холодных участках ампулы [127]. [c.275]

    Антимонид галлия. Компоненты антимонида галлия не обладают высоким давлением пара, поэтому его получают, сплавляя Оа и 5Ь в атмосфере водорода или аргона. Для очистки от летучих примесей (цинка, кадмия и т. п.) антимонид после синтеза подвергают вакуумной термообработке при 800° и остаточном давлении 10 мм рт. ст. в течение 2 ч. При этом теряется некоторое количество сурьмы за счет испарения для компенсации при синтезе берут избыток сурьмы примерно 5% против стехиометрии. [c.276]

    Атомы некоторых элементов, а также многоатомные соединения могут внедряться в графит и образовывать слоистые соединения. Наиболее изучены слоистые соединения щелочных металлов [84]. Как правило, они получаются нагревом графита и соответствующего щелочного металла до температуры, отвечающей определенному давлению паров металла. Считается, что могут образовываться слоистые соединения определенного состава. Такой вывод делается из рассмотрения кривых зависимости состава слоистого соединения от температуры его получения. Эти кривые имеют вид изотерм сорбции, причем каждой ступеньке соответствует слоистое соединение определенного состава (рис. 55). Соотношение между углеродом и металлом имеет дискретные значения, которые для щелочных металлов составляют С Мё, С Ме, СзвЛ е, С Ме, С,(,(,Ме, что отвечает расположению слоя атомов металла через один слой углерода, два и т.д. соответственно. Такие соотношения характерны при применении для синтеза слоистых соединений достаточно совершенных кристаллических форм углерода. Наличие дефектов структуры в реальных материалах может приводить к образованию соединений, отличающихся составом от приведенных. [c.137]

    Абсорбция. Возможны как физ. абсорбция, так и хемосорбция, а также их сочетание при использовании водных р-ров абсорбентов. Общие требования к абсорбентам высокая поглощающая способность, доступность, пожаро-и взрывобезопасность, малое давление паров, нетоксичность, хим. инертность к конструкц. материалам. В отдельных случаях допускается повыш. давление паров абсорбента, хотя это приводит к увеличению его расхода. Напр., при абсорбции жидким азотом Аг, СО и СН4, содержащихся в коксовом газе, газах конверсии метана или генераторных газах, выделяемый Н2 насыщается N2, образуя азотоводородную смесь, необходимую для синтеза ННз. При прочих равных условиях существенное преимущество при выборе абсорбента-его способность к регенерации, т.е. к обратному выделению поглощенных газов. Это требование обязательно при многократной циркуляции абсор- [c.464]

    Дж/(моль-К) ур-ние температурной зависимости давления пара (в гПа) Igp = 9,685 - 12310,5/7(594 - 1520 К), в парах полностью диссоциирует иа элементы. Полупроводник п-типа. Легко взаимод. с к-тами, поглощает Oj из воздуха, с расплавами щелочей образует соли-кадма-ты. Легко восстанавливается Hj (при 300 °С), СО (выше 350°С), С (выше 500°С). Получают dO сжиганием паров металлич. d, прокаливанием d(OH)2 или d Oj. Материал электродов, компонент катализаторов орг. синтеза, шихты для получения спец. стекол, смазочных материалов. [c.282]

    Твердые К. с высокой уд. пов-стью и каталитич. активностью готовят механохим. методами с использованием разл. дробилок и мельниц (см. Измельчение), что позволяет также значительно сншить т-ру синтеза сложных оксидов из простых. Перспективен плазмохим. метод - пропускание исходных в-в, напр, р-ра, содержащего соли металлов, через плазмотрон, т.к. уменьшается кол-во сточных вод в произ-ве К. Прогрессивный способ получения высокодисперсных К.-распылит, сушка, заключающаяся в быстром обезвоживании суспензии К. вследствие разности парциальных давлений паров жидкости в окружающей среде и на пов-сти движущихся капель высушиваемого К. Таким методом получают однородные частицы сферич. формы с размерами порядка 100 мкм, напр, в произ-ве алюмосиликатных К. [c.339]

    Получение. Необходимым условием достижения высоких электрофиз. характеристик П. м. является их глубокая очистка от посторонних прнмесей. В случае Ge и Si эта проблема решается путем синтеза их летучих соед. (хлоридов, гидридов) и последующей глубокой очистки этих соед. с применением методов ректификации, сорбции, частичного гидролиза и спец. термич. обработок. Хлориды особой чистоты подвергают затем высокотемпературному восстановлению водородо.м, прошедшим предварит, глубокую очистку, с осаждением восстановленных продуктов на кремниевых или германиевых прутках. Из очищенных гидридов Ge и Si выделяют путем термич. разложения. В результате получают Ge и Si с суммарным содержанием остаточных электрически активных примесей на уровне 10 -10 %. Получение особо чистых полупроводниковых соед. осуществляют синтезом из элементов, прошедших глубокую очистку. Суммарное содержание остаточных примесей в исходных материалах не превышает обычно 10 " -10 %. Синтез разлагающихся соед. проводят либо в запаянных кварцевых ампулах при контролируемом давлении паров летучего компонента в рабочем объеме, либо под слоем жидкого флюса (напр., особо чистого обезвоженного В2О3). Синтез соед., имеющих большое давление паров летучего компонента над расплавом, осуществляют в камерах высокого давления. Часто процесс синтеза сонме- [c.59]


Смотреть страницы где упоминается термин Давление пара синтеза: [c.133]    [c.253]    [c.305]    [c.170]    [c.67]    [c.72]    [c.244]    [c.303]    [c.324]    [c.302]    [c.378]    [c.67]    [c.285]    [c.7]    [c.76]    [c.352]    [c.373]    [c.533]    [c.127]    [c.293]    [c.380]    [c.416]    [c.190]   
Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.556 , c.557 ]




ПОИСК







© 2024 chem21.info Реклама на сайте