Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода диффузная

Рис. 103. Графическое опре- случае дисперсная система содержит пре-деление оптимальной влаж- имущественно связанную адсорбционную ности массы. воду. Количество ВОДЫ диффузных двойных Рис. 103. Графическое опре- случае <a href="/info/2488">дисперсная система</a> содержит пре-деление оптимальной влаж- имущественно <a href="/info/958194">связанную адсорбционную</a> ности массы. воду. <a href="/info/66550">Количество ВОДЫ</a> диффузных двойных

    Границы этого слоя имеют, однако, диффузный характер. Это обстоятельство, а также неопределенность самого термина связанная вода и методов ее измерения заставляют различать твердую , или ледяную , воду и рыхлую воду диффузных слоев. Это подтверждают и данные ИК-снектроскопии. Твердая вода первых слоев связана прочно и определяет величину теплоты смачивания. Рыхлосвязанная вода полимолекулярных слоев меньше отличается от капельно-жидкой, но также является нерастворяющей и оказывает влияние на физико-химическое поведение системы, определяя, в частности, объем воды, поглощаемой при набухании. Концепция о двух видах связанной воды позволяем избежать противоречивых трактовок различных эффектов, например о влиянии на гидрофильность обменных катионов. [c.31]

    Связанная вода диффузного слоя, замерзая, переходит в обычный лед не при нуле, а при более низкой температуре, так как это также связано с разрушением слоев воды, которое проходит тем легче, чем больше расстояние Л слоя от поверхности. [c.400]

    В системе глина—вода весьма важно взаимодействие воды с твердой фазой. Связанной водой (за исключением воды конституционной) является адсорбированная вода первого молекулярного слоя [86]. Вода диффузных двойных слоев ионов, образующая так называемую гидратную оболочку, связана весьма слабо. Свободная вода — это вода, иммобилизованная в коагуляционной структуре пасты, хотя она вытесняется с трудом вследствие высокой дисперсности этой структуры. В гидрофобных суспензиях, дающих компактную коагуляцию с образованием крупных агрегатов, количество иммобилизованной воды сравнительно невелико. При переходе к более гидрофильным дисперсным фазам оно увеличивается вследствие резкого роста числа при переходе от компактной коагуляции к сплошной коагуляционной структуре геля. [c.30]

    Исследования показали [25, 27], что кривые Pm=f ) в пределах Рт= 3—30) -Ю дин/см могут быть представлены двумя прямолинейными участками, которые имеют различные наклоны к оси W и соединяются плавной кривой. Первый участок начинается, когда пластическая прочность массы становится выше (6—11) Ю дин/см" . На этом участке дисперсная система содержит преимущественно связанную адсорбционную воду. Вода диффузных двойных слоев ионов находится в количестве, недостаточном для полного развития гидратных оболочек. Иммобилизованная вода может присутствовать лишь в отдельных участках системы. При переходе ко второму участку, расположенному ниже Рт= 6—11)-105 дин/см , в массе происходит полное разви- [c.156]


    Связанная вода — это вода диффузного слоя коллоидных мицелл, который можно сжать <1  [c.131]

    Капиллярный осмос. Явление капиллярного осмоса, открытое Б. В. Дерягиным [57], состоит в том, что жидкость в капиллярах и порах способна перемещаться под действием градиента концентрации раствора. Причи.чой капиллярного осмоса является диффузность адсорбционных слоев растворенного компонента. Увлечение потоком жидкости подвижной части диффузных слоев с повышенной (или пониженной) концентрацией С х) растворенного вещества приводит к возникновению градиента концентрации. В соответствии с уравнениями термодинамики необратимых процессов это обусловливает, возможность перекрестного эффекта, а именно — течения жидкости под действием перепада концентраций. В связи с тем что граничные слои воды вблизи гидрофильных поверхностей обладают пониженной растворяющей способностью, толщина диффузных слоев того же порядка, что и толщина граничных слоев. В соответствии с теорией [57], это может заметно увеличивать скорость капиллярно-осмотического скольжения, равную [c.24]

    Толщина этой диффузной части двойного электрического слоя оценивается А. Н. Фрумкиным в чистой воде — до 1 мкм, для не очень низких концентраций растворов—в 10 —10 см, а в концентрированных растворах — в десятки или единицы ангстрем. [c.159]

    Сравнение расчетного значения толщины диффузного слоя для фактических эмульсий = 2 10 см) с толщиной ионной сферы для модельной эмульсии в пресной воде (<г/ = 3 10 см) и с размерами частиц дисперсной фазы свидетельствует о том, что двойной ионный слой не может служить достаточно надежным фактором устойчивости нефтесодержащих вод. [c.37]

    С увеличением pH сточной воды (см. рис. 5.6) происходит уменьшение оптической плотности, ХПК и возрастает концентрация ионов А1 . Увеличение концентрации ионов в дисперсионной среде в диапазоне значений pH = 6 4- 9 обусловлено электрохимическими реакциями, которые с возрастанием pH дисперсии в указанном диапазоне протекают интенсивнее. Ионы Са уменьшают энергетический барьер взаимодействия между дисперсными частицами за счет их разряжения и уменьшения -потен-циала или сжимают диффузный двойной слой, что делает возможным электрообработку, вызывающую коагуляцию дисперсной фазы при напряженности поля 5 В/см в течение 4 мин. Уменьшение оптической плотности и ХПК обработанной воды связано с тем, что, возможно, при возрастании pH уменьшается энергетический барьер взаимодействия частиц. [c.104]

    Если двойной слой образуется вследствие обратимой адсорбции из относительно большого объема раствора, то потенциал онределяется концентрацией потенциалопределяющих ионов, в то время как индифферентные ионы в основном влияют на толщину диффузного слоя. Метод вычисления для капель эмульсии рассмотрен ниже. Типичные значения лежат в области 25 н- 100 ме, а значения 6, которые могут быть рассмотрены как расстояния между поверхностью и центром заряда противоионов, колеблются от 1000 А (для дистиллированной воды) до 10 А [для 0,1 н. раствора (1 1) электролита]. Обычно считают, что если две коллоидные частицы, несущие подобные двойные слои, соприкасаются (например, в результате броуновского движения), поверхностный потенциал при их взаимодействии остается постоянным это означает, что адсорбционное равновесие устанавливается очень быстро. Альтернативно можно постулировать, что поверхностный заряд остается постоянным в результате медленной адсорбции. Видимо, истина находится между указанными двумя предположениями, которые, к счастью, не приводят к сильно отличающимся оценкам энергии взаимодействия. [c.97]

    Возникновение рыхлосвязанной воды обусловлено формированием гидратно-ионных, так называемых диффузных слоев жидкости у поверхности частиц. [c.60]

    Очень сильное влияние на упорядочивающее воздействие поверхности глинистых минералов на воду оказывает состав обменных катионов. Это объясняется прежде всего прочностью связи катионов с поверхностью глинистой частицы, т. е. способностью их к диссоциации и участию в катионообменных реакциях. Степень поверхностной диссоциации (т. е. поверхностного растворения) глинистых минералов, замещенных одновалентными катионами, на один-два порядка выше степени диссоциации глин, обменный комплекс которых насыщен двухвалентными катионами. При прочих равных обстоятельствах степень поверхностной диссоциации зависит не только от плотности заряда обменного катиона, но и от взаимного влияния силовых полей поверхности частицы и катиона друг на друга при взаимодействии с водой. По мере увлажнения поверхности глин вокруг обменных катионов развиваются области с упорядоченными молекулами воды. Часть слабо связанных с поверхностью катионов удаляется от нее и может участвовать в трансляционном движении вместе с молекулами воды и растворенными в ней органическими и неорганическими веществами. Если в дисперсионной среде находятся крупные гидратированные катионы (Ма+, Mg2+), то они, вытеснив с поверхности глинистого минерала менее гидратированные катионы (К+, Са ), могут привести к увеличению гидратной оболочки глинистых частиц. В натриевом бентоните по мере возрастания содержания воды и уменьшения концентрацни суспензии отдельные слои глинистых частичек полностью диссоциируют. В бентоните, обменный комплекс которого насыщен магнием или кальцием, этого не произойдет, хотя ионный радиус этих катионов в гидратированном состоянии почти в два раза превышает радиус гидратированного натрия. Это, видимо, является следствием как изменения структуры воды и размеров гидратированных катионов вблизи поверхности в зависимости от их химического сродства, так и сжатия диффузной части двойного электрического слоя. [c.70]


    ВОДНЫХ растворов детергентов и электролитов может быть Последнее, однако, очень сильно уменьшается уже при низких концентрациях электролита, и поэтому устойчивость пен, подобно устойчивости лиофобных золей, должна была бы исчезнуть при низких концентрациях электролитов, особенно если они состоят из многовалентных ионов. В действительности же ни малоустойчивые, ни высокоустойчивые пены не проявляют такой чувствительности к электролитам. Что касается возможности появления положительного давления П за счет другого более сложного механизма, например за счет какой-нибудь структуры жидкости вблизи фазовой поверхности, то наши прямые измерения на микроскопических пленках различной устойчивости не дали каких-либо указаний на это. Единственный известный случай, когда положительное П неэлектростатической природы (т. е. не связанное с диффузными электрическими слоями) определенно вызывает небольшое повышение устойчивости пленки (время жизни порядка 1 мин),— это концентрированный раствор масляной кислоты в воде. Не исключено, однако, что механизм, предложенный Дерягиным, окажется более существенным для не слишком устойчивых пен, образующихся из достаточно концентрированных неводных растворов. [c.235]

    Объяснение. В данном опыте твердая дисперсная фаза (глина, гипс) лишена подвижности, поэтому перемещаться в электрическом поле может только дисперсионная среда. Поверхность неподвижного остова глины или гипса в воде приобретает отрицательный заряд за счет адсорбции гидроксильных ионов. Эти ионы (а также часть положительных ионов), прочно связанные с поверхностью глинистых частиц, образуют адсорбционный слой. За адсорбционным слоем находятся положительно заряженные ионы диффузного слоя. Так как твердая поверхность по условиям опыта неподвижна, то связанные с ней ионы адсорбционного слоя не могут перемещаться под [c.184]

    Причиной электрофореза, как и других электрокинетических явлений, служит наличие двойного ионного слоя (ДИС) на поверхности раздела фаз. При положительно заряженной дисперсной фазе коллоидные частицы вместе с адсорбированными на них положительными потенциалопределяющими ионами движутся к катоду, отрицательно заряженные противоионы диффузного слоя —к аноду. В случае отрицательного заряда частиц движение происходит в обратных направлениях. Дисперсная фаза смещается относительно дисперсионной среды по поверхности скольжения. Поэтому, измерив скорость электрофореза, находят потенциал коллоидной частицы, т. е. электрокинетический или (дзета) потенциал. Величина -потенциала характеризует агрегативную устойчивость золя и зависит от толщины диффузного слоя, концентрации и заряда противоионов. Скорость электрофореза определяют методом подвижной границы — наблюдают за передвижением границы между окрашенным коллоидным раствором и бесцветной контактной жидкостью. Наилучшей контактной жидкостью является ультрафильтрат самого золя. Для приближенных измерений используют воду. Сущность метода состоит в определении времени, за которое граница окрашенного золя переместит- [c.205]

    Перед фильтрованием в воду вводится оптимальная доза коагулянта, при этом происходит сжатие диффузного слоя частицы (система переходит в состояние, близкое к изоэлектрическому), а процесс укрупнения их ускоряется столкновением с зернистой загрузкой. [c.145]

    Промывание дистиллированной водой уменьшает концентрацию электролитов, что приводит к изменению структуры двойного электрического слоя — часть противоионов переходит из адсорбционного в диффузный слой, возрастает электрокинетический потенциал частиц коагулята. В результате осадок гидроксида или сульфида на фильтре уменьшается — пептизируется, проходя через поры фильтра в виде золя. [c.313]

    Наиболее важными свойствами глин являются набухаемость, пластичность и связующая способность. Набухаемостью называется свойство некоторых веществ поглощать жидкости и при этом заметно увеличиваться в объеме и весе. Набухание, как и растворение,— явление избирательное, т. е. данное вещество может набухать только в определенных жидкостях и неспособно набухать в других. Обусловлено оно силами взаимодействия между молекулами вещества и жидкости и диффузным проникновением молекул жидкости между молекулами вещества. Для глин, как и для других веществ, хорошо набухающих в воде, преобладающим является взаимодействие между молекулами глинистого вещества и воды. В смеси с определенным количеством воды глины образуют пластичную массу, которая под влиянием механических воздействий может принимать любую форму и сохранять ее при высыхании, а после обжига приобретать свойства камня. [c.116]

    Вторая группа компонент выделяет ранее упомянутые упроп аю-щие предположения, которые можно принять в модели по отношению к рассматриваемому объекту с целью снижения вычислительной трудоемкости предстоящих расчетов. Так, например, имитацию можно проводить с учетом или без учета показателей качества вод, учитывать или игнорировать влияние неточечных источников поступления и изъятия воды, диффузных источников поступления примесей, явлений самоочищения, вторичного загрязнения и т. п. Для всех (или части) водопользователей и участков ВХС можно пренебречь временем добегания потоков воды и примесей. Эти потоки могут рассматриваться переменными или постоянными на выделенных участках и во времени, а также зависеть от стохастических условий. Состав учитываемых потерь воды в ВХС и способы их расчета также могут быть различными. Кроме того, детальность описания имитационного эксперимента во многом определяется спецификой водопользования, от которой зависит тип и состав характеристик, необходимых для выработки решений. Водо-потребности пользователей могут быть постоянными, изменяющимися во времени, а также зависеть от комплекса стохастических условий (например, для ирригационного водопотребления). [c.371]

    Исходя из опытных данных Мак-Коя и Уошборна, картину перемещения нефти из материнских пластов в пористые пласты можно изобразить в следующем виде. Если в природных условиях мы будем иметь слои лштеринской битуминозной породы с диффузно распределенной в ней нефтью в переслаивании с песками или другими пористыми породами, напитанными водою, то под действием сил капиллярного притяжения, в силу вышеотмеченпой [c.188]

    Опытами установлено, что капиллярное притяжение изменяется с увеличением температуры, а следовательно, и с глубиной. При геотермическом градиенте, равном 30 л на 1° С, приблизительно на глубине в 5 тыс. м сила капиллярного притяжения уменьшится на половину в своей величине, а так как по данным ряда исследователей, например Д. В. Голубятникова, относящимся к Би-би-Эйбату, во многих нефтяных месторождениях геотермический градиент в два раза меньше нормального (для Биби-Эйбата он равен 12 м на 1° С), то указанное уменьшение произойдет в ряде случаев еще на меньшей глубине, примерно на глубине вЗ—4тыс. м. Кроме того, нужно принять во внимание, что поверхностное натяжение нефти с увеличением температуры падает медленнее, чем у воды, следовательно, на некоторой глубине силы поверхностного натяжения воды и нефти могут сравняться. У Эммонса указывается, что это произойдет на глубине 4—5 тыс. м и что на больших глубинах нефть в глинах и сланцах может находиться в диффузном состоянии, если только она не была вытеснена оттуда в пески в более ранний геологический период, когда соответствующие пласты могли залегать на меньшей глубине от земной поверхности, или же если нефть не была выжата силою давления. [c.189]

    Но все-таки общее направление движения нефти в конечном счете определяется тектоникой, поэтому, если можно сп-орить о роли тех или иных синклинальных форм на фоне других тектонических структур, то ни в коем случае нельзя отрицать громадного значения и роли больших депрессий регионального характера, названных нами геосинклиналями. Ведь в них-то и происходило накопление первично битуминозного материала — так называемой материнской породы. Здесь под влиянием повышенной температуры и давления и при участии других факторов (анаэробных бактерий) происходило превращение органического материала в диффузно рассеянную в породе нефть, и отсюда началось ее движение вследствие разницы в удельном весе воды и нефти происходит их разделение и подъем последней вверх по восстанию. На своем пути поднимающаяся из геосинклиналей с места своей родины нефть встречала различного рода препятствия тектонического характера в виде литологических особенностей того или иного пласта, и в этих преградах происходило ее накопление и образование нефтяных залежей . Отрицая возможность накопления нефти в некоторых локальных структурных типах синклиналей, нельзя забывать огромного значения и роли геосинклиналей в образовании и аккумуляции нефти. [c.272]

    Образование нефти совершалось во всех точках органогенного слоя, где был соответствующий материал, следовательно, нефть в этом пласте все время находилась в диффузно рассеянном состоянии. По мере того как образовавшаяся нефть выжималась в пористые породы, органогенный пласт или первично-битуминозная порода постепенно беднели органическим веществом, и к концу процесса приобрели приблизительно тот характер слабо битуминозных пород, которые мы наблюдаем теперь в глинах майкоп-, ской свиты, темно-серых глинах диатомовой свиты Бакинского района и т. п. Выжатая в рыхлую породу вместе с водою нефть первоначально образовывала с нею нераздельную смесь, и потом, вследствие разницы в удельном весе, началось разделение этих жидкостей причем, как мы уже указывали в. главе VI, в кровле песчаного пласта расположился слой нефти с газом, а нижнюю часть заняла вода. По мере того как твердела порода и становилась все более стойкой по отношению к действующим на нее силам сжатия, в процессе вытеснения нефти из глины в пески и вообще в рыхлые породы приняла участие скопившаяся в рыхлом пласте вода, которая, в, силу большой величины поверхностного натяжения по сравнению с нефтью, постепенно вытеснила ее из всех мельчайших пор. По мере нарастания мощности осадков, по мере погружения первично-битуминозной породы в более глубокие зоны земной коры приобретали в процессе нефтеобразования возрастающее значение процессы гидрогенизации, которые все более и более улучшали качество нефти. Чем глубже песок, тем лучше нефть (the deeper the sand, the better the oil), говорят американцы и не безосновательно. Конечно, условия нефтеобразования столь сложны, что эта поговорка может быть оправдана не в деталях, а только в весьма общем виде. В Калифорнии, нанример, глубокие пески содержат нефть в 28—35° Вё,- тогда как более мелкие продуктивные горизонты в тех же самых месторождениях дают нефть в 18—20° Вё. Точно так же в штате Оклахома наиболее глубокий горизонт, зале- [c.345]

    В заключение нужно коснуться еще вопроса о керогенных породах, или горючих сланцах. Это, по нашему мнению, недоразвившиеся до образования природной нефти породы. Если бы они были развиты в областях погружения в переслаивании с песками и могли попасть в зоны высокого давления, органическое вещество в них, по всей вероятности, превратилось бы в нефть. В некоторых из них процесс битуминизации не успел еще начаться, как они уже были выведены из сферы биохимических и химических процессов поднятием со дна моря. Таким примером являются куккерские сланцы В них синезеленая водоросль со времени нижнего силура сохранилась почти неизмененной. На покровном стеклышке в капле воды или хлоралгидрата она набухает и развертывается, как живая. В волжских сланцах процесс битуминизации уже начался, часть органогенного вещества уже перешла в битум, на этой стадии превращение остановилось, между тем как те же слои верхней юры, погребенные под меловыми отложениями в Эмбенском районе, дали нефть. В Майкопском нефтяном месторождении ниже основных нефтяных залежей, среди свиты фораминиферовых слоев, залегает пласт сильно битуминозной глины с рассеянными по всему пласту капельками иефти. Когда некоторые скважины, достигали этого пласта, в забое скоплялось даже небольшое количество свободной нефти. Если бы его перекрывал или подстилал пористый пласт, мы имели бы нефтеносный горизонт с промышленным скоплением нефти, а сейчас — это только пласт с диффузно рассеянной нефтью. Обращает на себя внимание исключительная нефтеносность майкопских глин в Хадыженском месторождении. Здесь глины настолько насыщены нефтью, что достаточно тончайших песчаных прослоев и смятия среди них, чтобы образовались скопления нефти, дающие хотя небольшие, но довольно постоянные притоки. И здесь, будь среди этих глин хорошие коллекторы, мы имели бы месторождение с большими запасами нефти, теперь рассеянной по всей толще [c.349]

    Анализ протекающих процессов затруднен, однако, тем, что свойства воды в дисперсных системах в результате ее взаимодействия с поверхностью частиц или со стенками пор отличаются от свойств объемной воды. Изучение свойств воды в дисперсных системах ведется уже давно, но лишь в последнее время благодаря развитию физико-химических методоц удалось получить существенно новые и более полные результаты. Уточнены ранее сложившиеся представления о свойствах связанной воды. Это относится прежде всего к данным об ее плотности, которые чаще всего оказывались сильно завышенными. Как сейчас становится ясным, изменения плотности не превышают нескольких процентов от плотности объемной воды. Значительно меньшими оказались и изменения вязкости, сложились иные представления о неподвижности граничных слоев воды. Многие процессы переноса оказались более сложными, чем это представлялось ранее. Это связано с выяснившейся необходимостью учета влияния образования и перекрывания в тонких порах диффузных адсорбционных слоев молекул и ионов, изменения физических свойств и структуры воды как функции расстояния от поверхности. Резко возрос в последнее время интерес к структурным силам, возникающим при перекрывании граничных слоев воды с измененной структурой. Эти силы, в добавление к молекулярным и электростатическим, играют важ- [c.4]

    Наличие внутренней и внешней частей граничного слоя может быть объяснено резкими различиями в структурах адсорбционно (внутренней части граничного слоя) и осмотически связанной воды. Первая подчинена геометрии подложки и гид-ратационным характеристикам ее активных центров. Вторая, если учесть, что в диффузную часть двойного электрического слоя глинистых частиц переходит менее 2% обменных катионов [124], может быть в первом приближении описана структурой очень разбавленного раствора электролита. Переход от слоя адсорбционно связанной к слою осмотически связанной воды осуществляется через промежуточный (внешняя часть граничного слоя) переходный слой конечной толщины [125]. [c.42]

    Особенности поляризации в полярных средах связаны с диффуэно-стью двойного слоя, проявляющейся даже при дипольной структуре межфазной границы, индуцирующей вторичные диффузные слои в глубине обеих фаз. Учет поляризационных сил особенно важен при построении физической картины злектрокоагуляции, в технологии разделения систем с полярными средами, в том числе и очистки природньгх и сточных вод. Устойчивость дисперсной системы в электрическом поле зависит от знака и величины суммарной энергии взаимодействия, обусловленной энергией молекулярного притяжения, ионно-электростатической энергией отталкивания и энергией диполь-дипольного притяжения [43].  [c.15]

    Это уравнение основывается на модели, по которой подвижная часть двойного слоя мон ет иметь любое распределение (как слой Гуи), по предполагается движение в среде со средним отношением вязкости Г] к диэлектрической постоянной е. Большинство авторов принимают значения этих параметров, равными параметрам воды. Однако другие считают, что вода в области диффузного двойного слоя имеет аномальные свойства вследствие высокой локальной силы поля. Ликлема и Овербек (1961) заключили, что ё, вероятно, не изменяется, а Г) может увеличиваться, но надежные значения вязкоэлектрической константы для воды отсутствуют. [c.101]

    Так как трудно получить монодисперсные кап. необходимого размера, имеется очень мало исследований электровязкостных эффектов в эмульсиях. Ван дер Ваарден (1954) определил вязкости ряда эмульсий М/В, стабилизированных сульфонатами натрия, в которых величина не превышала 0,205 мкм (табл. 1 МЗ). Максимальная концентрация примененного эмульгатора была необычно большой, так как составляла — 12% общего веса эмульсии. При более высоких концентрациях эмульгатора 11отн существенно отклонялась от теоретических значений, вычисленных по уравнению (IV.206). Увеличение было также намного большим, чем предсказывалось уравнениями (IV.249) и (IV.250). Поэтому сделано заключение, что расхождение не могло быть результатом искажения диффузного двойного слоя вокруг капель. Полагали, что сильно ионизированный эмульгатор, адсорбированный на поверхностп капель, создает электрическое поле высокого напряжения 10 —10 в см и слой молекул воды прочно связан с ним. Толщина слоя воды, как показано кажущимся увеличением Дг была 0,0014—0,0037 мкм, досиггая почти устойчивого значения при более высоких концентрациях эмульгатора. [c.296]

    В ингибированных системах агрегирование глинистых частиц офани-чивается катионами, связывающими более прочно глинистые частицы, повышающими заряд ионной оболочки, что приводит к сжатию диффузного слоя и уменьшению количества связанной воды. В качестве ингибирующих добавок чаще используются соединения кальция (известь, гипс, ангидрит, хлористый кальций) и калия (гидроокись калия, хлористый калий). Поэтому буровые растворы соответственно называются известковыми, гипсовыми, высококальциевыми, калиевыми, калиево-полимерглинистыми. [c.52]

    Механизм действия раствора соли на бентонит, набухший в растворах полимеров, например КМЦ, гипана и других, может быть объяснен, исходя из учения П. А. Ребиндера [70]. Глинистая частица, набухгпая в растворе полимера, покрыта пленкой лиогеля, сильно соль-ватированной дисперсионной средой (водой) и диффузно переходящей в межмицелляриую жидкость. В первый пе])иод контакта происходит разру ]пение гидратных оболочек [c.240]

    Если почву обрабатывать достаточно концентрированным раст-BopOiM Na l, ионы Са + в диффузном слое могут быть практически полностью замещены ионами натрия. Однако пептизации в этих условиях ие будет, так как высокая концентрация электролита вызывает сжатие диффузного слоя и преобладание сил притяжения над силами отталкивания. Последующая промывка почвы водой от избытка Na I приводит к расширению диффузного слоя и, как результат, к пептизации коллоидов. На этом принципе основан один из методов выделения почвенных коллоидов. [c.378]

    В ранних работах имеются указания, что при достаточно боль-ших давлениях на поверхности частиц аэрозоля возникает поли- молекулярный диффузный слой газа, удерживаемый адсорбцион- ными силами. Наличием газовой оболочки, в частности, объясняли неслеживаемость порошков при хранении, способность порошкоа течь подобно жидкостям и несмачивание твердых частиц аэрозолей жидкостью (известно, что дым может проходить через воду, причем частицы дисперсной фазы не остаются в воде). В некоторых работах приводились даже данные, характеризующие количество, воздуха, адсорбированного аэрозолем, причем объем адсорбиро ванного газа обычно во много раз превышал объем адсорбировавшей его дисперсной фазы. Однако в последние десятилетия появились работы, в которых опровергается возможность адсорбции, аэрозолями больших количеств газа, и поэтому считают, что образование вокруг их частиц диффузных газовых оболочек невозможно. [c.347]

    В практике химического анализа в качестве коагулянтов используются такие электролиты, которые в последуюш,ем ходе анализа сравнительно легко удаляются. К их числу относятся леГ колетучие кислоты или их аммонийные соли, например N1 40, NH4N0 , растворами которых часто пользуются и для промывания осадка. При этом катионы и анионы электролита замещают ионы соответствующего знака, входящие в состав двойного электрического слоя — адсорбированного и диффузного, — и тем самым препятствуют пептизации коллоида, т. е. повторному образованию коллоидного раствора, которое может произойти при промывании осадка водой. [c.206]

    Из ЭТИХ данных видно, что двойной электрический слой в дистиллированной воде и разбавленных растворах электролитов достигает значительной толщины. Поскольку объем молекулы воды может быть приравнен кубу с ребром в 0,0003 мк, то ясно, что при соответствующем разбавлении раствора ( 10- н.) толщина двойного слоя во много раз превосходит размеры молекул растворителя (воды). Этот вывод имел больщое значение в развитии предстаЬлений о строении двойного электрического слоя, так как в нем впервые учитывается влияние концентрации раствора электролита на распределение ионов на границе раздела фаз. Если известен состав раствора, его концентрация и емкость двойного слоя С, то по уравнению (15), вводя вместо т1о его выражение через я по уравнению Гуи, можно найти т)о в зависимости от 1ро. Ряд данных по значению я)) в зависимости от фо при С =18 мкф1см , взятых из работ А. Н. Фрумкина и его сотрудников, приведен в виде графика на рис. 15 для одновалентного электролита. Из графика видно, что с увеличением концентрации электролита строение двойного слоя становится менее диффузным и приближается к гельмгольцевской картине двойного слоя. [c.33]

    Для тех случаев, когда сечение капилляров исследуемой системы приближается к молекулярным величинам и становится близким к толщине двойного слоя на поверхности или меньше ее, что является вполне реальным для многих ультрапористых капиллярных систем в воде и сильно разбавленных водных растворах, может быть поставлен вопрос о недоразвитии или сжатии двойного слоя. Этот вопрос был рассмотрен впервые в работах Уайта с сотрудниками, Ленса и затем Г. И, Зельцера. По представлениям Уайта и Ленса, при известных соотношениях между сечением капилляра и толщиной двойного слоя (малый ридиус пор и большое разбавление раствора) могут создаться такие условия, при которых диффузный ионный слой не может полностью развиться по всему сечению капилляра данного радиуса, т. е. до той толщины, которая должна быть в свободном растворе того же состава и концентрации. [c.93]

    Механизм электроосмоса заключается в следующем. Нерастворимый материал мембраны при контакте с жидкостью (водой) диссоциирует с поверхности, отщепляя в жидкость те или другие ионы. Возникает двойной электрический слой, внутренняя обкладка которого входит в состав твердой фазы, а противоионы диффузно располагаются в жидкости. При включении постоянного электрического тока противоионы диффузного слоя перемещаются к электроду соответствующего знака. Так как ионы в воде всегда гидратированы, то при движении иона с ним увлекается определенный объем диснор-сноннной среды за счет сил молекулярного трения (вязкости) между гидратной оболочкой иона и окружающей жидкостью. Очевидно, что чем больше толщина диффузного слоя и меньше площадь поперечного сечения капилляра или поры мембраны, тем сильнее проявляется электроосмотический перенос жидкости. Например, силикаты, входящие в состав стекла, на границе с водой диссоциируют по уравнению [c.409]

    Цель работы — выявление зависимости координационного и аалентного состояния атомов ванадия (V) поверхности от адсорбции паров воды по спектрам диффузного отражения. [c.170]


Смотреть страницы где упоминается термин Вода диффузная: [c.372]    [c.372]    [c.332]    [c.116]    [c.219]    [c.27]    [c.27]    [c.34]    [c.59]    [c.94]    [c.94]    [c.409]   
Физическая и коллоидная химия (1964) -- [ c.267 ]




ПОИСК







© 2025 chem21.info Реклама на сайте