Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митохондрия химические реакции

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Точно так же как расщепление глюкозы до пирувата не может происходить без одновременного превращения АДФ в АТФ, в некоторых прочно сопряженных препаратах митохондрий в отсутствие доступной для фосфорилирования АДФ не сможет осуществляться и перенос электронов вдоль дыхательной цепи. И в этом случае скорости химических реакций, ведущих к высвобождению энергии, будут зависеть от отношения АТФ/АДФ в данный момент времени. Если это отношение низко и клетка нуждается в АТФ, то процесс высвобождения энергии ускоряется. Суммарное уравнение реакции фосфорилирования в дыхательной цепи при окислении НАД-Н выглядит так  [c.54]

    Функции энергоснабжения клетки митохондрии осуществляют С помощью многочисленных ферментов. Работа клеточных ферментов, благодаря которым одновременно протекают сотни различных химических реакций, отличается удивительной упорядоченностью. Ферменты включаются всегда в нужный момент, и последователь-йость реакций поэтому не нарушается. [c.25]

    Широко используется, например, при изучении функций митохондрий Важнейшая часть анализа любой химической реакции или метаболического пути [c.17]

    Настоящий раздел практикума посвящен экспериментальным приемам, использующимся при изучении биоэнергетических механизмов тканей животных. Употребление понятия биоэнергетика применительно к данному разделу требует некоторых пояснений. Любую ферментативную реакцию можно характеризовать как с точки зрения химического механизма и скорости ее протекания, так и с позиций энергетики — установление констант равновесия отдельных стадий или суммарного процесса, непосредственно связанных с термодинамическими понятиями и величинами. Тем не менее, говоря о биоэнергетике, обычно подразумевают реакции, приводящие к эндергоническому образованию АТФ из АДФ и неорганического фосфата. К таким реакциям относятся дыхательное фосфорилирование, фотофосфорилирование и реакции субстратного фосфорилирования АДФ, связанные с гликолизом и протеканием цикла трикарбоновых кислот. В силу традиции исследования в области биоэнергетики на кафедре биохимии МГУ ограничены тканями животного происхождения. С количественной же точки зрения реакции дыхательного фосфорилирования заведомо превалируют над гликолизом и субстратным фосфорилированием в цикле трикарбоновых кислот. Таким образом, настоящий раздел практикума фактически посвящен описанию экспериментальных подходов к изучению метаболизма митохондрий — внутриклеточных органелл, ответственных за дыхательное фосфорилирование. [c.403]

    Более 15 таких веществ были выделены, но ни в одном случае-структура или функция в химическом смысле не были хорошо исследованы. Ферменты, содержащие медь, — это в основном оксидазы, т. е. они катализируют реакции окисления. Вот примеры 1) оксидаза аскорбиновой кислоты (молекулярная масса 140 000,. 8 атомов Си) широко распространена в растениях и микроорганизмах. Она катализирует окисление аскорбиновой кислоты (витамин С) до дегидроаскорбиновой кислоты 2) цитохромоксидаза, терминальный акцептор электрона в окислительной цепи клеточных митохондрий. Этот фермент также содержит гем 3) различные тирозиназы, которые катализируют образование пигментов (меланинов) в клетках многих растений и животных. [c.653]


    Синтез белка осуществляется в клетках, состоящих из ядра и окружающей его цитоплазмы. Живую клетку сравнивают иногда с автоматически регулируемым химическим предприятием, вырабатывающим большой ассортимент различных веществ. Как и на промышленном предприятии, в клетке установлен строгий порядок. В ней имеются различные цехи , производящие необходимые полупродукты и продукты из поступающего сырья. Для этого клетка разделена полупроницаемыми перегородками на множество мельчайших отсеков. Каждый из химических процессов в клетке протекает в специально предназначенном для него отсеке и катализируется специфическим ферментом. Так, например, описанные выше окислительные реакции, в результате которых клетка получает необходимую энергию, происходят в митохондриях (небольших частицах цитоплазмы). Биосинтез белка не является в этом отношении исключением. Подготовительные стадии сложного процесса биосинтеза происходят в разных участках клетки, а завершающая стадия сборки аминокислот на специальной матрице (шаблоне), обеспечивающей нужную их последовательность [c.455]

    Анаэробный гликолиз происходит не в митохондриях, но зато именно там протекают последующие стадии дыхания — цикл Кребса (называемый также циклом трикарбоновых кислот и циклом лимонной кислоты) и конечное дыхание. Эти реакции изучены до мельчайших подробностей. Нас здесь будет интересовать только основной принцип. Он состоит в том, что пировиноградная кислота расщепляется все дальше и дальше, до углекислого газа (СОг) и водорода (Нг), а в заключение водород окисляется кислородом воздуха (следовательно, этот этап процесса дыхания является аэробным) с образованием воды. Так как СОг и НгО представляют собой бедные энергией конечные продукты, следовательно, энергия, заключавшаяся ранее в пировиноградной кислоте, должна была перейти в какую-то иную форму. Часть ее (небольшая), очевидно, переходит в тепло большая же часть энергии обнаруживается в богатом энергией химическом соединении — это наш старый знакомый АТФ, который известен как универсальный донор энергии для клетки. [c.223]

    Клеточные форменные элементы — ядро, митохондрии, рибосомы, пластиды и другие — играют роль аппаратов, в которых сосредоточены онределенные классы реакций в ядре — главным образом синтез РНК для переноса информации в цитоплазму в рибосомах — синтез белка иод влиянием информации, приходящей из ядра в митохондриях — реакции дыхательного фосфорилирования, создающие запас химической энергии, перетекающей затем в другие органеллы, где энергия потребляется. Регулирование процессов осуществляется тем, что структурные элементы клеток обладают свойствами мембран, через которые очень быстро и весьма селективно проникают вещества определен- [c.138]

    Подобно митохондрии, пероксисома - это один из главных центров утилизации кислорода в клетке. Существует гипотеза, согласно которой пероксисома представляет собой остаток древней органеллы, выполняющей у примитивных предков эукариотических клеток все функции метаболизма кислорода. Когда в атмосфере начал накапливаться кислород, производимый фотосинтезирующими бактериями, вероятно, он был токсичен для большинства клеток. Пероксисомы могли служить для снижения концентрации кислорода в клетках, одновременно используя его химическую активность для проведения важных окислительных реакций. В соответствии с этой точкой зрения последующее появление митохондрий сделало пероксисомы в значительной мере ненужными, так как многие реакции, ранее протекавшие в пероксисомах без производства энергии, теперь с помощью окислительного фосфорилирования были сопряжены с образованием АТР Таким образом, окислительные реакции, протекающие в современных клетках - это, возможно, те реакции, которые остались необходимыми, несмотря на появление митохондрий. [c.35]

    Некоторый эволюционный потенциал, т. е. возможность увеличения кинетического совершенства, содержится в ускорении диффузии посредством создания более резких градиентов концентрации. Эту возможность мы уже рассматривали. Она реализуется при образовании структурно-организованных ансамблей ферментов, например, в митохондриях и хлоропластах. Однако таким способом, посредством игры на градиенте , достигается скорее экономия материалов, чем макроскопический выигрыш в суммарной скорости процессов. Поэтому показателем дальнейшего прогресса становится скорость диффузии, скорость потока метаболитов, превращаемых в вещество данного вида. Прогресс можно теперь измерять в см/сек. Диффузионный барьер не может быть преодолен чисто химическим путем. Дальнейшее совершенствование биохимических механизмов (катализа, маршрутов реакций) оказывается бесполезным. [c.142]

    Как уже сказано, окислительное фосфорилирование в митохондриях сопряжено с ионным транспортом. Это система сопряженных процессов, а не отдельная химическая реакция. Слэйтер (1953) предположил, что в результате огсислепия возникают первичные макроэрги — прол1ежуточпые вещества, обладающие избытком свободной энергии и участвующие в фосфорилировании. Такие вещества не были обнаружены и физический механизм предлагаемого процесса не ясен. Химическая гипотеза Слэйтера оставлена. [c.432]

    Проницаемость в живых клетках представляет собой активный процесс и имеет мало общего с молекулярной диффузией или осмотическим потоком. Наоборот, активный транспорт осуществляется чаще всего против градиента концентрации, т. е. в направлении от мепьшей концентрации к большей. Ясно, что это — сложное явление, в котором обязательно должна потребляться энергия, так как движение веществ в направлении, обратном диффузии, связано с уменьшением энтропии. Активный перенос веществ как внутрь клетки из внешней среды, так и внутрь различных структурных элементов из заполяющей клетку гиалоплазмы осуществляется особыми нерастворимыми белками и белковыми комплексами, образующими наружную клеточную мембрану и различные структурные образования внутри клеток. Активный транспорт через мембраны и внутрь клеточных органелл связан с протеканием химических реакций, конечно, ферментативных. Поэтому проблема проницаемости и соответствующая функция белков тесно связана с их ферментативной функцией. С другой стороны, с помощью активного транспорта осуществляется один из механизмов автоматического регулирования. Как мы увидим дальше, регулирование проницаемости митохондрий осуществляется путем их сокращения пли расслабления. Причиной этого движения яляется сократительная реакция в особом белке, т. е. это явление вполне аналогично сокращению мышцы. [c.139]


    Как уже говорилось выше, ио данным электронной микроскопии, внутренняя область клетки отделена от внешней среды с помощью поверхностного слоя цитоплазмы, имеющего характер мембраны (50—70А толщиной), и все заполняющие клетку органеллы — ядро, митохондрии, рибосомы и др. — отделены друг от друга и от заполняющей клетку эндоплазмы. В некоторых случаях органеллы имеют специальные мембраны (например, ядро в клетках высших организмов), в других случаях разделительной перегородкой является само вещество частицы (например, у митохондрий и рибосом). Структурные элементы клетки содержат значительный процент белков и чаще всего липиды, т. е. группу водонераствори.мых жирорастворимых веществ. Смысл подобной структуры клеток — в пространственном разделении химических реакций в клетке. Сквозь все мембраны, как внешние, так и внутреннпе, непрерывно идут процессы переноса. Процессы переноса в клетке бывают двоякие. Биологически важным является активный транспорт, т. е. перенос ионов и молекул разных веществ против градиента концентращга пз области, где концентрация низка, туда, где концентрация выше. Этот процесс лежит в основе питания и секреторной функции клетки, т. е. поглощения ею из внешней среды необходимых веществ и выделения в среду веществ, используемых другими клетками и тканями. Этот же процесс внутри клетки направляет одни вещества в ядро, дрз гие в митохондрии, третьи в рибосомы и т. д. [c.176]

    Цикл трикарбоновых кислот. Вторым компонентом общего пути катаболизма является цикл трикарбоновых кислот. Принципиальная химическая реакция цикла СН3—СООН + 2Н2О -> 2СО2 + 4Н2. Очевидно, что главная функция ЦТК заключается в декарбоксили-ровании и дегидрировании уксусной кислоты, которая приводит к образованию двух молекул СО2 и четырех пар атомов водорода, поступающих в дыхательную цепь. Этот процесс был открыт в 1937 г. Кребсом и Джонсоном. В 1948 г. Кеннеди и Ленинджер доказали, что ферменты ЦТК локализованы в митохондриях (в матриксе).  [c.143]

    В таком случае, обе теории различаются коренным образом. Можем ли мы решить, какая из них, вероятнее всего, окажется верной В частности, можем ли мы выстроить какие-либо убедительные доказательства, которые могли бы подтвердить или опровергнуть направленную панспермию Одна возможная последовательность доводов содержится внутри тех организмов, что существуют сегодня. Несмотря на большое разнообразие молекул и химических реакций, созданных эволюцией, есть определенные особенности, которые, по-видимому, являются общими у всех живых существ. По мере того, как мы тщательно собираем все больше и больше данных из живущих сегодня организмов, мы начинаем соединять в одно целое родословные деревья некоторых молекул, например, молекул транспортной РНК, в надежде, что сумеем установить характер древнейших предков этих молекул. Такая работа все еще ведется, но есть одна особенность, которая настолько инвариантна, что сразу же привлекает внимание. Это генетический код, описанный в приложении. За исключением митохондрий, код идентичен у всех живых существ до сих пор изученных, и даже в случае митохондрий отличия довольно незначительны. Это не вызывало бы удивления, если бы существовало очевидное структурное основание для элементов кода, если определенные аминокислоты должны были обязательно сопровождать определенные кодоны, например, потому, что их формы изящно соответствовали друг другу. Предпринимались смелые попытки предложить объяснения, как это могло произойти, но все они представляются неубедительными. По крайней мере, вполне правдоподобно, что все элементы кода, в основном, случайны. Даже если некоторые первые кодоны были продиктованы не случайностью, а несли в себе какую-то химическую логику, и даже если некоторые общие особенности кода можно некоторым образом объяснить, то наиболее невероятным представляется, по крайней мере, сегодня, что все элементы кода были определены чисто химическими причинами. Код предполагает как раз то, что жизнь на некоем этапе прошла, по крайней мере, через одно узкое место, небольшую ин-бридинговую популяцию, из которой развилась вся последующая жизнь. [c.117]

    Электрическая цепь характеризуется двумя основными параметрами разностью потенциалов (в вольтах) и силой тока (в амперах). Измерив эти величины, можно рассчитать и другие параметры, такие, как уровень передачи энергии (в ваттах) или сопротивление компонентов цепи (в омах). На рис. 4.1 показана простая электрическая цепь, а также аналогичный протонный цикл во внутренней мембране митохондрий (цикл, существующий в фотосинтетической мембране, практически не отличается от изображенного на рис. 4.1). В разомкнутой цепи (рис, 4.1, А) электрический потенциал максимальный, но ток не течет, поскольку разность редокс-потенциалов, создаваемая батареей, точно уравновешивается разностью электрических потенциалов. В силу того что окислительно-восстановительные реакции в батарее прочно сопряжены с переносом электронов, в этих условиях химических реакций не происходит. В случае митохондрий протонный цикл оказывается разомкнутым, если протоны, выброшенные при работе дыхательной цепи, не могут вновь вернуться в матрикс. Как и в случае электрической цепи, мембранный потенциал в этих условиях максимальный и разность редокс-потенциалов в протонтранснортирующих участках дыхательной цепи (разд. 5.3) находится в равновесии с разностью электрохимических потенциалов протонов [с учетом стехиометрии Н7е (разд. 3. 8)]. Если редокс-реакции жестко сопряжены с переносом протонов, то в этих условиях дыхания не происходит. [c.69]

    Оказалось, что в ядрах, где сосредоточена почти вся клеточная ДНК, идет как ее биосинтез, так и новообразование всех видов РНК. В митохондриях интенсивно протекают процессы биологического окисления, сопряженного с образованием важнейшего макроэргического соединения—аденозинт-рифосфорной кислоты (АТФ), вследствие чего их считают энергетическими центрами клетки. Функция лизосом сводится к осуществлению процессов деструкции биополимеров при участии разнообразных гидролитических ферментов, которыми они очень богаты. Рибосомы, представляющие по современным данным механохимические машины молекулярных размеров, обеспечивают биосинтез всех клеточных белков. Мембраны эндоплазматиче-ского ретикулума делят клетку на ряд,отсеков (компартменты), обеспечивая компартментализацию (обособленность) ряда химических процессов в ней, избирательный перенос веществ из одной части клетки в другую, равно как и протекание ряда химических реакций при участии ферментов, встроенных в мембраны эндоплазматической сети. Центриоли имеют отношение к такому важнейшему процессу, как перемещение хромосом в клетке при ее делении. [c.21]

    С открытием митохондриальной креатинкиназы креатинфосфат стал рассматриваться не просто как резерв макроэргического фосфата в клетке, а как основной переносчик химической энергии от митохондрий к местам ее утилизации в клетке. Митохондриальная креатинкиназа превращает синтезированный в митохондриях АТФ в креатинфосфат в виде креатинфосфата энергия транспортируется к местам ее утилизации, где и происходит обратная реакция образования АТФ из креатинфосфата и АДФ с помощью цитоплазматических нзофермен-тов. [c.292]

    Витамин Вт (карнитин). По своему химическому содержанию — это у-ами-но-р-гидроксикарбоновая кислота бета-иноаой структуры, которая присутствует в тканях животных, растений, в микроорганизмах. Для некоторых насекомых карнитин является собственно витамином. Высшие животные синтезируют его из 1-лизина и далее используют в качестве кофермента, участвуюш,его в переносе остатков жирных кислот через мембраны из цитоплазмы в митохондрии. Карнитин, взаимодействия с коферментно связанной жирной кислотой, образует бифильное производное жирной кислоты, имеюш,ее высокое сродство к липидному слою клеточных мембран. Это свойство и обеспечивает ему легкость внедрения в мембрану и транспорт через нее. Жирная кислота высвобождается после транспорта реакцией гидролиза (схема 10.2.13). [c.281]

    Изучение фотографических изображений клетки, полученных прн помощи микроскопа в разные моменты времени, позволили увидеть, что плазматическая мембрана, так же как и митохондрии и другие органеллы, постоянно находится в движении. Митохондрии скручиваются и поворачиваются, а поверхность мембраны постоянно совершает волнообразные движения. Пузырьки освобождают свое содержимое в окружающую среду, выводя его из клеток, а перенос веществ внутрь клетки осуществляется за счет процесса эндоцитоза (гл. 1, разд. Б.4). При помощи химических методов было показано также, что составляющие мембраны вещества транспортируются из эндоплаз1матического ретикулума в пузырьки аппарата Гольджи, в экскреторные гранулы и в плазматическую мембрану. Важным этапом биосинтетических процессов, протекающих в клетке, является присоединение углеводных (гликозильных) остатков к молекулам белка с образованием гликопротеидов и гликолипидов. Ферменты, катализирующие эти реакции, — гликозилтрансферазы (гл. 12)-—обнаружены в эндоплазматическом ретикулуме и в пузырьках а1ппарата Гольджи. Эти ферменты катализируют присоединение углеводных единиц (по одной в каждом акте реакции) к определенным местам молекул белков, липидов и других соединений, экскретируемых из клеток. Другие ферменты катализируют присоединение сульфатных и ацетильных групп к углеводным фрагментам молекул глико Протеидов. [c.356]

    Чрезвычайно активным флавинсодержащим ферментом митохондрий животных является сукцинатдегидрогеназа [реакция (8-49)]. Этот фермент не только сам прочно встроен в мембраны крист митохондрий, но и содержит флавин, прикрепленный к белку с помощью ковалентной связи. Недавно была выяснена химическая природа этой связи выделен модифицированный FAD, содержащий 8a-(N-3-ги тидил)-рибофлавин [103—105]  [c.259]

    Образование АТР из ADP и Р, представляет собой процесс, жизненно важный для всех клеток. Этот процесс часто называют фосфорилированием и подразделяют на 1) окислительное фосфорилирование, связанное с прохождением электронов по цепи переноса электронов,— обычно этот процесс происходит в митохондриях, 2) фотосиите-тическое фосфорилирование — сходный процесс, идущий в хлоропластах под действием света, и 3) субстратное фосфорилирование. Только для этого последнего случая известна химическая сторона процесса. Лучше всего изучено окисление глицеральдегид-З-фосфата, сопровождающееся образованием АТР (реакции б и 7 на рис. 9-7 и 8-13). Про- [c.338]

    Ферменты локализованы во всех компартментах клеток. Ядерные ферменты катализируют синтез информационных макромолекул, а также процессы их созревания, функционирования и распада. В митохондриях действуют ферменты энергетического обмена, в аппарате Гольджи — ферменты, катализирующие созревание белков, в лизосомах — гидролитические ферменты. Значительное число ферментов ассоциировано с внешней и внутренними мембранами. Так, ферменты, защищающие клетку от действия чужеродных химических веществ, локализованы в эндоплазматическом рети1сулуме. Распределение ферментов в клетках определяют методом дифференциального центрифугирования гомогената тканей. Локализация некоторых ферментов идентифицирована гистохимическими методами in situ. Для этого при помощи микротома получают срезы ткани и обрабатывают их раствором субстрата. Идентификация продуктов ферментативной реакции облегчена, если последние окрашены. [c.65]

    Таким образом, АцН -зависимое образование АТФ — главный, но не единственный процесс трансформации АцН в химическую работу К этому же типу энергетических превращений относятся синтез неорганического пирофосфата и перенос восстановительных эквивалентов в направлении более отрицательных редокс-потенциалов, например обратный перенос электронов в дыхательной цепи и трансгидрогеназная реакция. Зависящий от транспорт через мембрану различных веществ в сторону большей их концентрации представляет собой трансформацию энергии по типу АцН" — осмотическая работа, а вращение бактериального жгутика за счет энергии АцН+ служит примером превращения АцН — механическая работа. Образование теплоты митохондриями животных описывается превращениями типа ДцН — теплопродукция. [c.206]

    Принцип этого метода в основном тот же, что и принцип метода, примененного Сенгером для определения последовательности аминокислот в молекуле инсулина. Вначале дыхательную цепь разделяют на фрагменты или механически (методом ультразвука), или путем разрушения липидного цемента детергентами, спиртами или дезоксихолевой кислотой. Затем фрагменты разделяют с помощью ультрацентрифугирования. Определяя химические и ферментные свойства этих фрагментов, можно реконструировать последовательность реакций интактной дыхательной цепи. Этот метод был впервые чрезвычайно успешно применен Грином и его сотрудниками. В целях удобства работу проводили почти исключительно на митохондриях животных. Дыхательная цепь особенно легко поддается расщеплению в некоторых точках, указанных на фиг. 62 буквами. При расщеплении в точке А из дыхательной цепи высвобождаются пиридинпротеиды, образуя фрагмент ( переносящую электрон частицу ), уже не способный окислять промежуточные продукты цикла Кребса, но получивший теперь способность окислять НАД-На (в отличие от интактных митохондрий). Таким образом, при расщеплении в точке А удаляются пиридин-протеиды, необходимые для дегидрирования кислот цикла Кребса, но в то же время открываются участки, пригодные для окисления НАД-Нг. Многочисленные исследования были проведены с так называемой переносящей электрон частицей . Расщепление в точках В Л О приводит к образованию фрагмента, обладающего сукци-нат-цитохром-с-редуктазной активностью, но не активного по отношению к связанным с пиридиннуклеотидами субстратам. Обычно наблюдается хорошее соответствие между ферментативной актив- [c.225]

    АТР. Они обладают особым аппаратом дыхательной электрон-транспортной) цепью и ферментом АТР-синтазой, обе системы у прокариот находятря в плазматической мембране, а у эукариот-во внутренней мембране митохондрий. Ведущие свое происхождение от субстратов восстановительные эквиваленты (Н или электроны) в этих мембранах поступают в дыхательную цепь, и электроны переносятся на О 2 (или другие терминальные акцепторы электронов). В дыхательной цепи происходят реакции, представляющие собой биохимический аналог сгорания водорода. От химического горения молекулярного водорода они отли-чг ются тем, что значительная часть свободной энергии переводится при этом в биологически доступную форму, т.е. в АТР, и лишь небольшая доля рассецвается в виде тепла. [c.235]

    Все взаимосвязанные реакции, которые, в сущности говоря, и составляют жизнь живой клетки, зависят от ферментов. Репликация генетической информации, ее преобразование в инструкции для синтеза специфических белков (транскрипция и трансляция), самый синтез этих белков — каждый из этих процессов зависит от специфических ферментов, которые в свою очередь образуются в результате этих процессов. Более того, все реакции промежуточного обмена веществ, поставляющие строительный материал и энергию для образования новых и жизнедеятельности старых клеток, катализируются ферментами, синтезированными под контролем ДНК ядер, хлоропластов и митохондрий. Б задачу этой книги не входит рассмотрение вопроса о том, возможна или не возможна жизнь. Ясно одно жизнь как самопро-являющееся, самовоспроизводящееся, метастабильное состояние невозможна без ферментов. Главное, чему учит нас энзимология, коротко состоит в следующем все явления жизни, начиная от самых простейших реакций до сложных процессов человеческого сознания и мышления, могут быть описаны с помощью понятий, определяющих химические и физические свойства атомов, ионов и молекул. [c.15]

    Кроме химической специфичности, которая отчетливо выступает при рассмотрении табл. 18, ферменты обладают стереоспецифичностью. Например, при восстановительном аминировании аммиаком а-кетоглутарата под действием глута-матдегидрогеназы образуется только Ь-глута-миновая кислота. Фумаратгидратаза катализирует реакцию с фумаратом, а не с малеатом, образуя Ь-яблочную кислоту. При обратном направлении этой реакции из Ь-яблочной кислоты образуется фумаровая. Лимонная кислота, образующаяся ферментативным путем из 4-С -щавелевоуксусной, расщепляется препаратами митохондрий до а-кетоглутарата, который оказывается меченым по а-карбо-ксильной группе (фиг. 42). Такое распределение метки обусловлено стереоспецифическим присоединением ацетата к щавелевоуксусной кислоте. [c.103]

    Далее оказалось, что выделение в гиалоплазму, или, наоборот, фиксация обоих факторов, контролирующих ход гликолиза, совершаются мембранами митохондрий благодаря их механо-химической активности, сокращению и набуханию. В свою очередь мембраны митохондрий получают информацию о сдвигах энергетического обмена через своего партнера — АТФ, от концентрации которого внутри митохондрий зависит ход реакции. При высоком уровне АТФ Л1ембраны сокращены и не пропускают усиливающие факторы в гиалоплазму при снижении уровня АТФ мембраны набухают, их проницаемость возрастает и происходит транспорт обоих усиливаюших веществ в гиалоплазму, что сопровождается подъемом гликолиза. [c.185]

    Еще до гипотезы Митчела были открыты вещества, которые назвали разобщители . Эти вещества имели совершенно разную химическую природу, но все, действуя на митохондрии, прекращали синтез АТФ хотя окисление пищи продолжалось. Было непонятно, в чем механизм действия этих веществ и, вообще, как столь разные вещества могут действовать на ферменты, обычно весьма избирательные в своих реакциях. Митчел же заметил, что разобщители (потому что разобщают сгорание пищи и синтез АТФ) — это вещества, растворимые в жирах и способные связывать Н . С точки зрения его гипотезы их действие объяснялось очень просто они захватывают с наружной стороны мембраны и переносят его через мембрану, разряжая ее. Иными словами, результат их действия тот же, что и при коротком замыкании. [c.267]

    Казалось бы, все объяснено. Оставалось доказать, что все истинно. Но тут работы зашли в тупик. Потому что в опытах с изолированным ферментом, который управляет образованием АТФ за счет креатинфосфата и должен вести обратную реакцию синтеза этого соединения-переносчика, процесс упорно шел лишь в одну сторону — фермент делал только АТФ Причем, все физико-химические характеристики подтверждали, что реакция может идти только так .. И вот недавно биохимикам кардиологического центра удалось экспериментально показать, что гипотеза все же в принципе верна, но только в жизни процессы проходят сложнее, чем предполагалось (поэтому их так долго и не удавалось воспроизвести). В митохондриях упомянутый фермент, оказывается, работает не один, а в комплексе с другим ферментом, который как бы заставляет его делать нежеланную работу . Далее физиологу Л. Розенштрауху удалось воспроизвести в опытах процессы передачи в ткани миокарда химической информации о количестве энергии, которая нужна миофибриллам в тот или иной момент. И главное — показать, что можно искусственно регулировать силу мышечного сокращения в нужную сторону, изменяя содержание в ткани креатинфосфата. [c.206]

    Супероксиддисмутаза (КФ 1.15.1.11, СОД) катализирует реакцию дисмутации супероксидного анион-радикала 2О2 + 2W -> HgOg + Og. Обнаружено несколько изоферментов этого белка, различающихся локализацией, строением активного центра и некоторыми физико-химическими свойствами. Си, Zn-содержащая СОД чувствительна к цианиду и содержится в цитозоле и в меж-мембранном пространстве клеток эукариот. Цианидрезистент-ная Мп СОД (железосодержащий изофермент) локализована в митохондриях эукариот и найдена у прокариот. В плазме содержится цианидчувствительная экстрацеллюлярная СОД, представляющая собой Си, Zn-содержащую тетрамерную молекулу (Мг 120—135 кДа) из четырех гликопротеиновых субъединиц. Предполагают, что экстрацеллюлярная СОД выполняет функцию защиты клеток эндотелия во всем организме. Однако активность СОД в плазме крови намного ниже, чем для цитозольного фермента. По-видимому, это связано с накоплением конечного продукта реакции — пероксида водорода, являющегося ингибитором фермента, В клетках пероксид водорода быстро разрушается внутриклеточными каталазой и глутатионпероксидазой. [c.115]

    Функционирование всех путей передачи энергии (рис. 1.9,Л) можно объяснить, если постулировать существование общего переносящего энергию интермедиата, который принято обозначать значком . Единственным примером биоэнергетического механизма, включающего подобный интермедиат, служит субстратное фосфорилирование, катализируемое глицеральдегид-3-фосфатдегидрогеназой и фосфоглицераткиназой в гликолизе (рис. 1.10). В этих реакциях окисление субстратов приводит к образованию связи фермента с фосфатом. Эта так называемая макроэргическая связь имеет очень высокую свободную энергию гидролиза. Затем фосфат может быть перенесен на ADP. В случае приложения этой схемы химического сопряжения к митохондриям (Slater, 1953) требовалось лишь учесть следующие экспериментальные данные. Во-первых, то, что во всех трех пунктах сопряжения образуется единый общий интермедиат, и, [c.20]

    Дыхание необходимо для освобождения химической энергии окисляемых субстратов. В реакциях гликолиза (анаэробного этапа дыхания) и дыхательных циклов (цикл ди- и трикарбоновых кислот, пентозофосфатный цикл) восстанавливаются коферменты, которые затем окисляются кислородом воздуха в электронтранспортной цепи митохондрий (NADH, FADN2) или используются для синтетических процессов (преимущественно NADPH). Энергия дыхания, помимо восстановленных коферментов, запасается в форме АТР в результате субстратного и окислительного фосфорилирования. Последнее осуществляется с участием Н -помпы. [c.176]

    Образование концентрационных градиентов того или иного вещества за счет энергии Д лН в принципе может происходить и без специального энергопреобразующего устройства. Как уже упоминалось выше, ацетат должен накапливаться в митохондриях, а аммиак— откачиваться во внемитохондриальное пространство под действием ДрН без всяких переносчиков просто потому, что мембрана проницаема для СНзСООН и ЫНз. В такой ситуации включение переносчика может лишь ускорить процесс транспорта. Однако переносчик оказывается совершенно необходим, если транспортируемое вещество или химическая группировка сами по себе не могут двигаться через мембрану в нужном направлении. Живая клетка всегда стремится избежать спонтанных событий, предпочитая иметь дело с процессами, катализируемыми белками. В этом случае может быть получена высокая специфичность в отношении субстрата и регулируемая в широких пределах скорость реакции. Данный принцип применим и к Др,Н-зависимой осмотической работе. [c.157]

    Пировиноградная кислота, получающаяся при этом, еще заключает в себе значительную часть энергии. Полное извлечение энергии из молекул глюкозы завершается в ходе так называемого цикла лимонной кислоты, или цикла Кребса. В этот цикл входнт более 10 последовательных реакций, в результате чего отщепляются все атомы водорода, первоначально принадлежавшие глюкозе, и выделяется энергия химических ее связей. Цикл Кребса протекает в митохондриях. [c.60]


Смотреть страницы где упоминается термин Митохондрия химические реакции: [c.92]    [c.431]    [c.250]    [c.108]    [c.30]    [c.52]    [c.358]    [c.378]    [c.165]    [c.249]    [c.271]   
Биохимия Том 3 (1980) -- [ c.89 , c.122 , c.123 , c.393 , c.395 ]




ПОИСК







© 2025 chem21.info Реклама на сайте