Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография статическая

    Одной из важных характеристик адсорбента является его удельная поверхность. Наряду со статическими методами определения удельной поверхности адсорбента существуют газо-хроматографи-ческие методы, которые хотя и менее точны, чем статические, однако значительно менее трудоемки. Поэтому ими удобно пользоваться как рабочими методами, в то время как статические применяются в качестве эталонных и контрольных. [c.66]


    В зависимости от техники выполнения различают статический и динамический методы хроматографии. По первому методу адсорбент вводят непосредственно в раствор после поглощения группы компонентов отделяют адсорбент и разделяют компоненты, извлекая их из адсорбента теми или другими растворителями. Значительно чаще применяют динамический [c.68]

    В основу работы измерительной схемы детектирования положены измерение и регистрация напряжения, вызываемого нарушением баланса моста, активными плечами которого являются термисторы, расположенные в сравнительной и измерительной камерах детектора. Противоположные плечи моста — постоянные проволочные сопротивления. Измерительная схема хроматографа ХЛ-3 рассчитана на термисторы с сопротивлением около 2000 ом. Если пользуются термисторами с большим сопротивлением, их подгоняют до указанного номинала, перегревая рабочим током. Величина тока и напряжение измерительной батареи в этом случае устанавливаются по характеристике на используемые термисторы, которая прилагается к их набору. Равновесие моста измерительных термисторов хроматографа ХЛ-3 в статическом режиме при установившейся температуре детектора и величина дрейфа нуля зависят в основном от идентичности характеристик измерительного и сравнительного термисторов. Коррекцию нуля производят тумблером /9 на панели. Подбор двух термисторов, характеристика которых совпадала бы даже на коротком участке, вызывает затруднение. [c.166]

    Метод построения изотермы адсорбции на основе элюентной выходной кривой изучаемого вещества для жидкофазной хроматографии впервые предложил Глюкауф. Применительно к газовой хроматографии пригодность этого метода была впервые показана Д. А. Вяхиревым и Л. Е. Решетниковой. Дальнейшее развитие метод получил Б работах С. 3. Рогинского с сотр. и А. В. Киселева с сотр. Изотермы адсорбции, полученные на основе анализа элюентной кривой и классическим статическим весовым методом Мак-Бена, очень близки при соблюдении определенных условий опыта, в то же время хроматографические измерения значительно проще осуществимы, нежели статические. Используя выходную кривую фронтального варианта хроматографии одного вещества на выбранном адсорбенте как в жидкой, так и в газовой фазе, можно построить изотерму адсорбции данного вещества (Классом и др.). [c.250]

    Сочетание разной химии поверхности адсорбентов (определяющей характер их межмолекулярного взаимодействия с различными адсорбатами) с разной их геометрией (значениями удельной поверхности, объема и размеров пор, степенью геометрической однородности поверхности, размерами и формой зерен) позволяет, с одной стороны, оптимизировать процессы адсорбционной хроматографии и, с другой стороны, исследовать межмолекулярные взаимодействия во всем их разнообразии как самими хроматографическими и статическими адсорбционными методами, так и (особенно) при использовании этих методов в совокупности с другими теоретическими и экспериментальными методами, в частности спектроскопическими, электронографией и рентгеноструктурным анализом. [c.14]


    Рассмотрим простейший случай адсорбции на инертном адсорбенте одного адсорбата из газовой фазы (индекс г поэтому отбросим). Это реализуется как в статических и калориметрических измерениях, так и в газовой хроматографии при полном разделении малых (нулевых) количеств компонентов вводимой в хроматограф смеси в практически неадсорбирующемся и не сильно сжатом газе-носителе (см. раздел 7.8 и 7.9). Химический потенциал адсорбата в объеме газовой фазы вдали от поверхности адсорбента [c.132]

    Для определения константы Генри и изотермы адсорбции из растворов может быть использована жидкостная хроматография. Во-первых, как уже указывалось в разделе 14,2, с помощью жидкостной хроматографии на аналитических колоннах можно определять концентрации равновесных растворов над изучаемым адсорбентом при статических определениях изотермы адсорбции, когда равновесие заведомо достигается. Для этих целей может быть ис- [c.262]

    В монографии (1-е изд.— 1973 г.) рассматриваются адсорбционные и хроматографические методы исследования хи-мин поверхности н структуры твердых тел. Подробно описаны статические н газохроматографические способы получения изотерм адсорбции газов н паров, определения теплот адсорбции и теплоемкости адсорбционных систем, структурных характеристик твердых тел, спектроскопические методы исследования химической природы поверхности, методы изучения адсорбции из бинарных и многокомпонентных растворов и их применение в жидкостной молекулярной хроматографии. В приложении приведены способы получения адсорбентов и носителей и химического модифицирования их поверхности для использования в молекулярной хроматографии. [c.215]

    Физико-химические основы молекулярно-ситовой хроматографии. Если раствор, содержащий молекулы различного размера, ввести в колонку, то молекулы стремятся диффундировать из более концентрированного внешнего раствора в растворитель, находящийся в порах геля. В статических условиях этот процесс будет проходить до тех пор, пока не установится равновесие. При протекании раствора через колонку молекулы образца будут проникать в поры геля, если концентрация их снаружи больше, чем внутри геля. Когда зона растворенного вещества покинет данный участок геля, концентрация компонента внутри геля станет больше, чем его концентрация снаружи, и мо- [c.70]

    Обычно параметры, относящиеся к обеим группам, определяют нри помощи статических адсорбционных измерений. В носледнее время появились динамические способы, в большей мере использующие газовую хроматографию. Впоследствии сложилось мнение, что для определения физикохимических констант необходимо привлекать адсорбционно-хроматографические способы, а не распределительную хроматографию. Кремер и Приор рассмотрели в 1951 г. связь между удерживанием газов на адсорбционной колонке и теплотой адсорбции. В последнее время Кремер и сотр. (1959, 1961) существенно развили исследования в этой специальной области. [c.463]

    Хотя результаты таких статических измерений и позволяют оценить взаимодействие углеводорода, с адсорбентом, с точки зрения хроматографии значительно большую ценность представ- [c.16]

    ВЫБОР УСЛОВИЙ СТАТИЧЕСКОЙ ИОНООБМЕННОЙ ХРОМАТОГРАФИИ [c.281]

    Общий признак всех вариантов статической ионообменной хроматографии — установление равновесного распреде.тения веществ меж- [c.284]

    Хроматография в объеме уступает в эффективности колоночной хроматографии (даже в статическом варианте), но зато проще и удобнее для больших количеств вещества. Кроме того, не возникает проблемы сжатия и деформации обменника при любых изменениях pH и ионной силы элюента. Хроматография в объеме начинается с уравновешивания обменника в исходном буфере для сорбции препарата. Затем раствор последнего добавляют к суспензии обменника и время от времени осторожно перемешивают в течение часа. Сорбент промывают на фильтре исходным буфером и переносят обратно в стакан, где точно так н е осуществляют элюцию — периодическим перемешиванием в элюирующем растворе с последующей промывкой на фильтре. [c.285]

    Заметим, что в некоторых примерах использовалась элюция ступенчатым новышением концентрации соли. Статический или динамический характер носит при этом хроматографический процесс, зависит от прочности исходной сорбции бе.лка и протяженности зоны его связывания по отношению к длине колонки. С этих позиций только что цитированный пример следует отнести к статическому типу хроматографии. [c.306]

    В статическом варианте аффинной хроматографии препарат на сор- бент часто вносят в объеме, перемешивая его раствор с суспензией сорбента, а затем уже переносят в колонку (или отмывают и элюируют на фильтре). Можно вносить раствор препарата и на колонку. Количество белка в исходном препарате (или объем колонки при заданном количестве белка) следует выбирать, стремясь, с одной стороны, к максимальной загрузке сорбента, но при условии сохранения соотношения [.Ё о]< [ ]. С другой стороны, увеличение загрузки требует и заметно большей длительности операции посадки белка (или НК) на сорбент. Дело в том, что закрепление крупных молекул белков на лигандах загромождает поры и каналы внутри гранул, [c.401]


    Совокупность изложенных соображений ложится в основу выбора объема колонки для очистки определенного количества препарата или, наоборот, рациональной загрузки колонки известного объема. О геометрии колонки было сказано выше. В статическом варианте аффинной хроматографии отношение высоты колонки к ее диаметру можно брать в пределах от 5 1 до 1 1. [c.403]

    На практике нередко возникает такая ситуация, когда уже готовая колонка с аффинным сорбентом оказывается загруженной лишь на малую долю своей эффективной емкости. Весь препарат в этом случае сорбируется в верхнем тонком слое сорбента. Для динамического хроматографического фракционирования это хорошо, но в обычном варианте статической аффинной хроматографии такая ситуация невыгодна уже тем, что в процессе элюции, продвигаясь по всей длине колонки, полоса очищенного вещества будет расширяться хотя бы за счет продольной диффузии в элюенте. Проблема легко разрешается — перед началом элюции снабженную адаптором колонку следует перевернуть и элюировать обратным током жидкости. [c.403]

    Подбор можно вести в пробирках, тем или иным способом оценивая эффект освобождения вещества из комплекса с сорбентом.. Для статической хроматографии такое освобождение должно быть полным уже при одном суспендировании сорбента с веществом в растворе конкурентного элюента. Для осуществления динамической хроматографии на колонке достаточно, чтобы равновесие сорбции искомого вещества заметно сдвинулось в пользу жидкой фазы. Этого обычно удается добиться, используя относительно небольшую концентрацию конкурирующего агента — того же порядка, что и концентрация лиганда на сорбенте, т. е. нередко менее 10 мМ. [c.407]

    Об особенностях проведения эксперимента и наиболее распространенном варианте статической хроматографии на короткой и широкой колонке было достаточно сказано выше. Подчеркнем еще раз необходимость ограничивать скорость течения жидкости но колонке. Для веществ, относительно слабо связывающихся с лигандом, критическим этапом является посадка вещества на сорбент, а для сильно связывающихся — пх элюция. На этих этапах скорость течения не должна превышать 3—5 мл,Ъг-ч, а иногда течение даже временно прекращают в интересах достижения полноты сорбции или десорбции. [c.409]

    Для статических условий установления равновесного распределения вещества между фазами способ определения примесей в растворе, не требующий предварительного знания величин К анализируемых веществ, впервые был предложен Мак-Олифом [16] и позднее модифицирован в лаборатории газовой хроматографии Ленинградского университета [23, 24]. Сущность этого варианта АРП состоит в газохроматографическом определении изменения концентрации анализируемого вещества в равновесной с исследуемым раствором газовой фазе в результате ее последовательной замены равным объемом чистого воздуха (или азота). [c.52]

    Устройства для введения равновесного газа в хроматограф, применяемые в статических вариантах парофазного анализа, можно разделить на две основные группы. Одна из групп использует для установления равновесия сосуды с постоянным объемом, пробы из которых отбираются при переменном давлении. Другая группа устройств предусматривает применение систем с переменным объемом газовой фазы и отбор проб при постоянном давлении. Принцип постоянства давления реализуется также практически во всех динамических вариантах АРП. [c.75]

    Следует различать статический и динамический варианты ионообменной хроматографии. Статическим будем называть разделение исходной смеси веществ на ионообменнике путем смены равновесных состояний, когда компоненты смеси практически поочередно полностью десорбируются п вымываются элюентом в объеме или на коротких колонках, а динамическим —истинно хроматографическое разделение, когда все компоненты смеси в виде хроматографических зон мигрируют вдоль колопки и разделяются за счет различия скоростей этой миграции. Начнем расслютрение с описаиил наиболее распространенных случаев использования и способов осуществления статического варианта. [c.281]

    Константу ионного обмена можно определить из данных о равновесном распределении иоиов в статических условиях (равновесн(5С состояние при ионном обмене описывается законом действия масс), а также динамическим методом по скорости перемеи1ения зоны вещества по слою смолы (элюентиая хроматография). Если через колонку с катионитом, в верхней части которой находится сорбированный йог М +, пропускается раствор кислоты, то в смоле происходит многократный цроцесс обмена  [c.52]

    Таким образом, энергия взаимодействия анализируемых молекул со стационарной фазой зависит от статической поляризуемости дирюльных моментов и потенциалов ионизации. Неспеци([)ические вза имодействия двух атомных молекул развиты для газовой фазы н их применение в газовой хроматографии должно основываться иа теории растворов. Энергия иесиецифических взаимодействий в газо-жидкостной хроматографии лежит в пределах 4—40 кДж/ моль. [c.302]

    Газохроматографиче с к и й метод позволяет проводить определение физико-химических констант в широком интервале температур при использовании стандартной и доступной аппаратуры, обеспечивающей быстроту измерений и возможность работы с неочищенными веществами, так как в оптимальных условиях выделение чистого вещества происходит в самом хроматографе. Кроме того, газохроматографический метод используют в области малых концентраций, когда прямое получение данных из статических измерений изотерм и калориметрических измерений затруднительно или невозможно, а экстраполяция к малым концентрациям часто ненадежна. [c.224]

    Теплоты адсорбции катионированными цеолитами, особенно лолярных молекул, велики, поэтому соответствующие изотермы адсорбции поднимаются при обычной температуре очень круто. Константы Генри так велики, что их определение методом газовой хроматографии затруднительно, так как время удерживания в колонне велико и пики сильно размываются. Это же мешает газохроматографическому разделению на цеолитах многих веществ за исключением легких газов и паров. Поэтому здесь будут рассмотрены результаты исследований адсорбции цеолитами, полученные главным образом статическими методами. Этими методами адсорбция изучается не только при малых, но и средних, а иногда и больших заполнениях полостей цеолита. Следует однако иметь в виду, что при определении константы Генри и начальных [c.32]

    Теоретическое исследование системы газ — адсорбент следует начать с термодинамического описания адсорбционной системы. В этом макроскопическом описании не> учитываются непосредственно ни структурные особенности адсорбента и адсорбируемых молекул, ни особенности межмолекулярных взаимодействий между ними. Для установления связи с этими особенностями адсорбционной системы, т. е. для рассмотрения ее на молекулярном уровне, необходимо привлечь молекулярно-статистическое описание системы газ — адсорбент. В более простых случаях — для однородных адсорбентов и малых заполнений поверхности — на основании сведений о межмолекулярных взаимодействиях и о структуре и химической природе адсорбента и адсорбируемых молекул будут проведены количественные расчеты измеряемых хроматографическими, статическими и калориметрическими методами термодинамических характеристик адсорбции. Далее будет описано решение обратных задач, т. е. определение некоторых структурных параметров молекул на основании измеряемых с помощью газовой хроматографии термодинамических характеристик адсорбции при малых (нулевых) заполнениях поверхности (хроматоструктурный анализ, хроматоскопия). Наконец, будут рассмотрены некоторые простые модели межмолекулярных взаимодействий адсорбат—адсорбат, чтобы продвинуться в область более высоких заполнений поверхности и описать фазовые переходы для двухмерного состояния адсорбированного вещества. [c.127]

    На рис. 8.6 представлена зависимость ЫК от 1/7 для адсорбции аргона и этана на ГТС. Значения К при разных Т были определены методом газоадсорбционной хроматографии (см. л-ек-цию 7) и экстраполяцией изотерм адсорбции, полученных статическим методом. Оба метода дали близкие результаты. [c.153]

    Таким образом, с помощью хроматографии стало возможно измерять константы Генри для веществ труднодоступных или недоступных для исследований статическими методами. Чтобы подчеркнуть исключительную ценность хроматографических измерений констант Генри, метод определения структурных параметров молекул на основе экспериментальных значений констант Генри был назван хроматоструктурным методом или, сокращенно, хроматоскопией. В этой лекции рассмотрены хроматоскопические определения некоторых структурных молекулярных параметров, от которых константы Генри для адсорбции на ГТС зависят достаточно сильно. [c.185]

    Определение гиббсовской адсорбции статическим методом производилось по формуле (14.2), причем концентрации цимаринав исходном и в равновесном растворе над адсорбентом находили методом жидкостной хроматографии на вспомогательной колонне. На рис. 14.15 показана изотерма, определенная в статических условиях при более высоких (приблизительно на два порядка), чем на рис. 14.14, концентрациях. Зкстраполяция наклона этой изотермы к с=0 дает =5,0 см /г, что также практически совпадает со значениями, полученными из хроматограмм. Таким образом, прямой метод жидкостной хроматографии (из анализа формы пиков) позволяет в этом случае слабой адсорбции найти правильное (равновесное) значение константы Генри и оп-Рис. 14.13. Хромато- ределить недоступную для статических измере-граммы на силикаге- ний начальную часть изотермы адсорбции. Так ле, силанизированном как элюент здесь СОСТОИТ из смеси этанола (30%) и воды (70%), а адсорбентом служит гидрофобизированный силикагель, то попадание в элюент влаги из воздуха не может повлиять на величины а , и п . [c.264]

Рис. 14.15. Изотермы адсорбции цимарина из раствора вода—этанол (7 3) при 20°С на силикагеле, силанизированном диметилдихлорсиланом. Точки получены статическим методам при измерении равновесных концентраций с Помощью жидкостной хроматографии на вспомогательной аналитической колонне Рис. 14.15. <a href="/info/3644">Изотермы адсорбции</a> <a href="/info/475635">цимарина</a> из <a href="/info/66532">раствора вода—этанол</a> (7 3) при 20°С на силикагеле, силанизированном диметилдихлорсиланом. Точки получены <a href="/info/12612">статическим методам</a> при <a href="/info/1832566">измерении равновесных концентраций</a> с Помощью <a href="/info/8549">жидкостной хроматографии</a> на вспомогательной аналитической колонне
    Если разделение компонентов смеси происходит только по распределительному механизму, то, строго говоря, нельзя ожидать полного совпадения между величинами нерн-стовских коэффициентов распределения (а), найденными для той же пары растворителей в статических условиях, когда растворители находятся в свободном состоянии, и расчетным путем, после экспериментального определения R (для колоночной хроматографии) или Rf (для бумажной или тонкослойной хроматографии). Совпадения не может быть из-за сольватации носителя, так как частично связанный носителем неподвижный растворитель обладает меньшей растворяющей способностью. На это важное об- [c.169]

    Газовая хроматография по своему существу является динамическим методом, ценность которого выявляется при сравнении как со статическими, так и с другими динамическими методами главным ее достоинством является экспрессность, а также относительная простота экспериментальной установки и возможность анализа малых количеств вещества. Особое преимущество заключается в том, что газовая хроматография сохраняет свой характер разделительного метода и при физикохимических применениях. Благодаря качествам, присущим разделительной колонке, можно в одном опыте определять константы нескольких исследуемых веществ или, что еще более важно, можно отказаться от тщательной очистки этих веществ. Наконец, газовая хроматография, используемая в качестве эффективного мнкроме-тода, позволяет проводить прямые измерения констант в условиях, близких к состоянию бесконечного разбавления , и поэтому избежать оцеикп этих констант при помощи экстраполяции. [c.445]

    Определение растворимости газов методом газовой хроматографии осуществили КуркчииИогансен (1962), исследовавшие растворимость ацетиленов Са — С4 в сравнительно легколетучем растворителе — диметилформамиде и обнаружившие хорошее согласие полученных величин со статически определенными значениями. Для предотвращения ошибок, обусловленных потерей растворителя, были применены колонки специальной конструкции. [c.446]

    К статическому варианту хроматографии относится и тот широко распространенный случай, когда подбирают такие условия сорбции смеси компонентов на ионообменнике, что часть из них сорбируется почти полностью, в то время как другая часть практически не сорбируется. Учитывая равновесный характер процессов сорбции—десорбции, такое кардинальное различие поведения возможно для двух компонентов (или двух групп компонентов) смеси, силыю отличающихся друг от друга по сродству к сорбенту в данных условиях. Крайний случай такого отличия — противоположные знаг и суммарных электрических зарядов. Чаще всего такие условия удается подобрать для относительно слабых ионообменников. Плохо сорбируемые вещества извлекают декантацией в объеме или промывкой колонки, хорошо сорбируемые — последующей элюцией при резкой смене условий сорбции. [c.284]

    Элюцию ступенчатым или непрерывным градиентом осуществляют чаще всего за счет изменения концентрации соли в буфере неизменного состава. Изменение pH буфера используют, как правило, для ступенчатого градиента с целью нейтрализации, а иногда и изменения знака заряда компонентов фракционируемой смеси или нейтрализации самого обменника. Условия посадки препарата на колонку при градиентной элюции обычно бывают таковы, что он концентрируется в верхней части колонки (начальные значения коэффициентов распределения велики). В силу этого объем препарата роли не играет и может быть значительным. Загрузка не должна превышать 5—10% от фактической емкости колонки для данного вещества. Исходя из этого можно рассчитать необходимое количество набухшего сорбента. В случае ступенчатого градиента загрузка может быть вьпле, приближаясь к 100% при переходе к статическому варианту хроматографии. [c.289]

    Метод 1 [Myers et al., 1980]. После предварительной очистки препарат вносили на короткую колонку (1x5 см) DEAE-целлюлозы элюцию вели 0,3 М К-фосфатным буфером (pH 7,2), содержавшим 2 мМ ДТТ, 10% глицерина и 0,2% NP-40 (вероятно, статический вариант хроматографии). На втором этапе очистку проводили в режиме динамической хроматографии с помощью точно такого же элюента, но на колонке СМ-сефарозы L-6B длиной 59 см. [c.308]

    После удаления посторонних примесей промывкой состав элюента можно изменить таким образом, чтобы ослабить силу всех биоспе-цпфичесних взаимодействий. Равновесия адсорбции, первоначально очень сильно сдвинутые в сторону образования комплексов, могут измениться таким образом, что фракционируемые вещества начинают мигрировать по колонке с различной скоростью, что характерно для процесса динамической хроматографии. Однако этот вариант (аффинное хроматографическое фракционирование родственных веществ) на практике встречается значительно реже, чем статический [c.339]

    Даже при статическом варианте аффинной хроматографии не рекомендуется использовать более 15—25% эффективной емкости колонки для данного вещества. Под эффективной удельной емкостью сорбента условимся понимать максимальное количество вещества, например белка, которое может связаться с ним (в расчете на 1 мл) нри перемешивании в свободном объеме за достаточное для установления равновесия время, так что в жидкой фазе концентрация этого вещества будет оставаться практически нулевой. Эффективную удельную емкость сорбента для чистого сорбируемого вещества (аф- [c.402]

    Что касается опасности денатурации, то динамическая хроматография обычно выгоднее статической, так как возможность довольствоваться частичной десорбцией вещества с сорбента (в условиях равновесия) позволяет использовать меньшие концентрации диссоциирующих агентов. Влгесте с тем не следует забывать, что в отношении продолжительности процесса элюции преимущество всегда за статическим вариантом, а это иногда может оказаться решающим. [c.408]

    В конце 1980-х годов появилась еще одна разновидность этого метода, обеспечивающая бомбардировку быстрыми атомами непрерывного потока. Схема ионного источника в этом случае та же, что и для статического варианта. Отличие заключается лишь в том, что шток содержит капиллярное отверстие, находящееся против мишени По этому капилляру подается раствор, который вытекает из отверстия на мишень, где и бомбардируется атомами. Метод интересен для исследования смесей биополимеров, разделяемых тем или иным методом (жидкостная хроматография, электрофорез). Растворитель, одновременно являющийся матрицей, обычно состоит из воды (более 90%), глицерина и ацетонитрила. [c.33]

    Сопоставление коэффициентов емкости и распределения, найденных в аналогичных статических системах, доказало, что в подобных случаях образуются истинные системы жидкость— жидкость. Недостатком таких динамически генерированных неподвижных фаз является ограниченная возможность варьирования состава подвижной фазы. С другой стороны, их внедрение может значительно расширить арсенал селективности жидкостной хроматографии. Поэтому, несмотря на ряд ограничений, они могут найти применение в рутинном анализе либо препаративной хроматографии. [c.177]

    Сачественная оценка газопроницаемости. Для этого используют двухкамерные устройства, в которые помещают исследуемый [образец. Пробу газа после диффузии через испытуемый материал [отбирают шприцем и вводят в хроматограф. С этой целью разработан [специальный прибор - хромопласт, работающий как в статическом, [так и в динамическом режиме. [c.49]


Смотреть страницы где упоминается термин Хроматография статическая: [c.171]    [c.307]    [c.400]    [c.265]   
Количественный анализ (0) -- [ c.77 ]




ПОИСК







© 2025 chem21.info Реклама на сайте