Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иод радиоактивный обмен

    В действительности рацемизацию и радиоактивный обмен изучали в двух отдельных опытах и затем] сравнивали найденные скорости. Однако это не меняет хода рассуждений.) [c.119]

    Справедливость предположения об обмене ионами между металлом и раствором в ходе установления равновесного потенциала (и при его достижении) была доказана впоследствии многими и( Следованиями с помощью меченых атомов. Они показали, что если к металлу электрода (удобнее всего такне опыты проводить с амальгамами металлов) добавить его радиоактивный изотоп, а затем привести электрод в контакт с раствором соли этого же металла, то через некоторое время раствор также начнет обнаруживать радиоактивные свойства. Аналогичный результат получается, если приготовить раствор соли электродного металла с некоторым содержанием его радиоактивного изотопа, а электрод изготовить нз нерадиоактивного металла. Тогда через некоторое время электрод также становится радиоактивным. Подобные эффекты можно получить, естественно, лишь в том случае, если существует обмен ионами между электродом [c.218]


    Применение в качестве индикатора радиоактивного водорода. Была сделана попытка определить стадии, через которые протекает изомеризация -бутана в изобутан при помощи радиоактивного изотопа водорода, трития [65]. Катализатор представлял собой хлористый алюминий, нанесенный на древесный уголь или на окись алюминия. Он применялся в присутствии или в отсутствии хлористого водорода. Обмен атомами водорода между бутаном и молекулярным водородом мало дает для объяснения механизма изомеризации, за исключением случаев, когда молекула бутана атакуется водородом. Степень обмена с хлористым водородом указывает на более эффективное участие его в реакции. Поскольку с тщательно очищенными реагентами опыты не проводились, любые заключения о механизме реакции, основанные на обмене трития и водорода, остаются открытыми для критики. [c.21]

    Радиоактивные индикаторы могут быть с успехом применены для изучения кинетики обменных реакций в гетерогенных системах. Интересными реакциями, которые не могли быть изучены без применения меченых атомов, являются реакции осадков с ионами, находящимися в растворе, или реакции между твердыми телами (например, металлами) и ионами. В ряде случаев изотопы могут быть с успехом применены для изучения свойств и величины поверхности мелкокристаллических или пористых тел. [c.381]

    В некоторых случаях обмен оказывается возможным не только на поверхности твердого тела, но и в его объеме вследствие диффузного проникновения ионов из раствора. Такой процесс самодиффузии может привести к равномерному распределению радиоактивного вещества во всей системе твердое тело — жидкость, и, следовательно, рассмотренные выше расчеты будут уже неприменимы. [c.382]

    Сопоставлением радиоактивности серы в газе и в катализаторе после введения меченого сероуглерода показано, что до 10,6% серы в катализаторе после удаления избыточной серы было радиоактивным, т. е. произошел обмен между серой сырья и серой катализатора. [c.269]

    В одно из обменивающихся веществ вводят в качестве метки радиоактивный или стабильный изотоп, а затем в ходе реакции измеряют изменение количества меченых атомов в другом веществе. Реакции электронного обмена особенно интересны тем, что константа скорости обмена электронов пропорциональна току обмена соответствующей электрохимической реакции (разд. 31.5.3). Примечательно, что все участники обменной реакции имеют одинаковый знак заряда, в результате чего между ними действуют значительные кулоновские силы отталкивания. Несмотря на это, реакции электронного обмена протекают с большой скоростью, период полупревращения составляет доли секунды. Высокая скорость этих реакций объясняется прежде всего тем, что мало различаются размеры координационных сфер участников реакции, что характерно как для анионов оксокислот марганца, так и для цианидных комплексов железа. В энергию активации такого рода реакций вносят вклад следующие компоненты энергия, необходимая для преодоления кулоновского отталкивания, энергия выравнивания размеров координационной сферы и энергия, связанная с туннельным переходом электрона от одного участника реакции к другому. Энергия, связанная с различием размеров координационной сферы, качественно может быть оценена следующим образом. Прежде чем произойдет адиабатический электронный переход (т. е. переход с минимальной затратой энергии), должны стать почти одинаковыми расстояния между центральным атомом и лигандами для реакции (1606), например, расстояние между Ре + и Н2О должно увеличиться настолько, чтобы сравняться с расстоянием между Ре2+ и Н2О. Для такого изменения расстояния необходима затрата некоторой энергии (энергии активации). Очевидно, реакции с электронными переходами протекают особенно быстро в том случае, если эти расстояния мало отличаются для соединений с различной степенью окисления. [c.203]


    Если при растворении часть соли остается нерастворенной, устанавливается равновесие между твердой фазой и раствором. Это равновесие носит динамический характер, т. е. происходит непрерывный обмен между ионами кристаллической решетки и ионами, находящимися в растворе, что было установлено с помощью радиоактивных изотопов. [c.370]

    Другой способ фазовых разделений, применяемый с недавнего времени, состоит в следующем в титруемый раствор добавляют малорастворимое твердое радиоактивное вещество. Его нужно подобрать таким образом, чтобы оно реагировало только с избыточным количеством титранта и растворялось в отсутствие определяемого иона в растворе. В этом случае после точки эквивалентности активность раствора возрастает. Чувствительность этого метода определяется устойчивостью комплекса, образующегося при титровании, а также растворимостью и радиоактивностью осадка индикатора. Для разделения фаз можно использовать ионный обмен. [c.392]

    Следует отметить, что в анализируемой смеси не должно быть веществ, способных к изотопному обмену с введенным радиоактивным веществом. [c.353]

    По этой реакции можно не только замещать один галоген другим, но также проводить изотопный обмен (например, вводить радиоактивный изотоп хлора) с целью получения меченых соединений, которые используются для изучения механизмов реакций (разд. 10.1). [c.166]

    В настоящее время полоний получают различными методами химическим, электрохимическим, возгонкой, экстрагированием растворителями и ионным обменом на смолах. Ро применяется в ядерной технике для получения нейтронов. Альфа-частицы, образующиеся при радиоактивном распаде полония, бомбардируют ядра бериллия с освобождением нейтронов по ядерной реакции  [c.586]

    Природным минеральным анионообменником является апатит [Сав(Р04)зЮН. Минерал апатит содержит основной фосфат кальция известен также его аналог — фторапатит Са5(Р04)з]р, в котором гидроксильные группы замещены фтором. Гидроксильные группы апатита замещаются фтором при обработке растворами, содержащими ионы фтора этот процесс ионного обмена обратим. В апатитах также может протекать и катионный обмен его используют для обработки радиоактивных сбросных растворов, содержащих Sr. [c.41]

    Коллоидный бромид серебра подвергается интенсивному ост-вальдовскому созреванию 5, что подтверждается уменьшением поверхности, измеряемой путем адсорбции красителей, и уменьшением числа частиц, определяемого с помощью электронного микроскопа. Адсорбированный краситель шерстяной фиолетовый предотвращает оствальдовское созревание и ограничивает радиоактивный обмен поверхностным слоем. Флоккулировап-ный бромид серебра не подвергается оствальдовскому созреванию 25, [c.188]

    Для определения скорости и констант равновесия реакций, в которых образуются окрашенные а-комплексы, часто пользуются видимой спектроскопией. Константы равновесия определяются обычно методом Бенеши и Гильдебранда [207] или же модификацией этого метода [5]. Константы скорости определяются с помощью метода быстрого смешивания [24, 81 в сочетании с методами остановленной струи [183, 208] и температурного скачка [25, 44]. Применимы также радиоактивный обмен [209, 210] и калориметрический [c.504]

    Метод ионного обмена. Обмен между ионами, находящимися в растворе, и ионами, присутствующими на поверхности ионита, исиользуют для извлечения из сточных вод и утилизации ценных иримесей (соединений мышьяка, фосфора, а также хрома, цинка, свинца, меди, ртути) и радиоактивных веществ. Сточную воду можно очистить до предельно допустимых концентраций вредных веи еств и использовать в технологических процессах пли в системах оборотного обеспечения. [c.98]

    Е. Изотопный обмен. Важным подразделом метода, основанного на изучении химических свойств, является использование стабильных или радиоактивных изотопов. Применимость этих методов ограничивается в основном доступностью подходящих изотопов, счетного обрудования и аппаратуры для количественного определения изотопного замещения. Интересный пример применения этих методов описан в работе по термическому и фотохимическому разложению ацетальдегида. Реакция может быть представлена уравнением [c.100]

    Хотя эти данные показывают, что отрицательные ионы, которые, вероятно, действуют как частицы, уменьшающие плотность заряда, могут ускорять обмен, они не дают нам сведений о механизме реакции, не дают ответа на вопрос, идут ли эти реакции за счет переноса электрона или путем переноса атома. Некоторые весьма интересные с этой точки зрения факты вытекают из работы Таубе с сотр. [98] по изучению реакции между Со (NHз)5 P и Сг " в растворах НСЮ4, приводящей к образованию частиц Со " и Сг " . Они нашли, что все образующиеся ионы Сг= " находятся в виде комплекса СгСР" и что если кобальтовый комплекс содержит радиоактивный С1 , то в конце реакции последний оказывается в СгСР" . Это весьма недвусмысленное указание на то, что перенос атома С1 осуществляется через двух-ядерный активированный комплекс  [c.505]


    Болл и Кинг [104] изучали обмен радиоактивного Сг 1 между Сг- и СгХ % где X — ионы С1, Р, Вг, N3 или NS. Во всех этих случаях было показано, что активированный комплекс содержит ион X", образую-1ЦИЙ мостиковую связь между двумя частицами Сг. [c.506]

    Панет еще в 1922 г. предложил метод определения поверхности кристаллических порошков с помощью радиоактивных атомов. Осуществляя обмен меченых ионов свинца с поверхностью кристаллического осадка сульфата свинца, легко определить количество ионов свинца, находящихся на поверхности кристаллов, а зная площадь, занимаемую одним ионом свинца, можно легко определить общую поверхность порошка. Площадь, занимаемую одним ионом вещества на поверхности, легко вычислить из расстояний между ионгмн в кристаллической решетке твердого тела. Эта величина получается из очевидного равенства [c.381]

    Принцип метода определения величины поверхности кристаллического порошка заключается в следующем. Порошок сернокислого свинца взбалтывают с раствором, содержащим радиоактивный свинец. В результате обмена ионов устанавливается обменное равновесие, причем коэффициент разделения можно с достаточной степенью точности принять равным единице. Следя за изменением активности раствора во времени и постоянно переме-шивгя смесь, можно выяснить кинетику реакции обмена. Обычно реакции изотопного обмена подчиняются уравнению первого порядка. Степень обмена X через время t после начала реакции обмена может быть легко найдена из очевидного соотношения [c.381]

    Другим примером обменной реакции между осадком и ионом в растворе может служить реакция между осадком хлористого серебра и ионами серебра, к которым подмещан радиоактивный изотоп серебра "Ag, обозначенный Ag  [c.382]

    Препаративно наиболее важными являются синтезы иодидов и фторидов. Однако техника МФК может быть использована также и для получения хлоридов, бромидов и иодидов, содержащих изотопную метку. Старкс [4] нашел, что полное равновесие С1/з С1 между 1-хлороктаном и На С1 в присутствии четвертичной соли в качестве катализатора достигается при кипении смеси за 5 ч. Аналогичный обмен иод — радиоактивный иод при 100 °С проходит полностью за 5 мин [4]. При обмене химически неэквивалентных групп X и превращение могут лимитировать как равновесие экстракции двух ионных пар Q+X и так и химическое равновесие [c.109]

    При формулировке метода определения параметров модели будем считать, что располагаем неадсорбируюпщмся индикатором, так что обмен между проточной и застойной частями системы происходит в основном за счет конвекции и диффузии ( 1= 2=А). Неизвестными параметрами модели при этом будут являться число ячеек п, объем проточной части Уг, объем застойной зоны константа скорости обмена к. Применение в качестве индикатора радиоактивных изотопов позволяет измерить на выходе из аппарата две функции распределения одну в проточной зоне и вторую — по средней концентрации в полном сечении аппарата. Для каждой из этих кривых можно найти первый начальный и второй центральный моменты распределения. Тогда для определения неизвестных параметров модели следует воспользоваться уравнениями (7.85) и (7.91), где надо положить к =к =к, а также уравнениями (7.94) и (7.95). Решая совместно эти уравнения, получим [c.387]

    Различия в составе изомеров в опытах с серной кислотой и хлоридом алюминия, по-видимому, объясняются конкуренцией между скоростями внутримолекулярных гидридных переносов и реакции алкилирования. Образующиеся в присутствии серной кислоты вторичные метилциклогексилкарбониевые ионы с большей скоростью превращаются в наиболее устойчивые третичные карбокатионы, которые атакуют ароматическое кольцо, в то время как в присутствии хлорида алюминия скорость реакции алкилирования значительно выше скорости внутримолекулярной изомеризации. Проведение экспериментов с [1- С]метил-циклогексаном в присутствии серной кислоты и хлорида алюминия подтвердило предположение о наличии межмолекулярного гидридного переноса в условиях реакции алкилирования выделенные 1,1- и 1,3-метилфенилциклогексаны радиоактивны (табл. 4.12). Это свидетельствует об обмене между промежуточ- [c.121]

    Пока еще точно не установлено, как далеко заходит это диспропорционирование. Недавно было показано, что если смешать ( 2H5)2Mg с бромидом радиоактивного магния, то происходит лишь незначительный обмен магния. Из этого, по-видимому, следует, что в так называемых алкилмагниевых растворах содержится значительно больше ( H2 ,-n)2Mg MgBrz, чем H2 +iMgBr. [c.189]

    В расчете на 1 моль ядер Li АЕ = = 3,09 10 Дж. 20.36. а) АЕ = = 1,7010 Дж/моль б) АЕ = = 3,15-10" Дж/моль в) АЕ = = 1,77 10 Дж/моль. 20.38. Энергия связи в расчете на один нуклон максимальна для ядер с массовыми числами вблизи 50 (см. рис. 20.8). Поэтому 2 Со должен иметь наибольший дефект массы в расчете на один нуклон. 20.40. Как °Sr, так и Ва, весьма вероятно, включаются в цепь питания, замещая кальций или, возможно, цинк. Ни Н2, ни Кг не накапливаются в живых системах. 20.42. Вещества, излучающие альфа-частицы, представляют опасность только при их попадании в организм (вдыхание или проглатывание), поскольку альфа-частицы не обладают большой проникающей способностью. Плутоний плохо выводится из организма и, оставаясь в нем, вызывает его радиационное разрушение в течение длительного времени. 20.46. а) Добавьте С1 в виде хлорида (соль) к воде. Растворите I3 OOH обычным способом. Через некоторое время перегонкой отделите летучие вещества от соли I3 OOH является летучим веществом, и его можно отделить перегонкой от воды. Определите радиоактивность летучего вещества. Если обмен хлора успел произойти, то летучее вещество должно быть радиоактивно. [c.477]

    Обменная адсорбция используется также для улавливания ценных веществ из чрезвычайно разбавленных растворов, из которых выделять эти вещества другими методами нерентабельно. Таким образом, можно регенерировать, например, медь из рудничных вод и сточных вод производства искусственнс Ч) медноаммиачного шелка серебро из сточных вод фабрик, изготовляющих кинопленку хром из электролитических хромовых ванн и т. д. Обменная адсорбция применяется при извлечении из растйбров радиоактивных элементов. [c.151]

    Пример. Рассмотрим обмен электроном между ионами перманганата и манганата. Облученный нейтронами раствор перманганата ( 10 моль/л) смешивали с неактивным раствором манганата, реакцию прерывали через 1—10 с, смешивая с раствором, который осаждал манганаг, после чего измерялась его радиоактивность. Найдено, что при 273 К в 0,16 М NaOH к 710 л/ (моль с), а 44 к Дж/моль. [c.340]

    Обмен лр и фр может быть обнаружен методом радиоактивных индикаторов. Так, если взять металл, содержащий некоторое количество радиоактивного изотопа, и логрузить в раствор своей соли, то через еко1торое время в растворе, ранее не содержащем меченых атомов, можно обнаружить радиоактивные ионы. [c.234]

    Современные методы позволяют получать иониты, физические и химические свойства которых соответствуют специфическим условиям их применения. Например, полиамяновые смолы обладают способностью к анионному обмену, а сульфосмолы — к катионному. В СССР выпускают иониты с различными наименованиями (марками) — КУ-2, КБ-4 и ряд других. Иониты используются в самых различных областях науки и техники при каталитическом крекинге в производстве бензина, для разделения редкоземельных элементов, в лабораториях аналитической химии, при анализе вытяжек из растений, в хроматографии и в ряде других областей. Особенно широко используются иониты для водоочистки. С помощью ионного обмена из воды практически можно удалить любые ионы, а следовательно, выделить разнообразные примеси вплоть до содержащихся в воде некоторых производств солей различных металлов и радиоактивных веществ. [c.190]

    Глауконит и вермикулит представляют собой железо-алюмосиликаты, содержащие магний и калий. В природе глауконит встречается обычно в виде глауконитового песка, окрашенного в зеленые тона, причем интенсивность окрашивания определяется содержанием коллоиднодисперсного минерала глауконита, сцементированного крем-некислотой. В реакцию обмена вступают лишь ионы калия. Глауконитовый песок обладает ничтожной пористостью и ионный обмен происходит преимущественно на внешней поверхности, поэтому его обменная емкость невелика (см. табл. 1). Обменными катионами у вермикулита являются магний и калий. Вермикулит проявляет поразительную селективность по отношению к определенным катионам. Так, было обнаружено, что из раствора 0,1 н. Na I -f +0,001 H. s l образец вермикулита поглотил 96,2% цезия и 3,8% натрия. Такую же высокую избирательность поглощения вермикулит проявляет и в отношении к микроколичествам ионов стронция в присутствии высоких концентраций солей натрия. Это свойство позволило применить вермикулит в качестве сорбента для поглощения радиоактивных примесей при дезактивации сточных вод. [c.40]

    Ионный обмен связан с процессом взаимодиффузии противоионов. Стадией, определяющей скорость обмена, является взаимоди4х )узия противоионов или внутри ионита ( гелевая кинетика ) или через пленку раствора вокруг зерна ионита ( пленочная кинетика ). Пленка имеет толщину порядка 10 2—10 см и не удаляется при перемешивании раствора. Для измерения коэффициентов диффузии в ионитах наиболее удобно применение радиоактивных изотопов. [c.99]

    В качестве примера обработки экспериментальных данных и сравнения их с теоретическим приведем результаты опытов по исследованию динамики ионообменной сорбции кальция на Н-обменной смоле КУ-2 [62]. В качестве радиоактивного индикатора использовали изотоп кальция-45. Опыты заключались в получении выходных кривых меченого кальция. Условия опытов емкость поглощения 5 мг-экв1г абсолютно сухой смолы в Н-форме навеска воздушно-сухой смолы для загрузки колонки 0,5 г площадь сечения колонки =0,206 см высота слоя смолы в колонке =5,7 см , концентрация исходного раствора хло- [c.109]


Смотреть страницы где упоминается термин Иод радиоактивный обмен: [c.377]    [c.157]    [c.355]    [c.473]    [c.372]    [c.110]    [c.181]    [c.120]    [c.112]    [c.144]    [c.286]   
Химия изотопов (1952) -- [ c.219 , c.224 ]




ПОИСК







© 2025 chem21.info Реклама на сайте