Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нафталин строение химическое

    Нафталин. Строение и химические свойства. Производные нафталина. Антрацен. Антрахинон и его производные. Небензоидные ароматические системы. [c.172]

    Судя по формулам строения, можно ли считать равноценными в химическом отношении атомы водорода а) бензола б) хлорбензола в) толуола г) нафталина д) циклогексана  [c.139]

    Простейшим и важнейшим представителем этих соединений является нафталин — ароматический углеводород, получаемый из каменноугольной смолы или химической переработкой нефти. Его строение может быть представлено набором из трех кекулевских структур  [c.27]


    Молекулы различных химических веществ содержат разное число атомов, тесно связанных между собой. Пример более сложной молекулы, чем молекула иода, приведен на рис. 2.12, где показана часть кристалла нафталина. Молекула нафталина состоит из десяти атомов углерода, образующих два шестичленных кольца с одним общим ребром, и из восьми атомов водорода. Нафталин довольно летучее вещество с характерным запахом. В виде шариков и таблеток его используют в качестве репеллента — средства против моли. Свойства нафталина обусловлены строением его молекул. [c.38]

    Точное положение максимума поглощения зависит от окружения хромофора, т.е. от строения молекулы. Изменения в химической структуре молекулы и, особенно, сопряжение хромофорных групп меняют длину волн и интенсивность их полос поглощения. Так, алкильные группы, расположенные рядом с хромофором, сдвигают полосу поглощения в сторону длинных волн (батохромный сдвиг) накопление в молекуле сопряженных двойных связей вызывает сдвиг в длинноволновую область примерно на 30-40 нм на каждую новую группу, а также увеличение интенсивности их поглощения. Характеристические линии поглощения многих ароматических (бензол, нафталин) и гетероароматических соединений (пиридин, хинолин) зависят от протяженности и расположения тс-электронной системы, что позволяет распознавать различные соединения одного и того же гомологического ряда. Наиболее сильное изменение спектра происходит при наличии в молекуле нескольких хромофоров наличие метиленовой группы между двумя хромофорами ослабляет их влияние друг на друга, и, если хромофоры разделены двумя или более метиленовыми группами, сопряжение исчезает. [c.182]

    Строение углеродных скелетов лежит в основе классификации и систематизации в химии природных соединений. Однако большой строгостью эта классификация не отличается, так как принципы, положенные в ее основу, неоднородны. Некоторые природные вещества объединяют в один класс по химическому признаку, например алифатические углеводороды, производные нафталина. В других случаях в основу классификации положены биогенетические закономерности. Так, под названием изопреноиды понимают вещества, углеродные остовы которых образовались конденсацией нескольких молекул изопентенилпирофосфата, имеющего скелет изопрена. Название алкалоиды дано природным продуктам, содержащим азот и выделяемым из растений. А подобные им по структуре метаболиты плесневых грибов именуются антибиотиками. Такая непоследовательность приводит к тому, что, например, в разделе алкалоидов помешают вещества, которые с равным правом можно отнести к изопреноидам, ароматическим соединениям, производным алифатических углеводородов и т.п. [c.13]


    Из анализа работ Р. Доделя и А. Пюльмана видно, что изучение электронного строения молекул этим методом показало плодотворность применения молекулярных диаграмм для рассмотрения и предсказания химических свойств некоторых простых ароматических соединений (бензол, нафталин). Однако игнорирование природы реагентов и механизмов превраш,ений делало довольно произвольными полученные при этом выводы о характере реакционной способности соединений. Сложной и нестрогой была расчетная часть метода. [c.47]

    Одним из важных результатов квантовой теории химической связи является объяснение пространственного строения органических молекул. Известно, что расположение валентности углерода в различных рядах соединений различно. Так, в насыщенных углеводородах (и их производных) валентности углерода направлены к вершинам тетраэдра. В этиленовом ряду и в ароматических соединениях наблюдается не тетраэдрическое, а тригональное направление валентности. Три одинарные связи углерода расположены в одной плоскости под углом 120° друг к другу, поэтому молекулы бензола, нафталина и других ароматических соединений являются плоскими. Молекула ацетилена линейна. [c.479]

    Для окислительного крашения применяют бесцветные или слабоокрашенные соединения, выпускаемые в нашей стране под названием красители для меха и относящиеся по химическому строению к ароматическим аминам, фенолам или аминофенолам, главным образом производным бензола, реже нафталина. [c.201]

    Доза облучения, вызывающая структурное изменение полимера, также зависит от его химического строения. Содержащиеся в макромолекуле полимера двойные связи или бeнзoльгiыe кольца оказывают защитное действие при облучении. Для сшивания таких полимеров, как каучуки и полистирол, требуется большая доза облучения, чем для сшивания парафиновых углеводородов. Защитное действие при облучении полимеров оказывает также добавка производных нафталина. Обычные дозы облучения полимеров составляют 258—25 800 Кл/кг (1 —100 МР). [c.295]

    Органическая масса углей состоит, как известно, из углеводородов, кислород-, серо- и азотсодержащих соединений сложного строения. Последние три класса веществ разлагаются при коксовании с выделением воды, оксидов углерода, сероводорода, сероуглерода, аммиака, а также низших кислород-, серо- и азотсодержащих органических соединений (фенол, тиофен, пиридин и их гомологи) и их более сложных аналогов с конденсированными ядрами. Углеводороды, первоначально содержавшиеся в угле и полученные при разложении веществ других классов, подвергаются глубоким химическим превращениям. В их основе лежат те же реакции пиролиза и ароматизации, как и при термических превращениях нефтепродуктов. В результате получается широкая гамма ароматических углеводородов — бензол, толуол, ксилолы, три- и тетраметилбензолы, нафталин, антрацен, фенантрен, их гомологи и еще более многоядерные углеводороды. Высокая температура коксования обусловливает почти полную ароматизацию образующихся жидких продуктов в них содержание соединений других классов (главным образом, олефинов) не превышает 3—5 %  [c.64]

    Изучение термической стабильности индивидуальных угле-водо родов различного химического строения показало, что они стабильны, не образуют осадков до 200°, за исключением бициклических ароматических углеводородов — нафталина и его производных. [c.105]

    Возражения против применения пунктира для обозначения выравненных или почти выравненных связей сводятся к следующему. С одной стороны, указывают, что таким способом невозможно отобразить тонкое химическое строение соединений , т. е. различия не нацело выравненных связей, например в нафталине, антрацене и других многоядерных углеводородах, в которых межъядерные расстояния неодинаковы (стр. 121) это же возражение, однако, можно сделать и по отношению к любому другому способу изображения. [c.158]

    Кроме нафтенов рассмотренного типа известно немало более сложных кольчатых систем предельного характера, которые по своей химической природе напоминают моноциклические нафтены. Их можно определить как би-, три- и вообще полициклические нафтены. Простейшие из них генетически связаны с общеизвестными конденсированными системами ароматического ряда (нафталин и т. п.). Все они соответственно своему циклическому строению имеют различный непредельный состав, но вместе с тем, подобно моноциклическим нафтенам,— ясно выраженный предельный характер. Примером бициклических нафтенов может служить декагидронафталин или декалин С Н],, обнаруженный в различных нефтях. Судя по составу средних и высших нефтяных погонов, весьма вероятно нахождение в нефти также многих других би- и полициклических нафтенов однако исследование этих погонов представляет, как будет показано ниже, чрезвычайные трудности и пока находится в начальной стадии. [c.16]


    По своему составу смола представляет смесь более 300 химических веществ. Основные из них — ароматические соединения т. е. органические вещества, по своему химическому строению родственные бензолу. Кроме бензола, толуола и ксилола, к ним относятся нафталин, антрацен, фенантрен и др. (В состав смолы также входят а) кислородсодержащие соединения — фенолы, крезолы, ксиленолы б) серосодержащие соединения — тиофен и тионафтен в) азотсодержащие соединения — пиридин, хино-лин, кар базол, пиррол. [c.279]

    Химические свойства. Отличительные свойства нафталина, -обусловленные особенностью его строения, проявляются в большей, чем у бензола, реакционной способности. [c.122]

    Как видно, в этой работе имеется определенное развитие теории резонанса. То же самое можно сказать и о другой работе тех же авторов [45]. В ней Сыркин и Дяткина в связи с вопросом о свойствах нафталина прекрасно характеризуют отношение между квантовой химией и эмпирическими обобщениями химиков-органиков Мы не думаем, что в настоящее время можно дать исчерпывающее объяснение всех перечисленных выше особенностей нафталина и его производных. Однако применение квантово-механических соображений позволяет понять ряд закономерностей, которые раньше казались странными и для объяснения которых химики-органики с присущей им большой интуицией сформулировали ряд гипотез. Теперь наиболее ценные из этих гипотез могут рассматриваться как прямые следствия квантово-механической теории строения молекул. Но квантовая химия не только вскрывает физический смысл химических гипотез и, так сказать, узаконивает то, что химикам известно, но позволяет глубже понять и предвидеть новые эффекты [там же, стр. 627]. Эту правильно поставленную задачу Сыркин и Дяткина стремятся в данном случае решить при помощи теории резонанса Конечно, нет надобности отказаться от обычной формулы нафталина. Нужно только учесть дополнительные свойства, которые появляются в отличие от бензола благодаря резонансу в двух кольцах [там же]. Как далее объясняют авторы, их работа вызвана тем, что из квантово-химических расчетов нафталина до сих пор извлекли не все химические выводы . [c.241]

    Н. Н. Зинин начал свои работы, когда в органической химии господствовала теория радикалов, затем, в 50-е годы, он стал горячим приверженцем теории типов после становления теории химического строения в 60-х годах он долгое время избегал пользоваться структурными формулами, ограничиваясь выражением в своих формулах лишь эмпирического состава изучавшихся им соединений. В какой-то мере это было оправдано тем, что он занимался сложными соединениями бензойного ряда, тогда как структурная формула бензола была установлена в 1865 г., а нафталина лишь в 1869 г., причем далеко не все их признавали. Перевод формул Зинина на язык структурной теории читатель найдет в примечаниях. Основное назначение примечаний — облегчить современному читателю чтение работ Н. Н. Зинина, изобилующих уже вышедшей из употребления терминологией. В примечаниях также даны необходимые справки из истории химии и библиографические отсылки к работам химиков, о которых сам Н. Н. Зинин только упоминает. Примечания к статье А. П. Бородина и А. М. Бутлерова содержат уточнения биографических сведений о Зинине, которые стало возможным сделать в результате изучения литературных, а главным образом архивных источников. [c.8]

    Нафталин, сходный с бензолом по своему строению, сходен с ним также по химическим свойствам. Так же, как и бензол, нафталин обладает ароматическим характером, т. е. легко нитруется, сульфируется и т. д. По сравнению с бензолом нафталин отличается меньшей стойкостью и легче вступает в ряд реакций, чем бензол. [c.356]

    На основе теории химического строения, вскоре были установлены и формулы некоторых важнейших многоядерных соединений. В 1866 г. Эрленмейер, имея в виду факты, свидетельствующие о родстве в химическом отношении бензола и нафталина, высказал мысль, что молекула нафталина состоит из двух бензольных ядер, имеющих два общих углерода. В 1868 г. это предположение подтвердил прямым экспериментом К. Гребе. Таким образом была установлена формула строения нафталина. Заметим, что и в этом случае, как и в случае формулы бензола, делалось немало попыток построить формулу на основе призматической формулы бензола, а также шестиугольника с центрированными связями. Эти попытки не привели, однако, к замене формулы Эрленмейера—Гребе. [c.320]

    Второе направление, по которому физика вторглась в область структурной теории,— это применение методов квантовой механики. Сначала был решен коренной вопрос теории строения химических соединений — разработано новое учение о валентности и химической связи. Собственно в области органической химии уже в начале 30-х годов было введено представление о о- ил-связях, объяснено в грубых чертах электронное строение и энергетика бензола и сопряженных систем (включая радикалы типа трнфенилметила), объяснена пространственная направленность связей углерода, их тетраэдрическая, тригональная и дигональная направленность объяснено также отсутствие вращения вокруг двойной связи. В 30-е годы особенное развитие получил метод валентных связей, с помощью которого были получены впервые так называемые молекулярные диаграммы, выражающие проценты двоесвязанности и порядки связей. Эти величины эмпирически были сопоставлены с межатомными расстояниями, результатом чего явилось удачное предсказание еще не определенных межатомных расстояний (например, в нафталине). [c.349]

    Большинство исследований гидрогенизации ароматических соединений, выполненных в 30—50-х годах, посвящено выяснению различных вопросов теоретического характера (химическое строение, в частности стереохимия, кинетика, механизм органических реакций, изучение катализаторов). Так, например, изучением стереохимии тетралина и декалина при помощи каталитического гидрирования нафталина занимались Шротер, Шраут, Вильштеттер и другие [209]. Стереохимию диалкилциклогексанов в связи с катализом изучали Зелинсдий и Марголис [213]. [c.154]

    Целесообразно также дать объяснение понятия группа соединений в варианте метода определения группового состава. Как правило, под этим термином в масс-спектрометрии понимается сумма всех УВ с данным Z. Например, для ряда с Z = О это будет целиком весь класс алканов нормального и изостроения. Для ряда Z = 12 фракции ПЦП это будет сумма всех гептациклических нафтеновых УВ независимо от типа расположения (конденсации) колец в молекуле. Нафтеновые кольца могут содержать любое число С-атомов и иметь разнообразные алкильные заместители. Для этого же ряда Z = 12 ароматической фракции понятие группа соединений может определяться как сумма нафталинов и трициклоалканобензолов, причем последние, как и в предыдущем случае, без ограничения характера сочленения колец, числа С-атомов в нафтеновых кольцах, числа и строения алкильных заместителей. Однако в рассматриваемом ниже примере методика анализа группового состава позволяет провести раздельное онределение нафталинов и трициклоалканобензолов, из которых каждая группа будет определяться как самостоятельная группа соединений . Из этого следует, что понятие группа соединений не отвечает никакой строгой химической классификации (терминологии) и во многом определяется методом расчета. В этом смысле масс-спектрометрия в общем случае варианта анализа группового состава может определять группы циклических УВ с точностью только до типа конденсации (расположения) циклов, количества С-атомов в нафтеновых кольцах, числа и строения алкильных фрагментов. [c.209]

    Однако в применении к масляным фракциям этот метод имеет ряд существенных недостатков. Не говоря уже о том, что не имеется достаточно обоснованных коэффициентов для расчета как ароматических, так и особенно нафтеновых углеводородов, укажем на следующий принципиальны недостаток. При обработке фракции серной кислотой вместе с типичными ароматическими углеводородами (производными бензола, нафталина, антрацена и других 1<ольчатых структур с короткими боковыми цепями) в реакцию будут вступать также и такие углеводороды, в которых ароматические кольца имеют подчиненное значение. К ним относятся ароматические с длршными парафиновыми боковыми цепями или большим числом более коротких, смешанные нафтено-ароматические с боковыми цепями различной длины, углеводороды типа тетра-лина, гидроантрацена и т. и. Все эти углеводороды будут удаляться в той или иной степени серной кислотой, если только ароматическое кольцо не окажется полностью экранированным радикалами неароматического характера. Следовательно, по результатам анализа все подобные вещества будут отнесены к чисто ароматическим углеводородам. Это и принципиально неверно, так как свойства таких углеводородов отражают их многофункциональное строение, а пе только наличие ароматического кольца, и, кроме того, это скажется на результатах определения нафтенов и парафинов. Таким образом, групповой анализ масляных фракций дает весьма ириблизительное представление об их химическом составе. [c.160]

    Коэффициенты активности углеводородов нельзя вычислить на основании имеющихся данных но поскольку тетралин и нафталин имеют сходное химическое строение и почти одинаковые молекулярные веса, их коэффициенты активности должны быть приблизительно равными. Были вычислены значения / /я для нафталина и тетралина они оказались одинаковыми в пределах точности метода вычисления. При обычных условиях гидроочистки и высокой мольной доле водорода коэффициент активности и / /л для водорода весьма близки к единице. Если принять, что эти результаты правильны, то уравнение (12) приобретает вид [c.205]

    Зависимость растворимости от свойств растворяемого вещества и растворителя. Вещества обладают очень разной растворимостью в различных растворителях. Имеется несколько общих правил, относящихся к растворимости, которые, однако, применимы главным образом в отношении органических соединений. Одно из этих правил гласит, что вещество имеет тенденцию растворяться в таких растворителях, которые химически подобны ему. Так, углеводород нафталин СюНв обладает высокой растворимостью в бензине, представляющем собой смесь углеводородов, несколько меньшей растворимостью в этиловом спирте С2Н5ОН, молекулы которого состоят из коротких углеводородных цепей с гидроксильными группами, и очень плохой растворимостью в воде, строение которой сильно отличается от строения, углеводорода. В то Hie время борная кислота В(ОН)з, являющаяся гидроокисью, обладает средней растворимостью в воде и в спирте и нерастворима в бензине. Сами эти три растворителя подтверждают то же правило как бензин, так и вода смешиваются со спиртом (растворяются в нем), в то время как бензин и вода взаимно растворяются лишь в очень небольших количествах. [c.277]

    Химические свойства нафталина очень похожи на свойс1ва бензола. Это объясняется строением нафталина  [c.155]

    В отличие от бензиновых и отчасти керосиновых ногонов, химическая природа которых мо кет быть охарактеризована в первую очередь принадлежностью к тому или иному ряду углеводородов (парафины, нафтены, ароматика), для компонентов более тяжелых погонов такая характеристика нередко явно недостаточна. Так, например, гомологи бензола или нафталина с длинной боковой цепью либо соответствующие им нафтены с длинной боковой цепью и подобные им сложные углеводороды отражают в своих свойствах принадлежность по крайней мере к двум различным типам углеводородов, а именно, с одной стороны, к углеводородам кольчатого строения (ароматика, нафтены), с другой — к углеводородам с открытой грунпировкот атомов углерода (парафины). Начальной характеристикой такого рода сложных систем может служить относительная значимость числа углеродных атомов, образующих в них ко.пьцевые группировки и по разности до 100 открытые цепи. Выраженная в нронентах к общему числу углеродных атомов данной системы первая из этих ве.пичин может быть названа кольцевой характеристикою) системы, а нахождение такого рода характеристик в применении к отде.льным углеводородам или к их смесям называется (кольцевым анализом [41]. [c.648]

    Трудности, встречаемые при изображении строения молекул бензола и его производных, нафталина, антрацена и более сложных соединений, не имеют принципиального характера и сами ио себе ие свидетельствуют об отсутствии знания химического строения этих соединений. С этой точки зрения, например, допустимо пользование одной формулой Кекуле для изображения бензольного кольца с обязательным пониманхтем, однако, выравнепности всех связей. [c.62]

    Для более детального описания химического строения молекулы нафталина следует учитывать также и те ее особенности, которые обычно приписывают оттенку сходства со структурами, обладающими удлиненными, дюаровыми связями. В работах [12 и 14], содержащих описание интересного фактического материала, относящегося к этому вопросу, сама проблема, к сожалению, трактуется с позиций теории резонанса. [c.519]

    Эмиль Эрленмейер (1825—1909) изучал в Гиссене и в Гейдельберге химию и фармацию некоторое время он был лекционным ассистентом у Либиха, а затем аптекарем в Висбадене. В 1857 г. он защитил в Гейдельберге (у Кекуле) докторскую диссертацию и вскоре открыл здесь же частную химическую лабораторию, где занимался, главным образом, исследованиями по органической химии. С 1868 по 1883 г. был профессором химии в Политехническом институте в Мюнхене. Основные его работы посвящены теории химического строения. В 1865 г. он установил формулу строения нафталина, а в 1868 г. синтезировал гуанидин. См., например Бутлеров А. М. Соч., т. I. с. 116. (Примечание.) [c.312]

    Полученные данные о поведении исследованных образцов сырья различного химического состава в разных условиях крекинга позволяют рассмотреть влияние, оказываемое сырьем на ход процесса, выходы продуктов и их качества. Однако знание группового химического состава не достаточно для характеристики отдельных образцов сырья. Например, известно, что ароматические углеводороды тормозят каталитические превращения различных групп углеводородов, но тормозящий эффект отдельных аро-лштических углеводородов зависит от их строения. Так, С. Н. Обрядчиков и Д. М. Соскинд указывают, что крекинг синтетического бензина тормозится 3% мол. антрацена столь же сильно, как 50% нафталина или 20% метилнафталина, в то время как тормозящий эффект производных бензола незначителен. [c.142]

    Микешка [56] исследовал зависимость между вязкостью и химическим строением алкилзамещенных бензолов, нафталинов, дифенилов и прэдуктов их гидрогенизации. Среди сделанных им выводов можно упомянуть следующие  [c.123]


Смотреть страницы где упоминается термин Нафталин строение химическое: [c.478]    [c.9]    [c.153]    [c.976]    [c.16]    [c.35]    [c.310]    [c.598]    [c.478]    [c.30]    [c.113]   
Сочинения Введение к полному изучению органической химии Том 2 (1953) -- [ c.501 ]




ПОИСК





Смотрите так же термины и статьи:

Нафталин строение

Строение химическое



© 2025 chem21.info Реклама на сайте