Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт, катализатор гидрогенизации

    Первый патент по каталитической гидрогенизации ацетилена в этилен появился в 1912 г. [68]. В этом патенте сообщалось, что катализатором гидрогенизации является любая смесь, содержащая один или несколько элементов из группы железо, никель, кобальт, медь, серебро, магний, цинк, кадмий, алюминий с одним или несколькими представителями группы платина, осмий, иридий, палладий, родий, рутений. [c.240]


    В заводской практике оксосинтез обычно осуществляется в виде двухступенчатого процесса первая ступень состоит в синтезе альдегида, во второй стадии н идкий продукт освобождается от карбонилов кобальта, а затем гидрируется над неподвижным слоем твердого катализатора гидрогенизации. Полученные спирты затем фракционируются. Для эффективной гидрогенизации альдегидов во второй стадии процесса необходимо, обеспечить удаление окиси углерода, так как в ее присутствии катализаторы гидрогенизации отравляются. [c.291]

    Полноте завершения этой реакции способствуют низкая температура и высокое давление. Вследствие малой скорости реакции при низких температурах приходится применять катализаторы. Обычно катализаторами гидрогенизации диизобутена и кодимера являются металлический никель или окись никеля известны и другие катализаторы — соединения кобальта, меди и др. [c.276]

    Гидрогенизация окиси углерода (отношение окиси углерода к водороду 2 1) температура 220—320° давление 12 ат Осажденный гидрат окиси железа, нагретый с добавкой 5% гидрата окиси алюминия в токе водорода до 850° или катализатор, приготовленный разложением нитратов железа, никеля, кобальта катализаторы, кроме того, могут содержать двуокись кремния, кизельгур, медь, марганец, вольфрам, хром, молибден, торий 1233 [c.234]

    Мелкоизмельченные катализаторы гидрогенизации марганец, алюминий железо, цинк, олово, кобальт, никель, хром, их окислы и соли [c.308]

    Получение бутилового спирта СНз — СНг — СНа — СНгОН и изобутилового спирта СНз — СН (СНгОН) — СНз по реакции гидроформилирования включает две основные операции 1) оксосинтез с получением альдегидов 2) их гидрогенизацию до спиртов [1-35]. Необходимость предварительного удаления карбонила кобальта и очистка продуктов гидроформилирования зависит от природы катализатора гидрогенизации. В промышленности в качестве катализатора применяют гидрокарбонил кобальта или хромит меди. Когда применяется первый катализатор, нужно обязательно производить обессеривание исходных олефиновых углеводородов или полученных альдегидов, так как сернистые соединения тормозят реакцию гидрогенизации. Когда в качестве катализатора применяется хромит меди, обессеривание не обязательно, но перед гидрированием нужно удалить окись углерода. Это осуш,ествляется путем превраш,ения ее в метан гидрогенизацией в присутствии железного катализатора. [c.463]


    Наиболее благоприятное расстояние между атомами металла должно быть равно 2,73 А, поэтому понятно, почему платина и палладий, умеющие расстояния 2,7 и 2,8 А, являются значительно лучшими катализаторами гидрогенизации по сравнению с кобальтом и никелем, которые обладают расстояниями приблизительно 2,5 А, а вольфрам с расстоянием в 3,1 А совсем не является катализатором гидрогенизации этилена. [c.34]

    Известно, что растворы цианида кобальта в водном цианиде калия абсорбируют водород и являются катализаторами гидрогенизации [45]. Спектр протонного резонанса этих цианидных растворов показывает резонанс при 17,5 10 (стандарт—вода),, таким образом, этот цианидный раствор должен содержать водородный атом, связанный с кобальтом, как в карбонилгидридах [46]. Наличие резонанса не зависит от того, находится ли водород над раствором комплексный цианид способен взять свой водород из воды и таким образом доступ кислорода разрушает резонанс. Было постулировано, что этот комплекс является ионом [СоН (СМ) 4] . [c.213]

    Комплексные ионы кобальта как катализаторы гидрогенизации [c.359]

    Хотя по своему эффекту написанные выше реакции и являются реакциями дегидрогенизации, но самый катализатор крекинга нельзя рассматривать как гидрирующий и дегидрирующий катализатор обычного типа, подобный, например, никелю, кобальту, хромиту меди и др. Действительно, трудно представить существование описанных истинных реакций гидрогенизации [3] в отсутствие небольшого количества загрязнения, являющегося истинным катализатором гидрогенизации, или без участия других реакций, например совместной полимеризации. [c.168]

    Метод (б) исследовался на сланцах нескольких месторождений [12, 20, 17]. При гидрогенизации колорадского сланцевого масла (3 = 0,81% вес., N = 2,00% вес., О = 1,20% вес.) с применением молибдата кобальта на окиси алюминия в качестве катализатора найдено, что азотистые соединения наиболее устойчивы к разрушению гидрогенизацией [12]. [c.282]

    Метод гидрогенизации (в) является шагом вперед в решении проблемы гидрогенизации сланцевого масла с использованием только умеренных давлений и с более полным удалением азота. Этот метод представляет попытку преодолеть присущие процессу гидрогенизации при высоком давлении недостатки, т. е. высокие капитальные затраты и высокую стоимость водорода. Имеются сообщения [8 и 3] о коксовании с рециркуляцией сырого колорадского сланцевого масла в продукт с концом кипения 370 —400°, и последующей гидрогенизации полученного дистиллята под давлением 105 ати над неподвижным слоем молибдата кобальта иа окиси алюминия как катализаторе с целью снижения содержания азота и серы и устранения непредельности олефинового характера. При использовании коксования как первой ступени достигается значительное снижение молекулярного веса сланцевого масла. Благодаря превращению при коксовании высокомолекулярных компонентов, которые могут составлять-до половины объема сланцевого масла, уменьшается стойкость масла к гидрогенизации. Правда, такое снижение стойкости сланцевого масла сопровождается потерями в виде кокса и газа, составляющими до 20% объемн. В процессе коксования несколько снижается содержание азота в сыром сланцевом масле содержание азота возрастает по мере роста температуры кипения [И]. [c.284]

    Обычно катализаторы выпускают в окисной форме при гидрогенизации сернистого сырья окиси кобальта (или никеля) и молибдена полностью или частично переходят в сульфидную форму. Часто после загрузки катализатор осерняют предварительной обработкой сероводородом или легкоразлагающимися сернистыми соединениями в смеси с водородом. Молибденовые катализаторы, особенно переведенные в сульфидную форму, весьма активны в реакциях гидрирования, протекающих в результате разрыва связей С—S. То же действие оказывает, например, молибден с кобальтом на окиси алюминия. [c.215]

    На практике не всегда удается настолько полно удалить серу из олефинов, чтобы можно было применить для гидрогенизации чувствительные к отравлению серой катализаторы. Поэтому для гидрогенизации серусодержащих олефинов применяют не отравленные серой катализаторы типа молибдата кобальта. Этими катализаторами являются составы закись ко- [c.206]

    Наиболее активные катализаторы гидрогенизации дают самую высокую адсорбцию водорода. Изменение адсорбции с температурой наиболее интересное и значительное явление. Такие катализаторы, как кобальт, имеют приблизительно постоянную величину адсорбции водорода, независящую от температуры. Такие же катализаторы, как окись алюминия, окись ванадия, окись железа и олово, легко адсорбируют водород только при высоких температурах, благоприятст- [c.198]


    Смит, Ралл и Грандон [25а] изучали активность различных катализаторов гидрогенизации нафталина при низкой температуре (95°) и низком давлении. Самыми активными катализаторами были платина, никель и кобальт. Медь, железо, кадмий и молибден совсем не были активны при изучавшихся условиях. Активность катализатора зависит, главным Образом, от носителя. Например, неосажденный никель значительно менее активен, чем никель, нанесенный на гранулированный древесный уголь или на гранулированую пемзу, предварительно обработанную кислотой. В присутствии неосажденного никелевого катализатора основной реакцией является образование тетрагидронафталина, в то время как в присутствии осажденного никелевого катализатора легко образуется дигидронафталин. [c.206]

    В 1906 г. появилось первое сообщение Фокина о роли водородистых металлов в реакциях восстановления непредельных жирных кислот [63]. В сообщении указывалось, что пары амилового эфира олеиновой кислоты над платиной гидрируются в эфир стеариновой кислоты. Вслед за этим была изучена гидрогенизация эруковой, мезаконовой, итаконовой и других кислот [64], а также некоторых распространенных растительных масел [65]. Катализаторами гидрогенизации служили платиновая чернь и восстановленные палладий ( водородистый палладий ), никель и кобальт, т. е. катализаторы, которыми пользовался в свое время Зайцев (Pt и Рё) и с 1897 г. Сабатье (N1, Со). На работы этих ученых ФокИн делает соответствующие ссылки. Однако, в отличие от тех пособов контакта реагента с катализатором, которыми пользовались Зайцев и Сабатье, Фокин применяет иной способ он суспендирует порошки восстановленных металлов в эфире, а затем в масляной или валериановой кислотах, т. е. в растворителях, и гидрогенизацию ненасыщенных кислот осуществляет при постоянном токе водорода в растворе. Это, казалось бы, незначительное нововведение явилось исключительно важным шагом в дальнейшем развитии катализа. [c.58]

    Медь как катализатор гидрогенизации исследована впервые Сабатье в 1897 г. наряду с никелем [38]. В дальнейшем она применялась в сплаве с цинком, железом, алюминием, а также в смеси с никелем и кобальтом во многих реакциях гидрогенизации и дегидрогенизации [39]. В настоящее время довольно широко для реакций гидрогенизации применяются меднохромовые катализаторы состава СиО СггОз или Си.Сгг04, вошедшие в практику с 30-х годов [40]. [c.122]

    Параллельно исследованиям металлических катализаторов изучались также каталитические свойства окислов металлов. Здесь трудно отделить исследования, направленные на изучение катализаторов только для реакций гидро-дегидрогенизации, от других работ, так как окислы металлов часто оказывались более многофункциональными агентами. Но изучение таких окислов, как окиси никеля, кобальта, железа, благородных металлов VIII группы, уже в первых работах Сабатье и, в особенности, Ипатьева показало, что в каталитических свойствах указанных окислов и соответствующих им металлов есть много общего и те и другие являются катализаторами гидрогенизации и дегидрогенизации. На этом основании Ипатьев считал каталитическим на-. чалом окисел, а не сам металл. Теоретические суждения Ипатьева способствовали испытаниям каталитической активности большого числа разных Окислов. [c.122]

    Результаты первых опытов по каталитическому синтезу метана из окнси углерода и водорода были опубликованы в начале 20 века [49]. Спустя несколько лет Баденская фабрика запатентовала процесс [1] каталитической гидрогенизации окиси углерода. Б первой работе [49] в качестве катализаторов использовали восстановленный никель или окись кобальта катализатор Баденской фабрики состоял из подщелоченных окислов кобальта или осмия. В нрисутствии этих катализаторов в опытах, проводившихся прн давлеши , 100—200 ат н температуре 300—400% получался главным образом жидкий продукт, представлявший собой смесь спиртов, альдегидов, кетонов, кислот и других органических соединений. [c.142]

    Гидрогенизацию альдегидов можно проводить даже в присутствии того же карбонила кобальта (катализатор гидроформилирования). В этом случае вероятный механизм реакции заключается в образовании комплекса между альдегидом и тетрагидрокарбонилом кобальта [178] [c.467]

    Решающее влияние на гидрогенизацию этилена оказывают катализаторы. В присутствии никеля, кобальта, платины, палладия, железа, меди и некоторых других катализаторов гидрогенизация этилена нацело идет yHie при умеренных и низких температурах и нормальном давлении. При повышенных температурах и давлениях скорость данной реакции, естественно, увеличивается, однако нри температурах порядка 300° и выше начинает приобретать значение ее обратимость. [c.533]

    К рассмотренным работам тесно примыкают исследования каталитического влияния металлов на разложение ацетилена. Эти исследования показали, что железо, никель, кобальт, платина являются для чистого ацетилена катализаторами разложения, а для смесей ацетилена с водородом — катализаторами гидрогенизации (А. Муассан, Ш. Мурё, П. Сабатье, Ж.-Б. Сандеран [274—276]). Причем, согласно Сабатье, действие катализаторов... направляется главным образом в сторону понижения температуры разло кения [274, стр. 226]. [c.64]

    При стоянии способность раствора цианида кобальта к восстановлению постепенно снижается (т. е. уменьшается количество водорода, которое он может поглотить). Параллельно уменьшается парамагнетизм раствора, обусловленный вначале наличием одного неспаренного электрона у каждого иона кобальта (И). Этот процесс старения может вызываться диме-ризацией. По-видимому, димер не способен к восстановлению, но аналогично восстановленному комплексу кобальта (I) активирует водород и катализирует обмен Ог — НаО. Активность всех этих катализаторов намного выше, чем у большинства гомогенных катализаторов гидрогенизации, рассмотренных ранее. Интересно, что в случае димера Со(П) состава og ( N) " и дикобальтоктакарбонила в комбинированной внешней оболочке обоих атомов кобальта содержится по 34 электрона. Казалось бы, что при отсутствии сильного взаимодействия между атомами кобальта в этих комплексах каждому из них не хватает только два электрона до конфигурации заполненной оболочки. Комплексу же o N) с 17 внешни.ми электронами не хватает до конфигурации инертного газа одного электрона. [c.357]

    Результаты титрования раствора K N раствором СоСЬ (потенциометр -ческое и с применением стеклянного электрода) наводят на мысль, что в смеси могут образоваться определенные химические соединения, содержащие цианид и кобальт в эмпири <еском отношении 9/2. Используется кинети- ческое доказательство, чтобы показать, что, когда R мало, катализатором гидрогенизации является или димер этого соединения, адсорбированный на > нерастворимом дицианиде кобальта, или адсорбированный гексацианид-ион. Последняя гипотеза представляется наиболее обоснованной, [c.357]

    В недавнем обзоре указывалось, что кобальт или железо можно отнести к числу наиболее вероятных металлов, активи--рующих водород в ферменте гидрогеназе [1]. Следовательно, представляет особенный интерес исследовать природу и свойства катализатора гидрогенизации, образуюигегося при добавлении КСЫ к водному раствору СоСЬ [2]. Для железа пока не известно ни одного комплекса, который может реагировать в растворе с водородом. [c.357]

    В процессах обессеривания лигроинов и газойлей при давлении 18— 30 ат и температуре 260—427° [4, 13] в качестве катализатора широкое применение нашел молибдат кобальта на активированной окиси алюминия. При этих условиях происходит гидрогенизация олефиновых углеводородов, но практически не идет гидрогенизация присутствующих в сырье ароматических углеводородов. Добавление солей щелочных металлов к этому катализатору подавляет гидрогенизацию олефиновых углеводородов, ие тормозя, однако, гидрогенизации сернистых соединений 5]. При более высокой температуре или при более низком давлении становится заметной реакция дегидрогенизации присутствующих в лигроине нафтенов до ароматических углеводородов и водорода (как в гидроформинге). При регулировании рабочих условий процесса можно обеспечить образование небольшого избытка водорода сверх того количества его, которое необходимо для обеспечения гидрогенизации олефинов и обессеривания [2] процесс становится независимым от внешнего поступления водорода. При этих условиях управление тепловым режимом реактора осуществляется легче, так как теплота, выделяющаяся при экзотермической реакции гидрогенизации олефинов и сернистых соединений, почти компенсируется теплотой, поглощаемой при эндотермической реакции дегидрогенизации. Однако при таких, более жестких условиях работы скорость гидрогеиизации олефинов [5] может снижаться, приближаясь к равновесию олефин — парафин, и появляется тенденция к отложению угля на катализаторе. Необходимость чередования процесса с регенерацией путем продувки воздухом для удаления с катализатора углеродистого осадка ограничивает процесс, сокращая продолжительность рабочих периодов по сравнению с процессом типичной обычной гидрогенизации. [c.279]

    Гидрогенизация. Был предложен способ гидрогенизации смеси побочных продуктов при 100—350 °С и 70 ат (катализатор 2 4-N15 на А12О3). Для повышения селективности процесса, увеличения выхода целевого продукта и облегчения регенерации катализатора можно использовать алюмо-кобальт-молибденовый катализатор . В этом случае гидрогенизацию ведут при 310—360 °С, 50—70 ат, объемной скорости сырья 1,5 и подаче водорода 800 л на 1 л сырья. Расход водорода 2% от сырья. Смесь, направляемая на переработку, кроме дифенилолпропана и побочных продуктов содержала 0,5% воды, 9,6% хлорбензола и 6% фенола. Полученный гидрогенизат имел такой состав (в расчете только на побочные продукты, без хлорбензола и фенола)  [c.181]

    Особенно высокой селективностью характеризуются рениевые катализаторы, главным образом в реакдия-х гидрогенизации. Кроме того, они необычайно устовчивы к таким каталлтическим ядам, как сера, азот и фосфор. По активности рений превосходит вольфрам, молибден, кобальт и другие металлы и приближается к никелю и платине. Рениевые катализаторы находят применение в современных п )рцессах гидрокрекинга, риформинга, в процессах очистки твердых парафинов и в ряде других процессов. [c.235]

    Катализаторы гидрокрекинга и гидроочистки. Процесс гидроочистки применяется для улучшения качества нефтяных дистиллятов путем их обработки водородом в присутствии катализатора. При этом они освобождаются от соединений серы, азота и кислорода, происходит гидрогенизация олефинов. диолефиновых и ароматических углеводородов. Гидроочистке подвергаются бензин, лигроин, топливо для реактивных двигателей, керосин, мазут, дизельное топливо, смазочные масла, сланцевые масла, угольные смолы, продукты, полученные из горючих сланцев и т. д. [46]. Используются алюмо-кобальт-молибденовый, алюмо-никель-молнбденовый или алюмо-никель-вольфрамовый катализаторы. Перед применением в процессе катализаторы обычно насыщают серой. Процесс гидроочистки проводят при температуре 300—400 °С, давлении 3—4 МПа, объемной скорости подачи сырья 1—5 ч"- и циркуляции водорода до 10 моль на 1 моль углеводорода. Во избежание повышенного коксоотложения на катализаторе сырье, поступающее на гидроочистку, необходимо предохранять от окисления. Катализаторы очень устойчивы к отравлению. Потерявший активность катализатор содержит сульфиды металлов и углистые отложения. Регенерацию проводят при температуре 300—400 °С паровоздушной смесью с начальной концентрацией кислорода 0,5—1% (об.). [c.405]

    Знание химического состава минеральных веществ, входящих в состав углей, необходимо при их деструктивной гидрогенизации для получения жидкого топлива. Установлено, что некоторые минеральные компоненты (соли щелочных и щелочноземельных металлов) оказывают отрицательное влияние на ход процесса, а другие РегОз, ЗпОг, Т102 и многие редкие элементы (бор, галлий, германий, кобальт и др.)—являются отличными катализаторами. В последние годы все больший интерес вызывает вопрос о каталитическом или тормозящем влиянии минеральных веществ на процессы полукоксования, коксования и спекания углей. [c.102]

    При переработке остатков методом гидрокрекинга используется либо катализатор типа алюмо-кобальт-молибдено во го (процесс ИНХС АН СССР зарубежный процесс гидроойл), либо катализаторы, применявшиеся на старых установках деструктивной гидрогенизации (процесс Варга). Основная трудность гидрокрекинга остаточного сырья — высокое содержание в нем асфальтенов, серы, азота и металлов, которые быстро дезактивируют катализатор. Для раз()ешения этой трудности в процессе, разработанном в Институте нефтехимического синтеза АН СССР, и в процессе гидроойл используется кипящий слой катализатора, что позволяет непрерывно обновлять состав последнего. В процессе Варга использована старая двухступенчатая схема деструктивной гидрогенизации, в которой предварительное облагораживание сырья достигается на дешевом, содержащем железо катализаторе, не подвергающемся регенерации. [c.275]

    Чаще всего гидрогенизацию нитрилов прюводят с целью получения первичных аминов. Однако наряду с первичными аминами и некоторыми другими продуктами в результате реакции образуются вторичные и третичные амины. Один из наиболее практичных методов уменьшения количества побочных продуктов состоит в проведении процесса гидрогенизации в присутствии аммиака, В качестве катализаторов применяются никель и кобальт. Можно предложить следующие условия проведения процесса в реакторе периодического д ствия с перемешиванием 0,5% порошкообразного активированного (восстановленного) катализатора, парциельное давление 18 атм, парциальное давление NH 8 атм, температура 150°С и наличие около 0,1% NaOH в жидкой фазе. (Меры предосторож- [c.219]

    Кобальт и никель применяют для получения жаропрочных сплавов и сплавов специального назначения виталлиума (65% Со с Сг, W и Мо), стеллита (до 60% Со с Сг, W и С), сплавов никеля с хромом (нимоник, инконель, хастеллой, нихром), с медью (монель), с железом (инвар, пермаллой). В больших количествах никель расходуется на никелирование. Ni является катализатором процесса гидрогенизации жиров. [c.315]


Библиография для Кобальт, катализатор гидрогенизации: [c.23]   
Смотреть страницы где упоминается термин Кобальт, катализатор гидрогенизации: [c.15]    [c.68]    [c.133]    [c.153]    [c.363]    [c.56]    [c.557]    [c.239]    [c.196]    [c.207]    [c.256]   
Химия мономеров Том 1 (1960) -- [ c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы кобальта



© 2025 chem21.info Реклама на сайте