Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

применение теплопроводность при низких температурах

    В формуле (70) величина постоянной С зависит от направления теплового потока. В обычном промышленном теплообменном оборудовании ламинарный режим течения имеет место только в случае применения весьма вязких жидкостей. Вязкость таких жидкостей обычно сильно зависит от температуры. Вследствие этого в случае охлаждения слой жидкости, примыкающий к стенке и имеющий более низкую температуру, будет значительно более вязким и значительно более толстым, чем при нагреве, когда именно этот слой имеет наиболее высокую температуру. Следует иметь в виду, что примыкающий в стенке слой жидкости оказывает определяющее влияние на величину термического сопротивления, так как в непосредственной близости к стенке теплопередача может совершаться только благодаря теплопроводности. [c.57]


    Проведённое исследование позволяет заключить, что при применении формулы Предводителева — Варгафтика для вычисления теплопроводности жидких топлив от низких температур до температуры кипения формула описывает температурный ход с точностью до 5%, а абсолютное значение теплопроводности топлив до 10%. [c.377]

    Выбор этой потенциальной функции обусловлен тем, что многочисленные эксперименты показали хорошее соответствие между значениями вириальных коэффициентов, вычисленными при помощи потенциала Леннарда-Джонса, и значениями, полученными непосредственно из опыта для многих неполярных молекул. Необходимо, правда, иметь в виду, что применение потенциальной функции с параметрами е и б, определенными из экспериментальных значений второго вириального коэффициента, полученных при низких температурах, для вычисления значений вириальных коэффициентов при высоких температурах в общем случае незаконно и может привести к значительным ошибкам. Вычисление вириальных коэффициентов по силовым постоянным межмолекулярного потенциала, полученным из измерений вязкости, диффузии или теплопроводности, в ряде случаев также может привести к [c.998]

    На чувствительность катарометра оказывают влияние сила тока, газ-носитель и температура. При уве.личении силы тока в два раза, чувствительность возрастает в 4—8 раз. Однако следует учитывать, что слишком сильное увеличение тока может привести к перегоранию нити и нестабильности нулевой линии. Газ-носитель необходимо выбирать с максимально возлюжной теплопроводностью. Для органических соединеннй наиболее высокая чувствительность детектирования достигается при применении в качестве газа-носителя водорода или гелия. Повышение температуры нити приводит к увеличению чувствительности детектора. Она должна быть достаточно высокой, чтобы избежать конденсации пробы внутри детектора. Несмотря на это следует все же стараться поддерживать, если это возможно, более низкую температуру детектора. [c.41]

    В последнее время резко возрастает значение графита в машиностроении и химическом аппаратостроении. Графит оказывается незаменимым антифрикционным материалом, заменяющим жидкие смазочные масла в условиях работы машин как при высоких, так и при особо низких температурах и при больших скоростях. В одних США выпуском графитовых антифрикционных материалов заняты более 12 фирм, производящих свыше 70 видов этих материалов, специализированных по областям применения. В машиностроении широко применяются также графитовые подшипники, поршневые кольца и другие подобные детали машин. В химической же промышленности широко внедряются в связи с химической стойкостью и теплопроводностью графита всякого рода теплообменные аппараты из графитопласта. [c.517]


    В 1910 г, польский ученый М. Смолуховский опубликовал результаты своих работ по теплопередаче через порошки в условиях вакуума. Он установил, что коэффициент теплопроводности порошков быстро снижается при уменьшении давления газа. Поток тепла через пространство, заполненное некоторыми порошками при низком вакууме, был близок по величине к потоку через пустое пространство при высоком вакууме между стенками с высокой отражательной способностью. Опыты Смолуховского и развитая им теория наметили пути изучения вакуумно-порошковой изоляции. Исторический обзор исследований этого вида изоляции до 1959 г. дан в работе [62]. Промышленное применение вакуумно-порошковой изоляции началось лишь в 40-х годах нашего века. С тех пор эта изоляция получила широкое распространение в технике низких температур. [c.6]

    Тепло в изоляционных материалах переносится, в основном, газом, заполняющим пустоты между частицами материала. Перенос тепла газом можно значительно уменьшить и даже практически полностью исключить, откачав газ из изоляционной полости, т. е. создав вакуум в пустотах между частицами. В зависимости от вида изоляционного материала получают в результате вакуумно-порошковую или вакуумно-волокнистую теплоизоляцию. Коэффициент теплопроводности такой изоляции в несколько десятков раз ниже коэффициента теплопроводности обычной (насыпной) изоляции. Благодаря высокой эффективности вакуумно-порошковая теплоизоляция нашла широкое применение в технике низких температур. [c.90]

    Из таблиц видно, что для многих порошкообразных материалов кажущийся коэффициент теплопроводности при температурах граничных стенок 293—300° К и 77—90° К и давлении менее 0,1 н/л12 составляет 1—2 мет м-град), т. е. в 10—20 раз меньше, чем у наилучших изоляционных материалов при атмосферном давлении. К материалам для вакуумно-порошковой теплоизоляции предъявляется ряд дополнительных требований, вследствие чего на практике нашли применение лишь немногие материалы. К этим требованиям, помимо низкого коэффициента теплопроводности относятся малая объемная масса, отсутствие легколетучих примесей, доступность и дешевизна, негорючесть, медленное возрастание теплопроводности при ухудшении вакуума. [c.112]

    Основным достоинством нестационарных методов является быстрота проведения эксперимента. Это достоинство, к сожалению, не может быть использовано при исследовании вакуумных видов теплоизоляции для низких температур. Время, необходимое для создания требуемого вакуума в изоляции и охлаждения ее до температуры опыта, обычно столь велико, что применение нестационарных методов не дает существенной экономии времени, если учесть к тому же усложнение вычисления измеряемой величины из опытных данных. В практических расчетах теплопередачи через изоляцию низкотемпературного оборудования необходимо применять величину кажущегося коэффициента теплопроводности при условии, что одна граничная температура равна температуре окружающей среды, а другая — температуре изолируемого аппарата. Указанная величина непосредственно определяется при измерениях по методам стационарного режима, тогда как нестационарными методами определяют теплофизические свойства при сравнительно небольших перепадах температур в испытываемом образце. [c.167]

    Возможность получения холода путем непосредственной затраты электрической энергии была доказана еще в 1834 г, французским физиком Пельтье, который установил, что при прохождении тока в замкнутой цепи, спаянной из двух разных металлов (термопара), один спай нагревается, а другой охлаждается. Чтобы холодный спай постоянно имел низкую температуру и был источником охлаждения, теплый спай необходимо охлаждать, иначе теплота от него будет передаваться путем теплопроводности холодному спаю. Более ста лет эффект Пельтье не находил практического применения. Только в 1949 г. благодаря работам советских ученых во главе с академиком А. Ф. Иоффе термоэлектрическое охлаждение стали применять в технике. [c.24]

    Вещество, выбранное в качестве хладоносителя, должно иметь низкую температуру замерзания, малые вязкость и плотность, высокие теплопроводность н теплоемкость, быть безопасным и безвредным, химически стойким, инертным по отношению к металлам, а также недефицитным и недорогим. Почти всем этим требованиям отвечает вода. Однако сравнительно высокая температура замерзания воды ограничивает область ее применения установками кондиционирования воздуха. Для охлаждения камер до температур, близких к О °С, требуется подавать в батареи хладоноситель, температура которого около —10 °С. Вода в этих условиях будет замерзать. [c.41]

    Наибольшее применение в технике имеет гелий. Его применяют для получения низких температур, в производстве и хранении взрывчатых веществ (в атмосфере гелия исключается возможность взрыва теплопроводность гелия очень велика, и нагревание ВВ в его атмосфере происходит равномерно). Водолазам подают для дыхания смесь кислорода с гелием, что создает возможность более длительного пребывания их под водой. Гелием наполняют аэростаты. [c.157]


    Опережающее развитие химической промышленности позволяет все больше внедрять в производство пластмассы, фторполимеры и другие синтетические материалы. Находит применение в нефтеперерабатывающей, нефтехимической и химической промышленности оборудование, изготовленное из фторопласта-4, в том числе с использованием фторопластовых труб (теплообменники, конденсаторы и т. п.). Отечественный фторопласт-политетрафторэтилен получают полимеризацией тетрафторэтилена. По химической стойкости фторопласт-4 превосходит даже благородные металлы, эмали, специальные стали. Самые агрессивные химические вещества не оказывают на фторопласт-4 никакого воздействия даже при сравнительно высокой температуре (до +260° С). Наряду с положительными свойствами фторопласт-4 имеет и отрицательные низкую теплопроводность и твердость, малую стойкость к истиранию, низкую температуру плавления, хладо-текучесть, что сдерживает его широкое внедрение в промышленность. [c.41]

    Фторид лития входит в состав флюсов, употребляемых при сварке алюминия и легких сплавов. Карбонат и нитрат лития используются в пиротехнике, так как пары их окрашивают пламя в интенсивно красный цвет. Гипохлорит и перекись лития являются сильными окислителями и применяются в текстильной промышленности для отбеливания тканей. В последние годы литий находит все большее применение в новой отрасли техники — при производстве и преобразовании ядерной энергии. Высокая теплоемкость, широкая область жидкого состояния (180—1336°), высокая теплопроводность, низкая вязкость и плотность жидкого лития представляют удобную комбинацию свойств для теплоносителя в урановых реакторах. Применение лития в этом случае упрощает конструкцию тепловыделяющих элементов, так как давление паров лития при рабочей температуре (500°) составляет всего несколько десятков миллиметров ртутного столба. [c.6]

    Для переработки полиамидов в большинстве случаев применяют литьевые машины с предварительной пластикацией. Необходимость применения предварительной пластикации диктуется специфичностью свойств полиамидов низкой теплопроводностью, высокой температурой плавления, узким интервалом температур, плавления и разложения. [c.281]

    Осуществление первого метода встречает значительные трудности из-за громоздкости установки и малого диапазона низких температур, которых можно достичь. Второй метод может быть использован только для исследования образцов, обладающих хорошей теплопроводностью, т. е. главным образом для металлических объектов. Методы обдувки и обливки образцов применяются в различных вариантах. Однако описанные в литературе способы применения этих методов связаны с использованием специальных камер, в большинстве случаев громоздких и сложных в изготовлении. Ниже описана аппаратура для низкотемпературной съемки с использованием распространенных типов рентгеновских камер без их переделок или с незначительными изменениями. Аппаратура разработана в Физико-химическом институте имени Л. Я. Карпова и НИИ физики МГУ на основе методов обдувки и обливки. [c.140]

    Другое затруднение при применении вакуумметров с горячей проволокой связано с изменением точности показания прибора при изменении состава газа. Например, если сухой воздух имеет теплопроводность, равную единице, то водород — в пять раз больще, поэтому в случае поступления водорода проволока будет иметь более низкую температуру при том же давлении, и прибор будет ошибочно показывать более высокое давление. В большинстве систем этот газ не встречается. Однако очень часто в системы попадают другие газы, которые оказывают некоторое влияние на показания прибора. К ним относятся СОг, водяной пар, азот, пары спирта, ртути и масла. Теплопроводность различных комбинаций этих газов хотя и отличается от теплопроводности воздуха, но достаточно близка к ней для того, чтобы в промышленных условиях производить измерения с требуемой точностью. [c.116]

    Молибден обладает высокой температурой плавления (2625°), достаточно удовлетворительными показателями механической прочности, сопротивлением ползучести при высоких температурах, высокой теплопроводностью, низкой теплоемкостью и высокой коррозионной стойкостью. Низкое сечение поглощения тепловых нейтронов в сочетании с высокой температурой плавления позволяет его использовать в атомной технике. Однако применение молибдена в качестве конструкционного материала весьма ограничено вследствие его окисляемости при повышенных температурах и плохой свариваемости. [c.258]

    Эти свойства, а также низкая температура плавления высокая теплопроводность алюминия требуют от сварщика большого навыка в работе с алюминием, заставляя особенно внимательно следить за мощностью пламени, за правильным применением надлежащего флюса, растворяющего окислы металла, и пр. [c.104]

    Наиболее широкое промышленное применение из всех тугоплавких карбидов имеет карбид кремния [52], сравнение основных физических свойств которого со свойствами других карбидов показывает, что он обладает высокой теплопроводностью, низким коэффициентом термического расширения, малой плотностью и высокими значениями твердости и температуры диссоциации [1]. [c.57]

    Высота спирально навитых ребер ограничена пределом растяжения металла на вершине ребра в процессе его навивки. Этот предел может быть увеличен посредством шлицевания вершины винтовых ребер (см. рис. 2.1, ж) или с помощью складок у основания ребер (рис. 2.7, з). В зависимости от назначения навитая спиралью лента может быть припаяна мягким или твердым припоем или приварена роликовым швом к трубе, впрессована в прорезанную канавку или завальцована. Стенки канавки можно плотно осадить при заваль-цовке для жесткого сцепления с ребрами. Достоинство предлагаемых конструктивных исполнений с использованием механических, сварных или паяных соединений заключается в том, что ребра могут изготавливаться из материала, обладающего высокой теплопроводностью, например меди или алюминия, в то время как трубы — из более дешевых, прочных и коррозионностойких сплавов (углеродистых и нержавеющих сталей). На рис. 2.7, з представлены оребренные трубы с круглыми или квадратными выштампованными ребрами с дистанциопирующими распорками у основания. Для создания механически прочного соединения эти ребра могут быть напрессованы на трубы или припаяны мягким или твердым припоем. Напрессовывание ребер на трубу является дешевой операцией, применяемой для теплообменников, работающих при низких температурах, когда коррозия невелика пайка мягким или твер-. ым припоем, будучи более дорогой операцией, рекомендуется в тех случаях, когда высокая температура или коррозия ослабляют прессовую посадку и термическую связь между трубами и ребрами [61. Пальцевидные ребра, показанные на рис. 2.7, и, находят широкое применение в конструкциях многих тппот( котлов. Их преимуществом перед плоскими ребрами являются большая механическая прочность и устойчивость по отношению к коррозии и эрозии. [c.29]

    Подшипники скольжения на основе фафитов, обладают малым коэффициенто.м фения, высокими теплопроводностью и стойкостью в агрессивных средах. Особенно эффективно их применение в узлах трения, где другие антифрикционные материалы, требующие смазки, не работают из-за высоких или низких температур и афессивности среды. [c.165]

    Идея метода состоит в использовании двух последовательно соединенных образцов парамагнитных солей. Низкая температура, достигнутая при размагничивании первого образца является начальной температурой для второго образца, при размагничивании которого достигается минимальная температура. Такая система также требует надежных тепловых ключей. Ее схема во многом аналогична схеме магнитного рефрижератора (см. рис. 124). При этом вместо охлаждаемого объекта 2 помещается рабочая соль второй ступени охлаждения и предусматривается соответствующий магнит для управления ее рабочим циклом. Температура размагничивания первой ступени, равная температуре намагничивания второй ступени, составляет 0,2—0,1° К. Применение такой схемы позволяет при сравнительно невысоких полях [0,4 Ма1м (5 кэ)1 получить температуры порядка 0,001° К- Основная проблема при использовании двухступенчатого цикла состоит в обеспечении хорошего теплового контакта между ступенями, что затруднено из-за малой теплопроводности солей в этой температурной области. Сведение внешних теплопритоков к минимуму также является первостепенной задачей. [c.241]

    Используя формулы (4.101) или (4.102), выделяют теплопроводность аморфной и полностью кристаллической частей полимера. К такого рода расчетам следует относиться с большой осторожностью, так как параметры У.К и Ха сильно изменяются при изменении температуры в широком интервале. При этом значительно изменяются и плотности аморфного ра и кристаллического Рк образцов. Между тем в формулы (4.101) и (4.102), как правило, подставляют значения стеиени кристалличности X, рассчитанные из измерений рк и ра при комнатной температуре. Вопрос о применении формулы (4.102) вообще представляется весьма проблематичным, так как она справедлива лишь в том случае, если кристалличе ские области равномерно распределены в виде вклю чений в аморфной матрице. В отношении высококри сталлических полимеров, какими могут быть, например полиэтилен и политетрафторэтилен, можно говорить ско рее о неупорядоченных областях, распределенных в де фектных кристаллах, и формула (4.102) теряет смысл Кроме того, формула (4.102) даже качественно не со гласуется с эксиернментальными данными ири низких температурах. Более оправдано использование формулы (4.101). [c.158]

    Алюминий обладает большой легкостью, низкой температурой плавления, большой пластичностью, высокой электропроводностью и теплопроводностью. Такие качества обеспечивают широкое применение его в виде различных сплавов. Особенно важным сплавом является дуралюминий, который приблизительно содержит 94% А1, 4% Си и по 0,5% Mg, Мп, Ре и 8. Изделия из дуралюминия при равной прочности почти в 3 раза легче стальных, что особенно важно в авиационной промышленности. [c.377]

    При сравнительных исследованиях молекулярных сит Бэннок [90] обнаружил, что цеолит типа 5А превосходит остальные по быстроте откачки и по сорбционной емкости для воздуха. Изотермы адсорбции сит этого типа для обычных газов представлены на рис. 20. Наиболее легко конденсируемые газы насыщают цеолит при адсорбции около 100 л. мм рт. ст. г"1. Это, как полагают, соответствует монослойному покрытию адсорбцией поверхности. Резкий подъем кривой для метана при давлениях около 10 мм рт. ст. свидетельствует о начале многослойной адсорбции, см. разд. ЗА Адсорбционная емкость для Hj, Ne и Не при 77 К значительно меньше, что связано с их более низкими температурами конденсации. В соответствии с тенденцией, наблюдаемой на рис. 20, при давлениях ниже 10 мм рт. ст. адсорбция всех газов быстро падает [96]. Стерн и Ди Паоло [97] установили, что в этом интервале давлений после повторного десорбционно-адсорбционного цикла значительно увеличивается емкость для Nj. Возможность достижения максимальной адсорбционной емкости реализуется лишь при условии отсутствия значительных количеств паров воды. Даже при комнатной температуре цеолит 5 А адсорбирует эти пары в количестве до 18% от собственного веса или приблизительно 20 мм рт. ст. л паров воды на грамм веса сита [94]. И если все другие обычные газы легко десорбируются прн восстановлении температуры криосорбционного насоса до комнатной (см. табл. 3), то регенерация сита, содержащего пары воды, требует нескольких часов прогрева до 350° С. Обычно нагревание выше этой температуры не рекомендуется из-за начинающегося разрушения гранул цеолита, однако некоторые исследователи проводят обезгаживание при температурах до 450° С [98]. Еще одним фактором, который нужно учитывать при использовании криосорбционных насосов, является плохая теплопроводность молекулярных сит. И поскольку их эффективность зависит от охлаждения, то сита закрепляются в корпусе ловушки либо в виде тонких вкладышей, удерживаемых металлическим экраном, либо распределяются в узких каналах. Бэннок [90] использовал трубчатые элементы диаметром 2 см, длиной 60 см. Сэндс и Дик [93] методом плазменного распыления цеолита наносили на металлические трубки прочно сидящие слои адсорбента, чем обеспечили лучший тепловой контакт. Этот метод требует нанесения вторичного потока частичек цеолита, поскольку материал из плазменного потока теряет свои адсорбционные свойства и служит в основном в качестве биндера. При применении этого метода должна быть решена проблема пыли, появляющейся из-за плохой прессовки слоев цеолита, приводящей к загрязнению вакуумной камеры. Бейли [94] наблюдал пылинки диаметром от 3 до 8 мкм от молекулярного сита, которые он был [c.202]

    Для переработки полиамидов в большинстве случаев применяют литьевые машины с предварительной пластикацией. Необходимость применения предварительной пластикации диктуется специфичностью свойств полиамидоз низкой теплопроводностью, высокой температурой плавления, узким интервалом температур плавления и разложения. В предпластикаторе происходит гомогенизация материала, и в литьевую форму впрыскивается расплав полимера с одинаковой в любой точке литьевой массы температурой, вязкостью и заданным молекулярным весом. Вследствие этого отливаемые изделия имеют более высокую степень кристалличности, меньшие внутренние напряжения, повышенную механическую прочность. [c.241]

    Отсюда ясно, что камера и сопло, лишенные охлаждения, смогут служить лишь в течение ограниченного времени. Часто в горловине наблюдается эрозия, хотя камера остается неповрежденной. Такое явление объясняется интенсивной теплопередачей в этом месте. Несмотря на это, лишенные охлаждения камеры и сопла могут служить в течение практически достаточного времени, которое будет зависеть от их размеров и конструкции, а также от температуры и природы продуктов сгорания. Срок службы можно продлить. за счет относительного утяжеления конструкции и за счет применения материалов, обладающих высокой удельной теплопроводностью, как, например, медь или серебро более быстрое распределение тепла по стенкам камеры допускает более продолжительные тепловые воздействия, предел которых определяется достижением температуры плавления. Таким образом, пороховой двигатель (работающий на кордите и развивающий тягу в 23 кг при температуре газов сгорания 2800° К) при цельностальной конструкции корпуса и графитовой горловине легко выдерживает рабочий период, равный 60 сек. В агрегате Люббока, где применена графитовая футеровка и сжигается смесь жидкого кислорода с бензином, при тяге 900 кг и почти той же температуре газов, возможна непрерывная работа в течение 30 сек., но ири значительной эрозии горловины. Некоторые разработанные в США и лишенные охлаждения агрегаты для двухкомпонентного топлива (азотная кислота и анилин) работают в течение 20—25 сек. при температуре сгорания около 2800° К, а при более низких температурах— в течение [c.43]

    Рассмотренные обобщения уравнения Фурье — Кирхгофа имеют сравнительно ограниченную область применения. Это связано с тем, что скорость распространения теплоты в больщин-стве твердых тел соизмерима со скоростью звука и соответственно времена релаксации очень малы. Например, для алюминия время релаксации 10 с, для газов 10 с. Из-за малости времени релаксации рещения гиперболического уравнения переноса теплоты практически совпадают с решениями классического параболического уравнения теплопроводности. Значительные отличия обнаруживаются только в начальные моменты времени на протяжении 3—10т и в областях аномально высоких температурных градиентов. Релаксационные функции й(0) и /(0), которые входят в уравнения переноса теплоты для материалов с памятью (1.103) и (1.105) для большинства веществ при высоких и умеренных температурах очень быстро затухают со временем. Это также приводит к тому, что решения интегро-дифференциальных уравнений переноса теплоты вида (1.103) и (1.105) для реальных типов релаксационных функций мало отличаются от решений классического параболического уравнения переноса теплоты. Релаксационные функции имеют заметную протяженность только при очень низких температурах. Так, например, уравнение (1.103) было с успехом использовано при анализе процесса распространения тепловых возмущений в жидком гелии-П и в некоторых диэлектриках [c.36]

    Теплофизические свойства пенопластов характеризуются коэффициенто.м теплопроводности и температурой размягчения. Коэффициент теплопроводности зависит от кажущейся плотности пенопласта чем ниже плотность, т. е. чем больше газовой фазы в пеноматериале, тем меньше коэффициент теплопроводности. Теплопроводность вспененных пластмасс значительно ниже теплопроводности невспененных (например, коэффициент теплопроводности пенополистирола при плотности 650 кг/м- вдвое ниже, чем для невспененного). Низкая теплопроводность пенопластов обусловливает применение их в качестве теплоизоляционных материалов. [c.377]

    Содержание свободного и карбонатного углерода в окиси хрома, полученной восстановлением КгСггО древесным углем, составляет 0,3—0,5%. Для получения металлургической окиси хрома, содержащей не более 0,15% углерода, производят его выжигание при 650—700° в электрических вращающихся печах. Этот процесс протекает крайне медленно из-за плохой теплопроводности материала и малого содержания выжигаемого углерода. Процесс возможно осуществить при более низкой температуре с применением окислителя, например NH4NO3 или СгОз 2 . В присутствии 10% NH4NO3 (от веса СггОз) выгорание углерода за 1 час при 350° протекает на 85—90%. [c.419]

    Трудно найти вакуумный прибор, в котором бы не применялся никель или его сплавы. Из этих материалов изготавливаются керны оксидных катодов почти всех выпускаемых в настояш,ее время вакуумных приборов, а также аноды и сетки приемно-усилительных ламп и ряд других деталей как внеламповой, так и внутри-ламповоп арматуры приборов самого различного назначения. Широкое применение никеля и его сплавов в производстве этих приборов обусловлено присушим им рядом положительных свойств — благоприятным сочетанием прочности и пластичности в отожженном состоянии, способностью воспринимать все виды механической обработки (ковку, штамповку, прокатку и волочение) даже в холодном состоянии, необходимыми для изготовления деталей различного назначения. В то же время никель обладает и некоторыми недостатками, затрудняющими, а в отдельных случаях просто исключающими его применение в ряде приборов. В частности, никель обладает повышенной испаряемостью, незначительной теплопроводностью, низким пределом текучести, малой формоустой-чивостью при длительном воздействии высокой температуры и др. [c.25]

    Гелий (атомный вес 4,0026) — газ, обладающий весьма низкой плотностью, малой растворимостью в воде и других жидкостях, высокой теплопроводностью и электропроводностью, весьма низкох критической температурой (—267,97° С) и температурой кипения ( 1 ип= —268,94° С при 760 мм рт. ст.) он также химически инертен. Эти свойства обусловили применение его в весьма важных областях техники при сварке ряда металлов, в металлургии при получении некоторых чистых металлов, в криогенной технике для получения весьма низких температур, для получения искусственных атмосфер нри кессонных и водолазных работах, в медицине. [c.178]


Смотреть страницы где упоминается термин применение теплопроводность при низких температурах: [c.142]    [c.522]    [c.465]    [c.190]    [c.154]    [c.239]    [c.526]    [c.46]    [c.129]   
Разделение воздуха методом глубокого охлаждения Том 2 (1964) -- [ c.525 ]




ПОИСК





Смотрите так же термины и статьи:

Сплавы алюминиевые, основные характеристики применение прочность при низких температурах свариваемость теплопроводность

Сплавы основные характеристики применение теплопроводность при низких температурах

применение теплопроводность металлов, горение в атмосфере кислорода и воздуха коэффициент расширения при низких температурах механические свойства при низких температурах



© 2025 chem21.info Реклама на сайте