Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сероводород очистка газа от него

    Если требуется высокая степень очистки газа, она достигается при многоступенчатой схеме. В этом случае вначале удаляют основное количество сероводорода одним из мокрых способов, затем газ очищают от остатков HgS сухим способом. [c.222]

    При проектировании и выборе теплообменной аппаратуры для блока очистки газов от сероводорода очень важно правильно выбрать температурный интервал нагреваемых и охлаждаемых потоков. Теплообменники устанавливают на потоке насыщенного кислыми газами раствора МЭА для его нагрева перед поступлением в отгонную колонну за счет тепла регенерированного раствора МЭА, выходящего из нижней части колонны. Неправильно рассчитанная и выбранная теплообменная аппаратура может вызвать увеличение эксплуатационных затрат на пар, используемый на регенерацию раствора МЭА. В работе [36] приведен подробный расчет оптимального теплообмена на установках очистки газа от НаЗ и СО 2, но он требует значительного времени. На основании обобщения данных опыта эксплуатации блока очистки газов на установках гидроочистки обнаружено, что оптимальной температурой на входе в колонну является 90—100 С (15% раствор МЭА и степень насыщения кислыми газами 0,3— 0,4 моль/моль). Регенерированный раствор МЭА охлаждается в теплообменнике от 115—120 до 60—70 °С. [c.89]


    Сернистые компоненты природного газа, и в первую очередь НгЗ, служат прекрасным сырьем для производства серы. Из сероводорода природного газа получают наиболее чистую и дешевую серу, потребность в которой постоянно растет. По количеству расходуемой серы и разнообразию сфер ее применения, она наряду с солью, известью, углем и нефтью относится к основным сырьевым материалам для химической промышленности. В 70-х годах 85% добываемой в мире серы перерабатывалось в серную кислоту, 60% серной кислоты шло на производство удобрений. Поэтому современные процессы очистки природного газа связаны с производством серы и очищенного воздуха . [c.169]

    Очистку газа от сероводорода и двуокиси углерода проводят на крупных ГПЗ, которые обслуживают одно или несколько месторождений. Они находятся, как правило, на значительном удалении (до 50-70 км) от места добычи газа. Поэтому для предотвращения осложнений в работе установок очистки газа на ГПЗ, необходимо на месте добычи [c.47]

    Максимальная (теоретическая) величина превращения сероводорода при отсутствии кислорода составляет 0,56 кг НаЗ на 1 кг гидроокиси железа. Если она достигается в процессе очистки, то при регенерации отработавшего слоя поглотителя с помощью кислорода количество образующейся серы может составить 2,45 кг на 1 кг сульфида железа. Продолжительность работы загрузки поглотителя определяется показателями процесса очистки. Если они меньше принятых при расчете процесса (пп. 2 и 3), то слой необходимо заменить. Затраты на замену слоя могут составить значительную часть общих эксплуатационных расходов процесса очистки газа гидроокисью железа. [c.283]

    Эта реакция положена в основу процесса Клауса, она вполне удовлетворительно протекает при низких концентрациях СО и содержании водяного пара менее 5%. Диоксид серы добавляют в стехиометрическом количестве к поступающему на очистку газу, причем ЗОг образуется либо при частичном сжигании сероводорода, либо при сжигании серы. [c.168]

    Низкая температура, высокие давления и концентрации реагентов и кислого газа сдвигают реакцию вправо. Наоборот, подъем температуры до точки кипения раствора амина сдвигает реакцию влево, образуется свободный амии, а поглощенный кислый газ (HaS или СО2) отгоняется. Вначале для очистки газа применяли водный раствор триэтаноламина (ТЭА), но позже для более полного извлечения сероводорода он был заменен моноэта-ноламином (МЭЛ), как более сильным основанием. [c.146]


    Очистка природного или любого другого горючего газа от сероводорода и углекислоты вызывается, с одной стороны, санитарно-гигиеническими требованиями к газу и продуктам его сгорания и с другой — требованиями технологии переработки газа, если он используется как технологическое сырье. Например, при производстве из газа искусственного жидкого топлива содержание сероводорода в исходном сырье не должно превышать 2 мг/нм . Глубокой очистки газа от сероводорода требуют также различные каталитические процессы в химической промышленности. [c.105]

    После предварительной чистки более дешевыми абсорбционными (мокрыми) методами в промышленности для окончательной очистки газа от сероводорода его подвергают адсорбционной очистке (сухие методы). Наиболее распространен метод очистки газа гидратами окиси железа. Он позволяет очищать газы с высоким содержанием НгЗ (до 25 г/м ), остаточное содержание которого в газе после очистки составляет около 0,02 г/м . [c.246]

    В данной книге подробно описаны процессы первичной переработки природных газов на ГПЗ. Из вторичных процессов в книге рассматриваются производства газовой серы и сопутствующие им вспомогательные процессы, так как они входят в состав ГПЗ, где производится очистка газов от сероводорода. [c.6]

    Для тех случаев, когда объем газа регенерации превышает потребность в топочном газе, разработана схема с замкнутым циклом, по которой из газа регенерации в абсорбере, орошаемом водой или другими растворителями, выделяется основная масса сероводорода, после чего он примешивается к потоку сырого газа и проходит повторную очистку. Десорбцию сероводорода из воды (или растворителя) производят в результате снижения давления. При очистке газа от меркап- [c.414]

    Выбор способа очистки зависит от состава, объема очищаемого газа и требований- к степени его очистки. Обычно сухие способы очистки от сероводорода применяют нри небольшой концентрации его в газе — до 0,5-10 —1,0-10 кг/м (максимум до 1,0-10 — 1,5-10 кг/м ). Достоинство этих методов очистки заключается в том, что они обеспечивают высокую степень очистки и являются селективными, в результате чего содержащаяся в газе двуокись углерода не удаляется при очистке от HjS и не влияет на этот процесс. Поглотительный метод очистки газа основан на взаимодействии сернистых соединений с твердыми поглотителями. [c.287]

    На избирательность нроцесса влияет и то, что в растворе двуокись углерода является значительно более сильной кислотой, чем сероводород можно ожидать, что в равновесных условиях процесс будет избирательным по отношению к СОг- Это действительно достигается прп введении аммиака с промывной водой и достаточной высоте колонны. Если, однако, аммиак содержится в поступающем на очистку газе, то он абсорбируется в нижней секции колонны и, так как чистая вода очень слабо абсорбирует СО2, дополнительная высота колонны незначительно влияет па избирательность процесса пли на общее количество абсорбированных кислых газов. [c.73]

    Большинство поглотителей при окислительной очистке газа от сероводорода не поглощают диоксид углерода, поэтому они неприемлемы для очистки газа, содержащего более 1% СО2. Однако они незаменимы при очистке диоксида углерода от сероводорода в случае получения СО2 как товарного продукта. [c.193]

    К поглотителям, применяемым для окислительных процессов очистки газа, предъявляются определенные требования. Они должны легко окислять сероводород, а в восстановленной форме - 1) легко окисляться кислородом до полной регенерации 2) обладать высокой емкостью по окисляемому сероводороду 3) быть термически устойчивыми 4) быть нейтральными по отношению к углеводородным компонентам 5) дешевыми и недефицитными 6) коррозионно неактивными 7) нетоксичными. [c.193]

    При пуске установки необходимо тщательно проверить герметичность оборудования, убедиться в отсутствии трещин, пробок из льда или другой застывающей жидкости. В других случаях из-за открытого байпаса, неисправного обратного клапана в системе низкого давления может подняться недопустимо высокое давление или переполнение аппарата жидкостью. Примером может служить связь абсорбера с десорбером на установке очистки газа от сероводорода. Давление в абсорбере 7,5 МПа, а в десорбере - 0,1 МПа. При отключении электроэнергии остановятся насосы, подающие раствор амина из десорбера в абсорбер. Следовательно, при неисправном редуцирующем клапане весь раствор из абсорбера перейдет в десорбер, затем начнется интенсивный переток газа, в результате чего по линии кислого газа на установку производства серы пойдет жидкая фаза - раствор амина и природный газ. В этом случае неизбежны серьезные аварии разрушение футеровки камеры сгорания вследствие высокой температуры горения природного газа и решетки котла-утилизатора. Даже незначительное попадание водного раствора амина на керамику защитных втулок приводит к их растрескиванию. Поступление газа из абсорбера в десорбер может привести к взрыву десорбера, так как он не рассчитан на высокое давление. [c.353]


    Мембранные методы используются Д1ш разделения воздуха как с целью получения потока, обогащенного азотом, так и с целью получения потока, обогащенного кислородом. Они используются также для выделения водорода, очистки газа от диоксида углерода и сероводорода, извлечения гелия из природного и нефтяного газов и других целей (см. 18.5). [c.46]

    Кроме высокой адсорбционной способности по сероводороду цеолиты обладают еще одним свойством, имеющим первостепенное значение для производства они селективно извлекают сероводород из его смесей с диоксидом углерода. Например, при мольном соотношении в газовой фазе НгВ СОг =1 1 адсорбированная фаза обогащается сероводородом до 90 мол. %. В процессе одновременной очистки газа от сероводорода и диоксида углерода в первый период происходит полное удаление обоих компонентов из газов, затем диоксид углерода в адсорбированной фазе начинает вытесняться сероводородом, вследствие чего его содержание в выходящем из адсорбера потоке газа резко возрастает и даже превосходит по содержанию диоксид углерода в исходном газе. В то же время сероводород продолжает количественно поглощаться вплоть до момента проскока. [c.397]

    Для очистки газа от сероводорода и других сернистых соединений, как и для осушки, можно применять твердые и жидкие поглотители. В качестве твердых сорбентов используется специально подготовленная гидроокись железа Ре(ОН)з, реже—активированный уголь. Способы очистки газов от серы твердыми и некоторыми жидкими поглотителями описаны в курсе химической технологии неорганических веществ. Очистка нефтяных газов твердыми поглотителями применяется редко. [c.31]

    Сухая очистка от серы газов осуществляется в башнях, где на полках слоями высотой 0,5—0,7 ж загружена болотная руда — гидрат окиси железа. Сероводород, соединяясь с пей, образует сернистое железо. Отработанная железная руда может быть вновь восстановлена путем продувки ее воздухом при этом сера окисляется и железный окисел восстанавливается вновь. После нескольких регенераций требуется замена руды в башнях. Сухая очистка позволяет почти полностью удалить сероводород из газа , особенно она пригодна, если первоначальное содержание сероводорода невелико. [c.233]

    При очистке больших потоков газа используются процессы 1звлечения Нг5 с образованием так называемого кислого газа, в состав которого наряду с сероводородом входят диоксид угле-рс.да, пары воды, углеводородтле комиоиеиты и небольшое количество других соединений серы. Кислый газ служит сырьем д 1я производства серы. К промышленным процессам производс -ва серы из кислого газа относятся процессы прямого окисления и процессы Клауса. При производстве серы по обоим типам процессов образуется поток остаточных (хвостовых) газов. Он чрезвычайно сложен и разнообразен основой его является азот вс.здуха, пары воды и различные вредные соединения серы с в( Дородом, кислородом и углеродом. Особенность его — сравнительно низкая для извлечения концентрация вредных компонентов в общем потоке. Общее содержание вредных компонентов в остаточных газах всегда превышает допустимые нормы, безопасные для окружающей среды, что и обусловливает необходимость производства очищенного воздуха , т. е. очистку остаточных (хвостовых) газов. [c.170]

    В связи с жесткими требованиями, предъявляемыми к получаемым газам по содержанию в них сероводорода, в схемах АГФУ предусмотрены блоки очистки сырья от сероводорода (на схеме они не показаны). Используют моноэтаноламиновую и три-калийфосфатную очистки. Получаемый сероводород служит ценным сырьем для химической промышленности. При эксплуатации блока очистки особое значение имеет четкая работа теплообменника, который часто выходит из строя в результате коррозионных повреждений. [c.58]

    В настоящее время наиболее широкое распространение получили два способа сероочистки поглощение сероводорода из газа раствором моноатаноламина и поглощение сероводорода мышьяково-содовым раствором с последующей регенерацией абсорбента. Этп схемы и химизм процесса подробно описаны в литературе [10, 111. Они примерно равнозначны по своим технико-экономическим показателям. Достоинством мышьяково-содовой очистки является возможность производства на базе поглощенного сероводорода товарных продуктов элементарной серы и гипосульфита. Однако в этом случае необходимо строительство отдельной установки очистки сиптез-газа от углекислоты. [c.18]

    Преимущества данного процесса — практически полное удаление из газа сероводорода, независимо от его концентрации в исходном газе, п инертность в отношении СО2 малые капитальные вложения по сравнению с другими способами при очистке небольших объемов газа работоспособность в широком диапазоне давлений извлече]ше из газа одновремешю с сероводородом меркаптанов. Недостатки процесса — периодичность, из-за чего необходимо устанавливать двойное количество оборудования или прекращать очистку газа на время регенерации илн заме]1Ы поглотителя возмояаюсть образования гидратов при высоких давлениях н температурах, близких к температуре гидратообразования удаление из очищаемого газа этилмеркаптана, если он был введен в газ в качестве одоранта необходимость в частой смене слоя поглотителя, если вместе с газом в поглотительную башню попадает нефть или углеводородный конденсат. [c.282]

    Использование раствора МЭА, хорошо поглощающего как HjS, так СОа, не позволяет селективно выделить сероводород, и при его выделении после регенерации получаются газы, в которых соотношение HaS и СО, остается таким, каким оно было в очищаемом газе. В случае очистки раствором МЭА газа газификации нефтяных остатков в кислых газах получается низкая концентрация сероводорода. Такой газ нецелесообразно использовать в производстве серы, поэтому применение раствора МЭА для очистки в этом случае не реко-лгендуется. [c.123]

    Эта реакция обратима. При 40—80°С она протекает слева направо. В этих условиях происходит очистка газа от сероводорода. При 110—140°С реакция направлена обратно. Это используют для регенерации отработанного раствора. Газ в абсорбере очищают орошением его раствором аминов. Очищенный газ уходит из абсорбера сверху. Отработанный раствор аминов прокачивают насосом через теплообменник, где его температура повышается до 90—100°С, и поступает в регене-ратор-десорбер, в нижней части которого находится кипятильник для нагрева раствора до 130—140°С и отгонки кислых газов. Регенироваиный раствор подают насосом через теплообменник и холодильник на очистку газа. Сероводород охлаждают, отделяют от водного конденсата и направляют для дальнейшей переработки в серу или серную кислоту. Принципиальная технологическая схема и аппаратурное оформление при осушке газа аналогичны описанным. [c.172]

    Вторым после Слохтерена крупным газовым месторождением Западной Европы является Лак. Оно расположено во Франции в предгорьях Пиренеев, недалеко от г. По. Газ на этом месторождении находится в трещиноватых известняках и доломитах юрского и мелового возраста, залегающих на глубинах от 3300 до 4300 м. Месторождение Лак газоконденсатное, с высоким давлением газа (650— 10 ат). Газосодержащие породы имеют мощность 500 ж. Запасы газа оцениваются в 250 млрд. ж . Газ месторождения Лак содержит около 70% метана и до 15—17% сероводорода. Транспортировать газ с таким содержанием сероводорода нельзя, так как это вызовет быструю коррозию и разрушение трубопроводов и различного металлического оборудования. Приходится проводить тщательную очистку газа от сероводорода. В результате действия очистительных установок на месторождении Лак получают ежегодно около 1,3 млн. т серы. [c.63]

    Для очистки газа от сероводорода существуют сухие и мокрые способы. Сухим способом является очистка с помощью болотной руды, содержащей гидрат окиси железа Ре(ОН)д. При пропускании газа через болотную руду сероводород реагирует с гидратом окиси железа с образованием ГвзЗа- [c.288]

    Для очистки газа с помощью этаноламинов в нижнюю часть поглотительной колонны или адсорбера подается газ, который требуется очистить. В абсорбере имеются тарелки, как в ректификационной колонне, или же он содержит насадку, т. е. заполнен проволочными спиралями, иными металлическими или керамическими изделиями для того, чтобы увеличить поверхность соприкосновения газа с раствором этаноламинов, стекающих сверху вниз по колонне. Газ, поднимаясь вверх по колонне, очищается от сероводорода, а также от углекислоты и отводится из верхней части абсорбера. [c.289]

    Химические процессы, при которых образуются слабоустойчивые соединения, часто называют хемосорбцией, подчеркивая сходство таких химических процессов с процессами сорбции. Примером таких реакций служит поглощение кислых газов — сероводорода и углекислоты — раствором этаноламинов. Химические особенности подобных реакций и степень устойчивости получаемых таким путем соединений бывают весьма различными, и они могут быть применены не только для очистки газов от вредных примесей, но и для выделения из какой-либо смеси нужных и ценных компонентов. [c.300]

    В реакционном блоке свежее сырье смешивается с рисайклом и подогревается в печи. Сырье поступает в низ реактора с трехфазным кипяшим слоем, предварительно смешиваясь с потоком нагретого водородсодержащего газа. С верхней части реактора выводятся продукты реакции вместе с водородсодержащим газом. Они направляются на разделение в узел сепарации, включающий несколько сепараторов, в которых последовательно снижаются температура и давление. В результате сепарации выделяются углеводородные газы, водородсодержащий газ и жидкие продукты, которые направляются на разделение в блок ректификации. Углеводородные газы направляются в общезаводскую сеть и далее на выделение серы. Водородсодержащий газ проходит узел очистки от сероводорода, компримируется, смешивается с потоком свежего водорода и направляется после нагрева в реактор. Из [c.312]

    ВИВИАНИТ — болотная руда — минерал, водный фосфат железа (П) Ре,, (Р04)з 8НаО. Большие залежи В. встречаются в торфяных местностях, входят в состав болотных руд. На во.ч-духе В. быстро окисляется, образуя гидроксид железа (III) Ре (ОН),,. В. применяется как удобрение, для очистки газов от сероводорода, приготовления синей краски и др. [c.53]

    Для очистки газа от сероводорода используют моноэтаноламин (МЭА), ди-этаноламин (ДЭЛ) и триэтаноламин (ТЭА). Они хорошо растворимы в воде, и поэтому их применяют в виде водных растворов. При температурах 40—80 °С они хорошо поглощают сероводород, а при температурах 110—140 °С выделяют его. Наиболее распространена очистка от кислых компонентов МЭА и ДЭА. Растворы эти имеют pH =12,7, сами по себе они не агрессивны. Коррозионная агрессивность увеличивается по мере насыщения кислыми компонентами, повышения температуры и соответствующего снижения pH. Наиболее сильная коррозия как углеродистых, так и нержавеющих сталей, особенно в местах сварки, наблюдается при температуре, близкой к 100 °С. Наличие чистого сероводорода в растворах этаноламинов делает коррозионную агрессивность их ниже, чем в совокупности с углекислым газом. При этом общее содержание кислых газов в растворах этаноламинов не должно превышать 0,3—0,4 моля газа на 1 моль амина, особенно, если используют оборудование из углеродистых сталей. Превышение содержания кислых компонентов может привести к пересыщению раствора этаноламина, выделению их и, соответственно, резкому усилению коррозионных процессов. [c.174]

    Процессы очистки газов от нежелательных соединений растворителями, представляющими собой смесь водного алкано-ламинового раствора с органическими растворителями — сульфо-ланом, метанолом и др. Они основаны на физической абсорбции нежелательных соединений органическими растворителями и химическом взаимодействии с алканоламинами, являющимися активной реакционной частью абсорбента. Эти процессы сочетают в себе многие достоинства химической и физической абсорбции. Их можно использовать для тонкой комплексной очистки газов от сероводорода, СОа, RSH, OS и Sj. [c.139]

    Обычно в потоках природного газа содержится очень немного примесей, способных отравлять твердые адсорбенты, применяемые при процессах адсорбционного извлечения углеводородов, или оказывать иное отрицательное влияние на их адсорбционные характеристики. Имеются только два исключения пары аммиака и туман тяжелого масла. Под действием паров аммиака увеличиваются размеры пор в силикагеле, а при продолжительном воздействии аммиака разрушается пористая структура адсорбента и он быстро утрачивает адсорбционную емкость. Наиболее вероятным, а возможно, и единственным источником паров аммиака в потоках природного газа является процесс очистки газа аминами для удаления сероводорода. Нормальная работа системы отбензипивания и извлечения тяжелых углеводородов после этаноламиновой очистки легко достигается включением простой водной промывки в скруббере, установленном непосредственно перед адсорберами. [c.46]

    Сероводород чрезвычайно ядовит. Он действует на нервную систему, а такнче на дыхательные пути и глаза. При концентрациях сероводорода выше 1 мг л смертельное отравление может произойти почти мгновенно от паралича дыхательных центров. Допустимая концентрация его в воздухе помещений установлена не более 0,01 мг л, а в газе, поступающем в городские сети, — не более 2 3 на 100 ж . Высокая токсичность сероводорода и строгие требования к его содержанию вызывают необходимость очистки газового топлива перед подачей его потребителям. [c.21]

    И др., хотя И дают несколько меньшую степень извлечення серы (до 96% в фенолятном процессе и до 99% в этаноламиновом процессе), но по компактности ц простоте особенно пригодны для очистки больших количеств газа. Основная аппаратура этих процессов — две колонны абсорбер, в котором очищаемый газ обрабатывается при обычной температуре раство])ом реагента (фенолят натрия, мопс- II триэтаноламины плц растворы апкацида) и идет реакция связьшания сероводорода (а такгке СО2), и десорбер, в котором раствор из первой колонны при нагревании до температуры кинения разлагается с выделением свободного сероводорода. Пог.ло-щекие сероводорода ири низких температурах и освобо/11-дение его при высоких обусловлены тем, что нрк низких температурах сероводород хорошо растворим в воде и обладает слабыми кислотными свойствами, достаточными, чтобы, образовать соли с органическими основаниями или вытеснить фенол, давая гидросульфид натрия. При высоких температурах растворимость сероводорода резко понижается, он удаляется пз системы и реакция идет р, сторону образования свободного основания или фенолята натрш . [c.338]

    Показано [И], что полная очистка газов от сероводорода (содержание его 33 10 кг/м ) достигается при использовании смеси катионита КУ-2 и гидроокцси железа Ге(ОН)д. Отношение объема газовой смеси к весу катионита равно 2 1. [c.290]

    При грубой очистке газов от сероводорода весовое соотношение AS2O3 H2S поддерживают равным 15—18, для более тонкой очистки (остаточное содержание Н,8 = = 3—5 мг1м ) оно должно составлять 30—40. [c.226]

    Представляет интерес выделение небольших количеств синильной кислоты из сточных вод производства сульфата аммония из аммиака коксового газа. Они образуются при промывке, ведущейся с целью обезвреживания газов, отходящих из сатураторов поглощения аммиака серной кислотой и содержащих 100—3000 MzjA синильной кислоты и сероводорода и незначительные количества аммиака. Предложена двухступенчатая очистка сточных вод, заключающаяся в раздельной отдувке из них воздухом сероводорода и синильной кислоты. Скорости диффузии H N и H2S из жидкой фазы в газовую почти одинаковы, но коэффициент растворимости синильной кислоты значительно больше. Поэтому сероводород от дувается в 100 раз быстрее и выделяется в первую очередь. От-дувочные газы первой ступени циркулируют в процессе и исполь- [c.474]

    Несомненно, что в книге такого объема невозможно детально описать все известные процессы очистки газа. Поэтому основное место в книге занимают процессы, имеющие важное промышленное значение особое внимание уделяется процессам, применяемым в различных отраслях. Две главы книги посвящены этаноламиновой очистке газов от сероводорода и двуокиси углерода, так как эти процессы широко применяются для очистки топливных газов (природного, нефтезаводского и искусственного) кроме того, они составляют важную часть многих химичес1 их производств (например, производства сухого льда, аммиака, водорода). Значительное место в книге уделяется извлечению двуокиси серы, поскольку эта проблема приобретает все большее значение в области борьбы с загрязнением воздуха с этой проблемой приходится сталкиваться и при сжигании высокосернистых топлив, а также при плавке сульфидных руд. Извлечение из топливного газа нафталина рассматривается очень кратко, поскольку это ваншо только при очистке газа, полученного из угля. [c.5]

    В каменноугольных газах содержатся летучие кислотные компоненты — хлористый водород, сероводород, цианистый водород, двуокись углерода, органические кислоты. Все они соединяются с аммиаком во время охлаждения газа и вследствие растворимости образующихся солей в воде частично удаляются при процессах водной абсорбции. Аммиак в виде солей сильных кислот (главным образом хлористый аммоний) обычно называют связанным аммиаком в легко диссоциирующихся солях слабых кислот, таких как карбонат, бикарбонат, сульфид, гидросульфид и другие, его называют несвязанным . Методы выделения аммиака из различных солей, образующихся при очистке газа, кратко рассмотрены в последней части главы. [c.229]

    Регенерацию осуществляют в присутствии МзгСОз, которая способствует полноте восстановления. Очистку газов можно вести и твердыми поглотителями, например болотной рудой (гидрат окиси железа Ре(ОН)з). Применяется болотная руда для очистки газов с невысоким содержанием серы. Очищаемый газ пропускают через болотную руду, при этом сероводород соединяется с гидратом окиси железа с образованием сернистого железа. [c.50]

    Наличие маслянистых примесей в коксовом газе является нежелательным, поскольку они участвуют в отложении осадков в газораспределительной арматуре коксовых печей, в газовых компрессорах и приводят к вспениванию щелочных поглотительных растводов при очистке газа от сероводорода. [c.26]


Смотреть страницы где упоминается термин Сероводород очистка газа от него: [c.313]    [c.282]    [c.172]    [c.94]    [c.339]   
Общая химическая технология топлива (1941) -- [ c.432 ]




ПОИСК





Смотрите так же термины и статьи:

Очистка газов Очистка газа от сероводорода

Очистка газов от сероводорода

Сероводород в газах



© 2025 chem21.info Реклама на сайте