Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители обмен в комплексах

    В сильно сольватирующих растворителях обмен комплекс — компонент осложняется тем, что атакующий агент вынужден проникать через сольватную оболочку молекулы комплекса. Для объяснения порядка изменения в ряду комплексов галогенидов различных металлов с диметилформамидом в условиях, когда происходит обмен с формамидом, который сам служит растворителем, предлагается механизм, лимитирующей стадией которого является проникновение молекул растворителя в сольватную оболочку комплекса [618, 680]. Чем больше объем сольватной оболочки, тем больше затруднена миграция свободного растворителя в координационную-сферу и тем выше энергия активации реакции обмена [618, 680— 682.  [c.149]


    Комплекс нерастворим в водных растворах солей и органических растворителях. В этом случае выделение соли полисахарида с неорганическим катионом проводят в органическом растворителе. Осадок комплекса измельчают и встряхивают в течение нескольких часов с насыщенным раствором неорганического электролита в спирте при слабом нагревании. Нерастворимый полисахарид отделяют центрифугированием. К осадку приливают свежий спиртовой раствор электролита и снова встряхивают. Такой обмен проводят еще несколько раз. Осадок отделяют, промывают несколько раз спиртом для удаления неорганической соли. В результате получается соль полисахарида с катионом неорганического электролита. [c.45]

    Оказалось, что времена ядерной магнитной релаксации 71 и Гг растворителя (изотопы Н и Ю) резко укорачиваются под влиянием парамагнитных катионов за счет прямого диполь-ди-польного и контактного сверхтонкого взаимодействия между электронным и ядерным магнитными моментами. Ввиду большого значения магнитных моментов неспаренных электронов этот механизм эффективен уже при малых концентрациях парамагнитных катионов 10 —10 моль/л [833]. Парамагнитные примеси, создавая сильные магнитные поля на ядрах молекул растворителя, координированных парамагнитным катионом, ускоряют отвод энергии от системы резонирующих ядерных спинов к ее окружению (решетке). Благодаря быстрому обмену молекул воды в координационной сфере аква-комплекса влияние парамагнетика распространяется на весь объем растворителя, и за время релаксации все ядра растворителя успевают побывать в непосредственной близости от катиона. При прочих равных условиях скорость релаксации 01=(1/Г1) или 02=(1/Гг) линейно зависит от концентрации катиона Таким образом, ядерная магнитная релаксация оказывается чувствительным инструментом обнаружения и количественной оценки содержания парамагнитных ионов в растворе. [c.436]

    Процессу разряда кобальта и никеля часто, очевидно, предшествует реакция десольватации или диссоциация комплексного иона [925, 993, 955, 928]. Большое значение для электродного процесса имеют обменные реакции между анионами фона и окружением катионов N 2+ и Со + [1276, 944, 945, 943, 938], а также адсорбционные процессы на поверхности катодов с участием молекул растворителя, фонового электролита и образующихся комплексов исследуемых металлов [681, 684, 680, 470, 944, 945]. [c.99]


    Ионы РеЗ+(Н20)б, Ре +(Х)--(Н20)5 и Ре= +(Х)- (НгО) , где X == С1 или Р, обменивают Ре с Ре +(Н20)в с близкими скоростями (но намного медленнее, чем при X = ОН). Было предположено [7], что этот факт указывает на перенос атома водорода между гидратированным Ре + и Ре " , за которым следует быстрый обмен протона с растворителем. Однако были обсуждены и другие возможные процессы, например одновременный обмен протона и атома водорода [1], участие молекулы растворителя в переходном комплексе [c.87]

    Ранее был рассмотрен обмен в координационно построенных системах комплексов металлов между относительно близкими по свойствам молекулами, подобными воде и аммиаку. Как обстоит дело при обмене между молекулами растворителя и [c.59]

    ИЗОТОПНЫЙ ОБМЕН МЕЖДУ КОМПЛЕКСАМИ И РАСТВОРИТЕЛЕМ [c.108]

    Влияние природы растворителя на спектр ЭПР может быть объяснено механизмом [136], учитывающим возникновение слабых обменных взаимодействий при столкновении молекул в растворе. При сближении двух парамагнитных частиц обменное взаимодействие между ними может вызвать нарушение фазы ларморовых вращений спинов вокруг внешнего магнитного поля. В работах [ 137 -139] показано, что в полярных растворителях ширина сверхтонких компонент меньше, а константа сверхтонкого расщепления больше, по сравнению со значениями констант в неполярных растворителях. Этот эффект приписан возникновению комплексов радикал — растворитель. Образование комплексов свободный радикал — растворитель может быть обусловлено различными причинами, в частности водородной связью [ 138]. В ряде случаев возможно также образование молекулярных комплексов с растворителем, акцепторами, ионами металлов. Последние нередко приводят к стабилизации ион-радикалов [140, 141]. Авторы [141] считают, что молекулы растворителя локализуются на полярных заместителях или гетероатомах. [c.120]

    Замедленный водородный обмен в аммонийных ионах изучен очень подробно и количественно. Свейн с сотрудниками [131] определил скорость водородного обмена в ионах аммония с гидроксильной группой спиртов и показал, что она определяется концентрацией ионов водорода. Первая серия опытов была поставлена с бромистым аммонием и метанолом, растворенными в диметилформамиде. Сделанные выводы подтверждены и на других объектах. Реакция имеет первый порядок по отношению к каждому из реагентов. Скорость обмена обратно-пропорциональна концентрации ионов водорода (в форме протонизованной молекулы растворителя). Произведение иа константы скорости обмена на концентрацию кислоты остается постоянной величиной даже при изменении концентрации кислоты в 100 раз. Энергия активации обменной реакции с триэтил-аммонийхлоридом в метанольном растворе варьирует от 22 ккал при концентрации хлористого водорода, равной 0,69 М до 15 ккал в 0,016 М растворе кислоты. Таким образом, торможение реакции кислотой строго доказано. По Свейну, кинетическим данным соответствует тримолекулярный механизм обменной реакции. Протон (из иона аммония или молекулы спирта) присоединяется к молекуле растворителя, возникает комплекс, в котором аммиак (или амин) и спирт соединены водородной связью  [c.94]

    Вода как растворитель сложного комплекса минералов земной коры и взаимодействие воды с твердой фазой, атмосферой и организ.мами. В этом разделе рассматриваются растворимость веществ, встречающихся в природе, форма содержания их в воде, стабильность в р-ро, сорбционные, обменные, окислительно-восстановительные процессы и мн. др. К этому же разделу, весьма близкому к геохимии, следует отнести и общие вопросы круговорота веществ и миграцию элементов в гидросфере. [c.470]

    Высокая скорость обмена наблюдалась между х.торидами цинка, кадмия и ртути(П) и нитрозилхлоридом. При этом, вероятно, образовывались комплексы 1 1. Последнее заключение было сделано на основании более медленной скорости гетерогенного обмена между комплексами и растворителем. Обмен не наблюдался для Na l и КС1, которые не образуют комплексов, и для хлоридов, образующих очень стойкие комплексы, например (NO )2(Sn l6) . Было обнаружено, что обмен между хлоридом серебра и жидким нитрозилхлоридом происходит только на свету вероятно, он протекает через фотохимическое разложение. [c.313]

    Кинетические исследования реакций замещения и изотопного обмена привели А. А. Гринберга к выявлению механизмов многих реакций. В его работах показана большая роль растворителя в этих реакциях. В водных растворах многие реакции изотопного обмена и щелочной гидролиз соединений платины (П) протекают через стадию предварительной акватацин, а в неводных растворителях обмен может происходить путем непосредственного замещения. Механизм реакций изотопного обмена и замещения в октаэдрических комплексах платины (IV) гораздо разнообразнее и сложнее. Здесь начинают играть существенную роль кислотные свойства комплексных соединений и становится возможным протекание редокс-процессов в системе платина (II) —платина (IV) [22]. [c.18]


    Такой вывод согласуется с теоретическими выводами авторов о механизме реакции (стр. 121), а именно разрывающаяся связь гораздо более важна, чем связь, образующаяся в активированном комплексе. Однако то, что тангенс угла наклона равен единице, не говорит однозначно о роли вступающей в комплекс молекулы воды. При переходе от отсутствия связи к сильной связи допускается все что угодно. Согласно аргументации Хэммонда [85], невероятно, чтобы вступающая группа была сильно связана в активированном комплексе. Нелогичность заключается в том, что в переходном состоянии молекула воды связана с центральным ионом лишь слабой связью, если вообще связана. Если вступающая молекула воды в некоторой степени связывается, то имеет место упомянутый ранее (стр. 123) механизм диссоциации с помощью растворителя. Если же специфического связывания молекулы воды не происходит, то вовсе не обязательно, чтобы структура с координационным числом пять, сохранившаяся за счет потери X, была интермедиатом в кинетическом смысле. Реакция с ближайшим потенциально возможным лигандом могла бы происходить более легко, чем перегруппировка оболочки из молекул растворителя, окружающих комплекс [79а]. Таким образом, внутренний обмен групп в первой и во второй координационных сферах возможен или с помощью, или без помощи нуклеофильного агента. [c.151]

    Окончательного результата удалось достигнуть путем систематического изучения соединений тяжелых металлов для нахождения со-катализаторов обменной реакции было показано, что суспензия комплекса, полученного при реакции Т1С14 и А1(С2Н5)д в парафиновом растворителе, при комнатной температуре и атмосферном давлении реагирует с С2Н4, образуя при Т< 70°С твердый высокополимерный [c.112]

    Жидкостные электроды. В жидкостных ионселективных электродах возникновение потенциала на границе раздела фаз обусловлено ионным обменом, связанным с различием констант распределения иона между жидкой и органической фазами. Ионная селективность достигается за счет различия в константах распределения, устойчивости комплексов и различной подвижности определяемого и мешающего ионов в фазе мембраны. В качестве электродноактивного соединения в жидкостных ионселективных электродах могут быть использованы хелаты металлов, ионные ассоциаты органических и металлосодержащих катионов ц анионов, комплексы с нейтральными переносчиками. Большое распространение получили пленочные пластифицированные электроды, выпускаемые промышленностью и имеющие соответствующую маркировку, например, ЭМ—СЮ4 01, ЭМ—НОз —01. Чувствительный элемент таких электродов состоит из электродноактивного компонента, поливинилхлорида и растворителя (пластификатора). В лабораторной практике используют аннонселективные электроды, для которых электродноактивным соел,инением являются соли четвертичных аммониевых оснований. [c.121]

    Полученные данные подтверждаются обнаруженными другими исследователями [144, 145] пересольватационными эффектами. Природа пересольватационных процессов как при нагреве, так и при растворении заключается в образовании и разрушении агрегативных комбинаций на основе обменных взаимодействий между молекулами среды (растворителя), возбужденными молекулами, радикалами, высокоспиновыми и низкоспиновыми комплексами металлов. [c.123]

    Гидратационные равновесия являются результатом обменного взаимодействия лигандов комплекса с молекулами воды. В более общем случае неводных растворителей они получили название соль-ватационных равновесий. [c.107]

    Интересный случай образования макроциклических соединений был обнаружен для координационных полимеров бис-Р-дикетонов с бериллием [3, 125-127]. Оказалось, что эти полимеры необычайно легко в разбавленных растворах подвержены обменным реакциям даже при невысоких температурах с образованием циклических продуктов. Например, из разбавленных растворов полисебацилацетоната бериллия в органических растворителях с 50%-м выходом был выделен макроцик-лический мономерный комплекс себацилдиацетона и бериллия. [c.30]

    Реализация указанного подхода требует длительного времени, однако он весьма ценен, так как дает информацию о связывании субстрата в условиях нормального функционирования фермента. Этот подход все же не может дать детальных сведений о взаимодействии групп, участвующих в связывании, подобных тем, какие стали доступными в последние годы благодаря рентгеноструктурным данным. Рентгеноструктурные исследования обычно неприменимы к фермент-субстратным комплексам, поскольку времена жизни последних слишком малы, и должны поэтому проводиться на неработающих ферментах. Однако рентгеноструктурные данные, полученные для комплексов ферментов с ингибиторами или плохими субстратами, дали большой объем информации о деталях связывания малых и больших молекул ферментами, который в удачных случаях можно безусловно перенести на связывание субстрата. Структура комплексов химотрипсина с Л -формилтриптофаном и Л -формилфенилаланином (60) и (61) (Х = ОН, продукты гидролиза специфических субстратов) почти наверняка близка к соответствующим фермент-субстратным комплексам (60), (61) (X —NHR), так как фермент катализирует обмен 0 с карбоксильной группы Л -ацильных производных этих соединений в растворитель — воду [99]. [c.512]

    Комплексы переходных металлов наряду с ферроценовыми производными представляют, пожалуй, наибольшие возможности для варьирования органического лиганда. Самым простым способом получения их является нагревание соответствующего карбонила металла с ароматическим соединением. Оптимальная температура таких реакций (идущих с отщеплением СО-групп) равна 120—150 °С, поэтому необходимо использовать соответственно высококипящие органические растворители. Лучшими оказываются такие донорные растворители, как 2-метоксиэтиловый эфир, ди-н-бутиловый эфир, диоксан и тетрагидрофуран, а также очень часто и их смеси. Для получения термически неустойчивых соединений, в первую очередь соединений Мо и W, или комплексов с очень реакционноспособными ароматическими лигандами следует применять реакцию обмена лигандов в замещенных металлкарбоиилах МЬз(СО)з, где L — донорный лигаид со слабой обратной связью. Реакции замещения L протекают в таком случае гораздо быстрее, чем замена СО-групп. Обмен лигандов можно также значительно ускорить добавкой кислот Льюиса, которые образуют с отщепляющимся лигандом прочный аддукт. Для этих трех методов получения комплексов типа М(т1-ароматический лиганд) (СО) з далее будет дано лишь по одному примеру. Полный обзор литературы по этим комплексам для М = Сг можно найти в книге [1]. Кроме того, опубликованы подробные обзорные статьи [2—4] о получении и химических свойствах этих металлоорганических соединений. [c.1972]

    В ходе этой реакции возможен дейтериевый обмен с растворителем, однако он идет с довольно низкой скоростью. При использовании в качестве субстрата о-манделата и проведении реакции в среде тритированного растворителя меченые о- и ь-продукты образуются в эквимолярных количествах, что указывает на существование симметричного промежуточного соединения. Эти данные свидетельствуют об образовании промежуточного а-карбаниона, причем в роли акцептора протона выступает ферментативное основание. Лнмнтируюи1,ей стадией является перенос протона, поскольку первичный дейтериевый изотопный эффект достигает 5. Внутри фермент-субстратного комплекса эпимеризация идет с константой скорости порядка 10 с , что соответствует верхнему пределу скорости ферментативного переноса протона. [c.151]

    Уравнение Сочевинского. Модель, предложенная Сочевинским, рассматривает процессы удерживания при использовании бинарных смесей растворителей. Эта модель широко применяется для прогнозирования элюирующей способности таких растворителей. Так же, как и в модели Снайдера, предполагается монослойная адсорбция, однако предусматривается наличие отдельных адсорбционных центров с равной энергией и полное покрытие адсорбционных центров А (силанольных групп) более сильным компонентом В смеси растворителей (Ыв > 0.02). Комплексы с растворителем (А 5) вступают в обменные реакции с анализируемым веществом - акцептором протонов. В соответствии с законом действия. масс протекают следующие равновесные реакиии  [c.29]

    Ряд предпосылок статистическо-термодинамической теории гидрофобных взаимодействий Немети и Шераги, связанной с уникальной структурой воды как растворителя, требует экспериментальных подтверждений и развития для конкретных случаев. Прежде всего необходимо дальнейшее выяснение роли гидрофобных взаимодействий в протекании различных биологических процессов, например при образовании комплексов фермент — субстрат, антиген — антитело, белок —липид и при транспорте и обмене веществ липидного характера. Особый интерес представляет выяснение роли гидрофобных взаимодействш в процессе образования разнообразных дисперсных биологических структур как в объеме, так и на границах раздела фаз в водных растворах биополимеров. [c.4]

    В литературе описано влияние температуры и значений pH на ширину линий ЯМР водных растворов хелатных комплексов Си - , N1 + и Ре + с этилендиаминтетрауксусной кислотой (ЭДТА) [192]. Концентрация этих комплексов, которая необходима для получения линии с шириной 10 Гц, почти, в два раза больше, чем для гидратированных ионов металлов, что указывает на быстрый обмен растворителя в центре координации —хелати-рованном ионе металла. [c.485]

    Открытие и выделение тяжелого изотопа водорода сделало возможным Определение происходящих в молекуле изменений положения протонов, Рейтц ] 409] изучил бромирование ацетона, происходящее под каталитическим действием ионов Н+ в легкой и тяжелой воде и в смесях HgO —DgO при 25°, он измерял изменения раствора, в котором происходила реакция, селеновым фотоэлементом. Для этих опытов был использован легкий и тяжелый ацетон, а также равновесный ацетон, т. е. ацетон, в котором обменное равновеснее содержащей DaO водой устанавливается после нагревания реакционного раствора в течение 10 час. до 80°. Найдено, что 1) энолизация происходит в 2,1 раза быстрее в DgO в присутствии D3O+ионов, чем в воде в присутствии НдО+ это, повидимому, указывает, что концентрация комплекса, образованного присоединением водородных ионов к кислороду кетона и находящегося в равновесии с ацетоном, больше в случае DjO, чем HgO 2) ускоряющий эффект в DjO одинаков для легкого и для тяжелого ацетона, однако последний при равных условиях (равное содержание DaO в растворителе) всегда энолизируется в 7,7 раза медленнее, чем легкий ацетон, другими словами, отделение свободного дейтерона от углерода происходит так же трудно, как и отделение протона 3) в смеси HjO — DgO скорость энолизации увеличивается не линейно с ростом концентрации DgO в воде изменение происходит медленнее при низком содержании DgO  [c.218]

    Эти данные свидетельствуют о том, что растворитель внедряется в решетку ДФПГ и сольватирует радикал, ослабляя обменное взаимодействие, что приводит к уширению линии. Наиболее эффективны в этом смысле растворители, для которых вероятно образование я-комплексов с радикалом (бензол, пиридин). В дальнейшем мы рассмотрим этот вопрос более подробно. [c.96]

    Многие комплексы u(II), Со(П) и Ni(II) с би- и тетрадентатными лигандами — производными салицилового альдегида — обмениваются со свободными ионами металлов с измеримыми скоростями. Скорость обмена бис-(салицилальдегидэтилендиимина) меди подчиняется уравнению первого порядка относительно обоих реагентов с энергией активации 23 ккал [75]. Аналогично обмен бис-(салицила.пьдегид-о-фениленди-имина) кобальта (II) с ацетатом Со(П) в пиридине подчиняется уравнению второго порядка с энергией активации 17 ккал. Однако маловероятно, чтобы обмен происходил через одно бимолекулярное столкновение. По-видимому, он идет в несколько стадий с частичным раскрытием хелатного цикла и образованием новых связей металл — лиганд. Далее, эти комплексы почти наверно изменены вследствие координации с растворителем пиридином, как это имеет место в случае комплексов Ni(II). Так, превращение ис-(К-метилсалицилальдимина) никеля в пиридине в парамагнитную форму приводит к быстрому обмену с хлористым никелем, тогда как бмс-(салицилальдегид)-этилендииминникель не изменяется и инертен в отношении обмена [114]. [c.139]


Смотреть страницы где упоминается термин Растворители обмен в комплексах: [c.352]    [c.428]    [c.26]    [c.102]    [c.96]    [c.281]    [c.122]    [c.225]    [c.71]    [c.82]    [c.522]    [c.286]    [c.22]    [c.55]    [c.108]    [c.140]   
Реакции координационных соединений переходных металлов (1970) -- [ c.30 , c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Обменный комплекс



© 2024 chem21.info Реклама на сайте