Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железные катализаторы каталитический синтез

    Активность кобальтовых и железных катализаторов синтеза из окиси углерода и водорода оценивается по выходу углеводородов на 1 синтез-газа, а активность окиси алюминия — по константе скорости дегидратации этилового спирта до этилена при определенной температуре. Помимо активности свежеприготовленного катализатора, часто необходимо знать их каталитическую стабильность после регенерационных операций или кратковременного нагрева до высоких температур. В частности, для алюмосиликатных катализаторов определяют индекс стабильности, под которым понимают индекс активности катализатора после шестичасовой его обработки паром при 750° С. При определении стабильности не ограничиваются подсчетом выхода целевой фракции до 200° С, а определяют также выход газа и его плотность и выход остатка после 200° С. Так как активность гетерогенных катализаторов решаюш им образом зависит от величины и состояния их поверхности, то в ряде случаев контроль их качества проводится по величине удельной поверхности (в м г), которая определяется методом адсорбции толуола или других, чаще всего красящих веществ. [c.305]


    Обнаружено, что добавление к катализатору вещества, которое само по себе может и не обладать каталитическим действием, приводит иногда к значительному увеличению эффективности процесса. Такие вещества называют промоторами или активаторами. Например, железный катализатор синтеза аммиака содержит в качестве промоторов А Оз и К2О в количестве нескольких процентов. Здесь АЬОз является структурообразующей добавкой, а К2О — активирующей. [c.765]

    Наличие в зоне реакции посторонних веществ оказывает различное влияние на,катализатор одни нейтральны, другие усиливают действие катализатора, третьи его ослабляют или вообще прекращают. Ускорители каталитических процессов называются промоторами или активаторами. Так, небольшая добавка сульфатов щелочных металлов в сотни раз повышает активность УзОз — катализатора окисления 50г Е1 50з. Кислород и его соединения являются каталитическими ядами, вызывающими обратимое отравление железного катализатора ири синтезе ЫНз отравление этого катализатора снимает тщательно очищенная свежая смесь азота и водорода. Сера и ее соединения вызывают необратимое отравление катализатора ири синтезе МНз восстановить его активность действием свежей смеси N2 + Нг не удается. [c.223]

    Рис, 6. Зависимость между удельными каталитическими активностями шести железных катализаторов аммиачного синтеза с разными добавками и работой выхода до реакции. [c.42]

    Замечено, что некоторые вещества, сами по себе неактивные, при добавлении в небольших количествах к катализаторам могут значительно увеличить их активность. Подобные вещества называются промоторами или активаторами. Например, действие железного катализатора при синтезе аммиака можно усилить прибавлением к нему окислов калия или алюминия. Добавление церия к никелевому катализатору усиливает действие последнего при реакции взаимодействия окиси углерода с водородом с образованием метана. Каталитическая активность пятиокиси ванадия по отношению к реакции окисления ЗОг повышается в сотни раз при добавлении небольших количеств щелочи. [c.300]

    Модифицирование катализаторов, как показал С. 3. Рогинский, может оказывать и отравляющее, и промотирующее действие. Например, добавка окиси калия к железному катализатору для синтеза аммиака, не промотированному окисью алюминия, понижает его каталитическую активность, а добавка окиси калия к промотированному железу повышает его активность. [c.128]


    Попытки подбора катализатора синтеза углеводородов каталитическим восстановлением окиси углерода на основе более дешевых и менее дефицитных катализаторов, чем кобальт и никель, предпринимались уже давно. Было установлено, что для этой цели имеется возможность использования железных катализаторов, приготовленных определенными методами. [c.112]

    В других случаях присутствие в реакционной смесн даже ничтожно малых количеств некоторых веществ сильно уменьшает или полностью подавляет активность катализаторов. Такие вещества получили название каталитических ядов, а само явление — отравления катализаторов. Например, для вышеупомянутого железного катализатора синтеза амм) ака ядами являются кислород и сера. [c.31]

    Трактовка кинетических данных для гетерогенной каталитической реакции, протекающей на пористом катализаторе, всегда осложняется явлением диффузии внутрь пор и из них. Андерсон [2] показал, что при применении плавленых железных катализаторов (на основе магнетита) активно участвует в синтезе только внешний слой катализаторного зерна толщиной 0,1 мм. Эти данные дают основание предполагать, что ббльшая часть пор таких катализаторов в условиях синтеза ие работает. [c.522]

    Особым типом се,лективной каталитической реакции является отравление катализатора прн каталитическом синтезе аммиака кислородом или кислородсодержащими газами, такими, как СО, СО) и Н О. Все эти газы легко взаимодействуют с поверхностью железного катализатора, приводя к образованию на ней хемо-сорбированного слоя атомов кислорода [294]. Во время реакции с водородом эти кислородные атомы конкурируют с ато.мами азота. Поскольку хемосорбция кислорода происходит со значительно большей теплотой хемосорбции, чем азота, прис тствие в газовой смеси даже очень малых количеств кислорода вызывает серьезное отравление поверхности катализатора. [c.161]

    Малые примеси к активной фазе катализатора (металла, полупроводника), как это объясняется электронной теорией катализа, могут резко повышать ее каталитическую активность и влиять на селективность каталитического процесса. Вокруг чужеродного атома, внедрившегося в поверхность катализатора, образуется зона напряжений, спадающих от центра к периферии, обладающих различной избыточной энергией, широким набором дополнительных локальных уровней энергий адсорбции. Тем самым повышается вероятность возникновения участков, оптимально соответствующих условиям данной реакции. Это обычный механизм промотирования катализаторов. Эффективность промотирующего действия добавок (активаторов, промоторов) растет с интенсивностью вызываемых ими нарушений решетки. Поэтому особенно эффективным нередко оказывается промотирование весьма малыми количествами таких веществ, которые при более высоких их содержаниях отравляют катализатор. Промотор может содействовать течению гетерогенно-каталитической реакции, способствуя адсорбции реагирующих веществ или десорбции продуктов с поверхности катализатора. Так, добавка оксида калия к железному катализатору синтеза аммиака способствует десорбции образующегося аммиака с поверхности. [c.306]

    Представления об энергетической неоднородности поверхности катализатора были использованы М. И. Темкиным при изучении кинетики многих каталитических реакций и особенно синтеза аммиака. Разработанная им теория объясняет наблюдаемые на опыте дробные порядки реакций. Для процесса синтеза аммиака М. И. Темкин вывел общепринятое в настоящее время кинетическое уравнение, при помощи которого можно объяснить результаты более ранних исследований, а также и поздних исследований, не получивших до этого определенного истолкования. М. И. Темкин установил, что при синтезе аммиака на железном катализаторе единственным адсорбирующимся газом является азот и скорость реакции определяется скоростью его адсорбции. При выводе уравнения было учтено, что активные центры отличаются своими энергетическими характеристиками и на разных активных центрах адсорбция идет с различной скоростью. Упомянутое выше уравнение для скорости синтеза аммиака, находящееся в прекрасном согласии с опытом, имеет вид  [c.278]

    Присутствие кислородсодержащих веществ в азотоводородной смеси вызывает отравление железного катализатора синтеза аммиака, что резко снижает его производительность. Допустимое их содержание в газе, поступающем на катализатор синтеза аммиака, составляет 20 см /м . Причем в последнее время появилась тенденция к ужесточению этих требований, особенно к содержанию двуокиси углерода. В схемах синтеза аммиака всегда предусматривают тонкую очистку от кислородсодержащих примесей. Чаще всего это каталитическое гидрирование, возможно также применение адсорбционных методов. [c.366]


    Некоторые вещества в очень малых количествах способны снижать или даже полностью подавлять активность катализаторов (отравление катализаторов). Это так называемые каталитические яды. Например, кислород и его соединения, вызывают обратимое отравление железного катализатора при синтезе КНз активность этого катализатора восстанавливается под действием тщательно очищенной свежей смеси азота и водорода. Сера и ее соединения вызывают необратимое отравление катализатора при синтезе ЫНз воостановить его активность действием свежей смеси N2 + Н2 не удается. [c.239]

    Активными центрами на поверхности катализатора являются. по-видимому, места, где нарушается однородность кристаллической структуры, углы, трен1нны иа поверхности, искажения структуры, точки контакта двух фаз. Вероятно, именно последнее обстоятельство яв.чяется причиной резкого усиления каталитической активности в результате добавления промоторов — веществ, которые сами по себе не ускоряют реакцию, но активируют катализатор. Например, добавление оксида алюминия усиливает каталитическую активность железного катализатора для синтеза аммиака. [c.52]

    Отсутствие общей теории приготовления катализаторов на протяжении многих десятилетий вынуждало пользоваться эмпирическими правилами. Крупным вкладом в катализ, заполнившим этот пробел, явилась теория пересыщения, предложенная С. 3. Рогинским в 1935—1941 гг. и представляющая собой общую теорию каталитически активной поверхности твердой фазы, теорию, которая учитывает кинетические и термодинамические условия образования катализатора. С. 3. Рогинский показал, что активный катализатор представляет собой вещество, имеющее избыток свободной энергии, который можно определить по теплоте растворения, упругости пара или иным путем. Из сказанного следует, что активный катализатор можно получить только из систем, в свою очередь обладающих избытком свободной энергии. Таким образом, для приготовления вещества в метастабильном состоянии и для получения наибольшего пересыщения в твердом теле необходимо выделение твердой фазы производить из мета-стабильной системы, отстоящей как можно дальше от состояния термодинамического равновесия. Выводы теории С. 3. Рогинского хорошо подтвердились на большом числе специально изученных систем. Следствием теории является утверждение о целесообразности применения повышенной скорости пропускания водорода при приготовлении металлических катализаторов восстановлением окислов металлов (получение железных катализаторов для синтеза аммиака <С, С. Лачинов), никеля для гидрогенизации органических веществ (С. 3. Рогинский, Д. П. Добычин), молибденового катализатора для деструктивной гидрогенизации нефтяных продуктов (Г. Н. Маслянский, Ф. С. Шендерович и др.). Поверхность катализатора почти всегда имеет активные центры различной структуры, этим объясняется разнообразие направлений одновременно протекающих на катализаторе реакций. Получение катализаторов с активными центрами определенной структуры могло бы позволить селективно ускорять лишь одну из нескольких термодинамически возможных реакций. Теория пересыщения, являясь общей теорией приготовления каталитически активных поверхностей, не позволяет предвидеть условия образования специфических структур избирательно действующих катализаторов, т. е. не связана с определенной моделью активной поверхности. [c.7]

    Активация катализатора под действием примеси называется про-мотированием. Она может быть обусловлена следующими причинами увеличением работающей поверхности катализатора, стабилизацией его текстуры или изменением природы активных центров. Примером промоторов первого типа является примесь АЬОз в железном катализаторе при синтезе аммиака, а второго типа — примесь КгО для того же катализатора. Последними данными показано, что отравляющее и промотирующее действия относятся не к катализатору, как думали раньше, а к каталитической системе в целом. Например, добавлением Ь1гО и 7пО подавляется окисление СО, но активируется разложение N20. [c.365]

    Под синтезом Фишера-Тронша понимается каталитическое гидрирование окиси углерода в присутствии кобальтового или железного катализаторов до образования олефиновых и парафиновых углеводородов с различным числом атомов С, начиная от метана и кончая самыми высокомолекулярными углеводородами. Первоначально для этого синтеза применялся кобальтовый [c.26]

    КАТАЛИТИЧЕСКОЕ ГИДРИРОВАНИЕ ОКИСИ УГЛЕРОДА НАД КОБАЛЬТОВЫМИ И ЖЕЛЕЗНЫМИ КАТАЛИЗАТОРАМИ (СИНТЕЗ ФИШЕРА-ТРОПША) [c.66]

    Метод псевдоожиженного слоя очень удобен простотой аппаратурного оформления, возможностью проведения гетерогенных реакций псевдогомогенно и возможностью регулирования режима процесса количеством катализатора. Такие катализаторы, называемые флюидными, были впервые применены для каталитического крекинга в виде взвешенных в нефтяных парах тонкораспыленных алюмосиликатов, но вскоре были разработаны аналогичные катализаторы и для других реакций. Для конверсии метана в водяной газ (СО+2Н2) применяют тонкораспыленную смесь СиО с РСаОд или СиО с добавками никеля на А1,0з. Для окисления этилена в окись этилена рекомендован флюидный катализатор из серебра на А12О3 с промотерами из ВаОз или СиО. Для синтеза углеводородов из СО и На описаны флюидные железные катализаторы разного состава, дающие при больших объемных скоростях высокие выходы углеводородов. [c.60]

    С технической точки зрения решающее значение нрн синтезе Фишера— Тропша имеют, во-первых, очень большая теплота реакции каталитического гидрирования окиси углерода и, во-вторых, необходимость очень точного соблюдения постоянной температуры синтеза, особенно иа кобальтовом катализаторе, где она должна выдерживаться практически в пределах 1°. В противном случае значительно возрастает нежелательное метанообразование. Кроме того, при высоких температурах наблюдается отложение углерода на катализаторе, приводящее к быстрой его дезактивации. Из уравнений реакции на кобальтовом и железном катализаторах можно рассчитать, что на 1 нм сйнтеэ-газа, вошедшего в реакцию, выделяется по меньшей мере 600—700 ккал, т. е. количество тепла, достаточное (в адиабатических условиях) для нагрева синтез-газа примерно до 1500°. Отсюда ясно, какие конструктивные трудности возникают при эксплуатации установок крупного размера в связи с требованием соблюдать практически постоянную температуру синтеза. [c.67]

    Гидрирование окиси углерода с образованием спиртов и углеводородов выше Gj представляет собой относительно медленную каталитическую реакцию. Андерсон [27с] рассчитал, что молекула окиси углерода живет на поверхности кобальтового катализатора около 5 мин., прежде чем она прореагирует. Все активные катализаторы синтеза содерн ат железо, иикель, кобальт или рутений в качестве основного гидрирующего компонента. Эти четыре металла в условиях синтеза медленно, но с измеримой скоростью образуют карбонилы металлов, что, по-видимому, имеет определенное значение. Оптимальная температура синтеза для никеля и кобальта находится в пределах 170—205°, для железа 200—325° и для рутения 160—225°. Допустимое максимальное давление для синтеза на никелевых катализаторах составляет примерно 1 ат, на кобальтовых — около 20 ат. При более высоком давлении активность этих катализаторов резко падает (по мере повышения давления). Железные катализаторы, приготовляемые плавлением магнетита, проявляют активность под давлением 20—100 ат i, в то время как осажденные железные катализаторы выше 20 ат ослабевают I27d]. Рутениевые катализаторы относительно неактивны при давлении ниже 100 ат, но их активность быстро растет по мере его повышения до 300 ат [27е]. При оптимальных давлениях (О—1 ат для Ni 1—20 ат для Go, 1—20 ат для осажденных Fe-катализаторов, 20—100 ат для плавленых Fe-катализаторов и 100—300 ат для Ьи) коэффициент давления (показатель п в уравнении скорость = коистат та х давление") составляет около 0—0,5 для Ni и Go и близок к единице для Fe и Ru. [c.521]

    Каталитическая изомеризация олефинов в бензине, полученном из синтез-газа на основном железном катализаторе, увеличивает октановое число моторных топлив, определяемое по методу ASTM, приблизительно с 62 до 75,9 единиц [13, 4]. Октановое же число типичных бензинов, полученных термическим крекингом, улучшается только на 3—4 единицы в оптимальной температурной области от 375 до 425° и применении в качестве катализатора окиси алюминия, активированной обработкой хлористоводородной кислотой. Исключительно сильное улучшение октанового числа было отмечено для октена-1, который имеет октановое число 36,8 но сравнению с октановым числом 80 у смеси изомерных октенов [7]. [c.107]

Рис. IX-]. Влияние добавок на активность железного катализатора синтеза аммиака /—отравление (РеЧ-5) 5—подложка (Ре+ -(-кварц) д—промотврованве (Fe- Al20з) (—неаддитивность каталитической активности (Fe -Mo). Рис. IX-]. Влияние добавок на активность <a href="/info/1233841">железного катализатора синтеза аммиака</a> /—отравление (РеЧ-5) 5—подложка (Ре+ -(-кварц) д—промотврованве (Fe- Al20з) (—неаддитивность каталитической активности (Fe -Mo).
    В ряде случаев смесь двух катализаторов оказывает значительно большее влияние на скорость реакции, чем каждый из катализаторов в отдельности. Поэтому часто применяются смешанные катализаторы. Иногда добавление малого количества вещества приводит к значительному увеличению каталитической активности катализатора. Такие вещества называются промоторами. Например, синтез аммиака осуществляется на железном катализаторе, промотированном малыми количествами КзО и AI2O3. В других случаях добавление некоторых веществ в весьма малых количествах замедляет протекание определенных реакций. Например, окисление растворов NaaSOj кислородом замедляется в присутствии ряда органических веществ (алко-голи, анилин). Такие замедляющие реакцию вещества называются ингибиторами. [c.408]

    Изучение влиянйя.ядов на каталитическую активность позволило получить важные сведения о природе катализаторов. Было замечено, что встречается как обратимое, так и необратимое отравление катализаторов. Так, железный катализатор, используемый в синтезе аммиака, обратимо отравляется кислородом. Пропускание над ним свежей смеси водорода с азотом снимает отравление и вновь делает катализатор активным. В присутствии серы этот же катализатор отравляется необратимо. В случае многоступенчатой реакции действие яда сначала приводит к устранению некоторых стадий. Например, гидрирование хлористого бензоила в бензольном растворе на платиновом катализаторе [c.271]

    Примеси веществ, которые ослабляют или вообще прекращают действие катализатора, называются каталитическими ядами. Так, например, платиновый катализатор легко отравляется незначительными количествами соединений мышьяка, селена и теллура. Железный катализатор, используемый при синтезе аммиака, отравляется при содержании в газад, поступающих в контактный аппарат, 0,1% серы. [c.131]

    Оксид углерода технологических газов металлургических предприятий можно рассматривать как сырье для органического синтеза. При реализации каталитических процессов на основе СО и Н2 (синтез Фишера-Тропша) выделяют широкий спектр химических продуктов и полупродуктов. Лучшими катализаторами служат никель, кобальт и их соединения. Несколько уступают им железные катализаторы, однако последние намного дешевле. [c.404]

    В 1940 г. Венцелем был разработан процесс каталитического гидрирования оксида углерода в стационарном слое плавленого железного катализатора — синол-процесс. Синтез проводили при относительно низких температурах (180— 200 °С) и 0,5—2,5 МПа. В жидких продуктах синтеза кроме спиртов имелось-2—7°/о (масс.) других кислородсодержащих соединений (сложные эфиры, альдегиды, кетоны и карбоновые кислоты). Выход первичных алифатических спиртов достигал 60—70% от суммы жидких продуктов. [c.307]

    Если в реакции участвует только одно вещество, адсорбционное равновесие которого определяет степень заполнения, то скорость реакции окажется пропорциональной концентрации этого вещества в степени 1—а, где а — число, у которого нет никаких оснований быть целым. Таким образом, реакция оказывается дробного порядка по исходному веществу. Как мы покажем в главе II, примером может слуншть реакция углерода с кислородом — основная реакция весьма важного в технике процесса горения угля. В более сложных случаях, когда степень заполнения поверхности определяется не адсорбционным, а химическим равновесием, величина С представляет собой равновесную концентрацию адсорбирующегося вещества, а реакция имеет дробный порядок и тормозится продуктом, как в уже упоминавшихся примерах каталитического синтеза аммиака и метилового спирта. Так, для процесса синтеза аммиака на железном катализаторе, согласно Темкину и Пыжеву [14], скорость реакции определяется медленной активированной адсорбцией азота, причем адсорбированный азот находится в равновесии с аммиаком и водородом в газовой фазе, откуда [c.21]

    Зависимость скорости синтеза от температуры для железных катализаторов может быть выражена кажущимися энергиями активации от 18 000—21 000 кал1моль. Андерсон полагает, что для каталитических реакций, при которых поверхность катализатора мало доступна, определяемая энергия активации составляет только 50% энергии активации процесса на поверхности катализатора. Поэтому для железных катализаторов энергия активации может достигать 40 000 кал1моль. [c.469]

    Каталитическое гидрирование монооксида углерода (синтез Фишера — Тропша, см. 29.1). Процесс проводят при 200°С и 1—10 МПа иа железном катализаторе. Выход алкенов Са-С4 30%. [c.463]

    Хотя прочно адсорбированные частицы уменьшают исходную металлическую поверхность, доступную для реактантов, это не обязательно ухудшает свойства катализатора. Объясняется это следующим. Адсорбированные вещества могут изменять (обычно снижать) теплоту адсорбции реактанта и таким путем повышать его реакционную способность. По-видимому, именно такая ситуация наблюдается при промотнровании окисью калия железного катализатора синтеза аммиака. Кроме того, промотор может подавлять самоотравление катализатора необратимо адсорбированными молекулами реактанта, способствуя тем самым увеличению концентрации промежуточных соединений, определяющих скорость реакции. Наконец, функция нереакционноспособных адсорбированных частиц может заключаться в создании активных центров особой конфигурации, способных адсорбировать реактанты. Поэтому, если путь превращения адсорбированного реактанта зависит от структуры центра, направление суммарной реакции изменится. Происходить это может несколькими путями. Каталитическая реакция может идти лишь на небольших группах поверхностных атомов металла, оставшихся не занятыми прочно адсорбированными частицами, или же прочно связанный адсорбат и поверхностные атомы металла могут составлять единый активный центр. Приведенные замечания вновь подчеркивают важность детальной характеристики катализатора при выяснении механизмов реакции. [c.37]


Смотреть страницы где упоминается термин Железные катализаторы каталитический синтез: [c.24]    [c.80]    [c.540]    [c.446]    [c.303]    [c.120]    [c.722]    [c.256]    [c.295]    [c.305]    [c.132]    [c.235]    [c.301]    [c.324]    [c.301]    [c.135]   
Гетерогенный катализ в органической химии (1962) -- [ c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Железные катализаторы



© 2025 chem21.info Реклама на сайте