Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород конверсии окиси углерода

    Ингибирующее действие добавок окиси углерода можно использовать для безопасной интенсификации процесса конверсии. Окись углерода образуется в самом процессе окисления углеводородов и при конверсии не расходуется, ее можно сохранять в реакционном цикле. Поддерживая концентрацию СО в перерабатываемой смеси Постоянной, можно безопасно увеличить допустимую концентрацию кислорода. Целевые продукты можно выводить путем конденсации или абсорбции из сферы реакции, а углеводород и кислород добавлять по мере их расходования. [c.76]


    Катализаторы конверсии природного газа с окислами металлов., Сущность этого процесса состоит во взаимодействии кислорода окислов металлов с углеводородами, которое приводит к образованию газа, содержащего водород, окись углерода и частично восстановленного окисла металла. [c.37]

    Остаточный газ, содержащий в основном водород и окись углерода, направляется на конверсию окиси углерода, а затем— на синтез аммиака. На 1 т ацетилена расходуется 6000 природного газа и 3600 м- кислорода. [c.332]

    Полученные из метана смеси окиси углерода и водорода переводят реакцией с избытком водяного пара в смесь двуокиси углерода и водорода. Двуокись углерода отмывают водой под давлением 25 ama или раствором этаноламина промытый газ затем компримируют до рабочего давления и удаляют окись углерода промывкой аммиачным раствором формиата одновалентной меди-. После этой обработки остается водород, пригодный для проведения синтеза аммиака. Азот получают двумя способами. По первому способу азот выделяют ректификацией ожиженного воздуха в этом случае кислород можно использовать для частичного сожжения метана. По второму способу сначала проводят конверсию метана с водяным паром при 700°, с тем чтобы в продуктах реакции осталось значительное количество непрореагировавшего углеводорода. Затем к горячей газовой смеси добавляют воздух в таком количестве, чтобы достичь нужного для синтеза аммиака [c.51]

    В настоящее время основным сырьем в производстве аммиака являются природный газ, попутные газы нефтедобычи, жидкие углеводороды и коксовый газ. Доля аммиака, получаемого из твердого топлива и электролитического водорода, все более снижается. При современных методах получения аммиака все большее значение приобретают процессы очистки газа. Из технологических газов на разных стадиях получения аммиака удаляют такие примеси, как сернистые соединения, двуокись и окись углерода, ацетилен, окислы азота, кислород и др. Эти примеси, содержащиеся в газе в различных концентрациях, по-разному влияют на процесс. Например, сернистые соединения оказывают сильное влияние на все катализаторы, применяемые в синтезе аммиака серосодержащие соединения, присутствующие в исходном углеводородном сырье, ухудшают работу катализаторов конверсии метана, что приводит к повышению температуры процесса и увеличению расхода кислорода. При использовании наиболее экономичного способа производства аммиака, который основан на методе бескислородной каталитической конверсии метана в трубчатых печах, содержание сернистых соединений в природном газе не должно превышать 1 мг/м . [c.7]


    Газ, полученный в результате конверсии углеводородов, содержит значительные количества окиси и двуокиси углерода (от 10 до 35% и от 15 до 30% соответственно). Окись углерода, как известно, является потенциальным источником водорода, в результате ее каталитического взаимодействия с водяным паром образуются водород и двуокись углерода. Этот процесс можно рассматривать как грубую очистку от окиси углерода. Грубую очистку от двуокиси углерода осуществляют описанными выше абсорбционными методами. В результате очищенный газ может содержать от 50 см /м до 7000 см /м окислов углерода. Кроме того, в газе обычно присутствуют незначительные примеси кислорода (до 500 см /м ). [c.366]

    Высокотемпературная конверсия углеводородных газов представляет собой неполное горение их в кислороде, проводимое в свободном объеме в отсутствие катализатора. Основными продуктами горения являются водород и окись углерода [c.122]

    Условный водородный показатель и условный расход водяного пара. Реакцию конверсии СН с несколькими окислителями (водяным паром, кислородом, двуокисью углерода) можно представить как взаимодействие СН с одним окислителем (например, с водяным паром). Среди реагентов могут находиться окись углерода и водород для такого общего случая можно записать следующее равенство, как некоторую условную реакцию  [c.6]

    Если при газификации применять смесь водяного пара с воздухом, обогащенным кислородом, то можно получить газ, содержащий водород, окись углерода и азот в различных соотношениях. Эти газы служат сырьем химической промышленности. В частности, при концентрации кислорода в воздухе 45— 50% образуется газ, который при последующей конверсии окиси углерода (см. стр. 230) дает азото-водородную смесь для синтеза аммиака. [c.452]

    При пиролизе и дегидрировании метана можно получать ацетилен, сажу и водород. При конверсии метана водяным паром или водяным паром и кислородом получают синтез-газ (СО-Ь -ЬНг) —сырье, используемое для дальнейшего органического синтеза, а также в отдельности чистую окись углерода и водород, которые применяют для процессов гидрирования и синтеза аммиака. Аммиак идет на синтез мочевины, представляющей ценный продукт для производства пластмасс и эффективное удобрение. [c.21]

    Полученный химическими методами водород содержит различное количество таких примесей, как окись и двуокись углерода, азот, кислород, метан, сероводород, инертные газы и др., которые, как правило, должны быть удалены до поступления водорода на дальнейшую переработку. Поэтому современная технологическая схема производства водорода любым химическим методом включает не менее четырех основных стадий собственно получение водорода, конверсию окиси углерода, удаление двуокиси углерода и окончательную очистку газа от остальных примесей. Такие многоступенчатые схемы процесса довольно громоздки и требуют крупных капиталовложений и больших эксплуатационных расходов. [c.9]

    Важнейшими способами произ-ва В. из природного газа является взаимодействие углеводородов (гл. обр. СН4) с водяным паром (конверсия) и их неполное окисление кислородом. В основе первого способа лежит каталитич,, реакция СН4 - - HjO —> СО -Ь ЗН . Эта реакция эндотермична. Образующаяся окись углерода также подвергается конверсии СО -Ь HjO -> -> СОз + Пз, [c.311]

    Реакция (У1-2) идет при 800° С на никелевом катализаторе, а реакция (У1-3)—при 1400° С без катализатора. В промышленности для получения водорода чаше всего используется метод паровоздушно-кислородной конверсии метана в присутствии катализатора при 900—1000° С. Воздух в этой смеси служит источником не только кислорода, но и азота. Кроме водорода получается также окись углерода, конверсия которой протекает по следующей реакции  [c.144]

    В процессе каталитической очистки газа, содержащего углеводороды, окись углерода, кислород и водяные пары, протекает конверсия СО с образованием СОа- Поэтому после каталитической очистки газа от окислов азота необходима его дополнительная очистка от двуокиси углерода. [c.230]

    Высокотемпературная (некаталитическая) конверсия метана представляет собой неполное горение его в кислороде, проводимое в свободном объеме в отсутствии катализаторов. Процесс горения протекает при температуре 1350—1400° С. Основными продуктами горения являются водород и окись углерода. Высокотемпературная конверсия метана описывается уравнением [c.19]

    Особенно экономично также превращение в водяной газ коксового или природного нефтяного газов. Для этого можно конвертировать их водяным паром в системе труб с наружным обогревом или проводить неполное сжигание газов с ограниченным количеством кислорода в присутствии водяного пара. При 1000— 1100° удается осуществить почти полную конверсию метана и других углеводородов в окись углерода и водород одновременно образуется и двуокись углерода. В коксовом газе, подвергнутом такой конверсии путем частичного сжигания с кислородом и водяным паром, содержится около 55% И,,, 16% СО и 23% N3. Процесс проводят в присутствии никелевого катализатора, поэтому исходный газ должен быть тщательно очищен от серы. [c.88]


    Для получения синтез-газа, содержащего водород и окись углерода в объемном соотношении 2 1 (используют его для синтеза метанола), производят конверсию метана с водяным паром или с кислородом затем из с.меси удаляют двуокись углерода. Попутный нефтяной газ и газы нефтепереработки, состоящие из метана и этана с примесью пропана, можно также подвергать конверсии гомологи метана конвертируются легче, чем метан. [c.251]

    Сущность конверсионного метода получения азото-водородной смеси для синтеза аммиака из углеводородных газов состоит в разложении при высокой температуре метана и его гомологов на водород и окись углерода с помощью окислителей — водяного пара и кислорода. Конверсию углеводородных газов проводят одним окислителем или смесью окислителей. Если в качестве окислителя применяется кислород воздуха, то в реакционную газовую смесь с воздухом вводится азот, необходимый для образования азото-водородной смеси. В этом случае в результате конверсии получается так называемый азотистый конвертированный газ. Если в процессе конверсии углеводородных газов используется водяной пар или технический кислород, то получается практически безазотистый конвертированный газ. [c.18]

    Значительная часть мировой потребности в энергии удовлетворяется непосредственно или косвенно путем использования реакций угля и углеродсодержащих материалов с газами. Наиболее важными являются реакции с кислородом, водяным паром, двуокисью углерода и водородом. Экзотермическая реакция угля с кислородом служит главным источником получения энергии во всем мире. Эндотермическая реакция угля с водяным паром дает окись углерода и водород, которые используются либо непосредственно как газообразное топливо, либо в виде синтез-газа, превращаемого каталитическими методами в ряд углеводородных топлив или в органические химикалии. Так как двуокись углерода является непосредственным продуктом реакции угля с кислородом и вторичным продуктом реакции угля с водяным паром, получающимся по реакции конверсии водяного газа, вторичная реакция двуокиси углерода с углем в слое топлива тесно связана с первичными реакциями углерода с газами. Реакция водорода с углем, приводящая к образованию метана, в настоящее время не имеет большого промышленного значения, но в будущем найдет, по-видимому, широкое применение. [c.152]

    Газ, содержащий окись углерода, водород и двуокись углерода, может быть получен почти из всех видов сырья, которые используются при производстве водорода (например, для процесса синтеза аммиака). В связи с этим промышленный синтез метанола базируется на тех же сырьевых источниках, что и вся азотная промышленность. Это кокс, уголь, коксовый газ, природный газ, мазут, нефть, синтез-газ производства ацетилена окислительным пиролизом. Первые промышленные методы получения газов, содержащих СО, основывались на применении кокса, или другого твердого топлива (антрацит, сланцы, бурые угли). В одном из наиболее старых, но крупных производств для получения исходного газа еще используются кокс и полукокс. В этом случае твердое топливо подвергается газификации при атмосферном или повышенном давлении. В качестве окислителя используют водяной пар (паровое дутье) или смесь пара и кислорода (паро-кислородное дутье). Процессы получения водяного газа на основе газификации твердого топлива подробно описаны в литературе и здесь не рассматриваются. Отметим лишь, что практически при любом режиме газификации отношение Нг СО в получаемом газе меньше 2, поэтому перед использованием состав газа регулируют путем конверсии окиси углерода водяным паром и очисткой конвертированного газа от двуокиси углерода. [c.69]

    Помимо горения природного газа и окиси углерода, непосредственно при. взаимодействии с кислородом в ряде случаев окись углерода и метан подвергаются действию кислорода, связанного в молекуле воды и двуокиси углерода. Реакции подобного типа получили название реакций конверсии. Процессы конверсии углеводородных газов и окиси углерода широко распространены в химической промышленности для получения дешевых восстановительных газов. [c.104]

    На рис. 1 и 2 представлены кривые изменения выхода окиси углерода на моль израсходованного кислорода и газа, построенные по данным материального баланса названных опытов. Из табл. 3 видно, что при 700° в газе сгорает водород и окись углерода, метан же остается несгоревшим. С повышением температуры, в результате ускорения реакции (1), содержание метана в реакционном газе постепенно снижается. Однако это снижение наблюдается лишь до 900—950°. Выше этих температур уменьшение СН4, в условиях наших опытов, не наблюдалось. В отношении других компонентов реакционного газа наблюдалось с ростом температуры увеличение концентрации окиси углерода и уменьшение содержания в газе двуокиси углерода и водорода. Но для этих компонентов относительное влияние роста температуры на изменение содержания указанных компонентов наиболее заметно ниже 900—950°. Такая зависимость состава реакционных газов от температуры может быть объяснена,во-первых, тем, что степень конверсии метана углекислотой, возрастающая с температурой, становится близкой к полной при указанных температурах (900—950°), во-вторых,— характером кривой изменения константы равновесия реакции водяного газа. [c.343]

    Жидкий водород Нг. Жидкий водород получается сжижением газообразного состав последнего устанавливается ГОСТ 3022-61. В газообразном водороде в заметных количествах могут присутствовать кислород Ог, азот N2 и вода Н2О, а при получении водорода конверсией метана и других углеводородов — также окись углерода СО. Растворимость азота, кислорода и воды в жидком водороде мала. При температуре жидкого водорода кислород, азот, вода и окись углерода находятся в твердом состоянии, выпадают в осадок и удаляются. Поэтому жидкий водород имеет малое количество примесей других веществ. [c.14]

    По одному из методов [8] метан и водяной пар, нагретые предварительно до 650°С, смешивали с кислородом и пропускали сверху вниз через реактор. Нижняя часть реактора была наполнена никелевым катализатором, предназначенным для конверсии непрореагировавшего метана в окись углерода и водород. Максимальная температура в зоне сожжения составляла 1200— 1500° С газы выходили из реактора при 800—900° и имели следующий состав (в объемных процентах)  [c.36]

    С увеличением отношения О 2 СН4 в исходной смеси (в интервале 0,3 1—0,8 1) содержание метана в конвертированном газе уменьшается примерно но линейной зависимости. При этом удельный выход восстановителей при давлении 10 ат снижается, а при 20 и 40 ат остается без изменения и даже несколько возрастает Последнее объясняется тем, что при малом остаточном содержании метана в газе водород и окись углерода сгорают с кислородом. Когда же содержание непрореагировавшего метана еще велико, увеличение количества добавляемого кислорода способствует не только сгоранию восстановительных газов, но и дополнительному образованию их вследствие повышения степени конверсии метана. [c.97]

    Основным компонентом углеводородных газов является метан. Поэтому сущность копверсионного метода получения азотоводородной смеси состоит в разложении при высокой температуре метана и его гомологов на водород и окись углерода с помощью окислителей — водяного пара или кислорода. Окислители могут применяться в различных сочетаниях. Конверсия метана с водяным паром и кислородом протекает по реакциям СН4 + НаО СО -Ь ЗНа — 206,4 кДж (—49,3 ккал) [c.33]

    При помош,и процессов конверсии кислородом или водяным паром из метана получают синтез-газ (СО На) — прекрасное сырье для дальнейшего органического синтеза, а также чистую окись углерода, водород и синтез-газ (2На а) для производства аммиака, являюш,егося исходным сырьем для выработки удобрений. Неполным окислением метана при низких температурах могут быть получены формальдегид, метанол, ацетальде-гид. При хлорировании лгетана в промышленных условиях образуются хлористый метил, хлористый ыетплен, хлороформ и четыреххлористый углерод. Нитрованием метана получают нитрометан. [c.15]

    Мы начнем с обсуждения результатов, полученных с применением закиси меди. Данные магнитных измерений [20] подтвердили, что использованный препаративный метод позволил получить только закись меди. На поверхности, свободной от адсорбированного кислорода, окись углерода при 20° адсорбировалась обратимо. Если же при 20° предварительно проводили адсорбцию кислорода, то быстрая адсорбция окиси углерода сопровождалась выделением гораздо большего количества тепла. Например, вместо 20 ккал/моль для теплоты адсорбции окиси углерода на прогретой поверхности Гарнер, Стоун и Тили [15] в случае поверхности, содержащей адсорбированный кислород, получили для соответствующей теплоты 49 ккал/моль. Было также обнаружено, что предварительная адсорбция окиси углерода повышает теплоту адсорбции кислорода с 55 до 100 ккал/моль. Было ясно, что при этом осуществляется химическое взаимодействие. Продукт оказывался совершенно устойчивым в присутствии избытка кислорода, но в случае избытка окиси углерода происходила медленная перегонка углекислого газа в присоединенную к прибору охлаждаемую ловушку. Мы можем очень легко убедиться, что при предположении о конверсии адсорбированного кислорода в углекислый газ путем атаки окисью углерода из газовой фазы, теплота должна быть больше наблюдавшегося количества в 49 ккал/моль. Т1плота реакции СО(газ) + /202(газ) = СОг(газ) составляет 67 ккал/моль, а теплота диссоциативной адсорбции кислорода на прогретой закиси меди равна 55 ккал/моль, следовательно, разность показывает, что реакция СО(газ) + О(адс) = СОг(газ) экзотермична и ее тепловой эффект равен 67— ( /2X55), т. е. 39 ккал. Фактически продукт находится главным образом в адсорбированном состоянии, поэтому для определения реальной теплоты взаимодействия требуется прибавить молярную теплоту адсорбции углекислого газа. Если принять для последней 20 ккал/моль (ср. табл. 1), [c.313]

    Определение содержания кислорода, например в ароматических веществах, часто представляет определенные затруднения. А. Гётц [37] разработал быструю газохроматографическую методику определения кислорода. Метод основан на крекинге вещества в токе водорода, конверсии кислородсодержащих продуктов в окись углерода на [c.153]

    Водород, окись углерода, синтезгаз, H N, ацетилен и сажу получают, как правило, из сухих природных газов. Синтезгаз образуется нри конверсии метана водяным паром либо при неполном горении мегана в кислороде. Состав получающейся пря конверсии метана водяным паром смеси газов (СН , Н.2О, СО, [c.386]

    Жидкий азот очень хорошо растворяет окись углерода, а также аргон и метан. Поэтому в некоторых случаях его применяют вместо медиоаммиачного раствора для очистки газа от СО. Для установок конверсии природного газа, проводимой с применением кислорода, его обычно получают разделением воздуха. При этом образуется большое количество отбросного азота (стр. 123 сл.), который можно использовать в жидком виде для отмывки от окиси углерода конвертированного газа или коксового газа (стр. 157, 161). [c.258]

    Другое чисто термодинамическое объяснение повышения температуры продуктов реакции при образовании промежуточных продуктов заключается в следующем. Ни ацетилен, ни сажа не находятся в равновесии с остальными продуктами реакции. Поэтому, если выдержать образовавшиеся при реакции продукты в адиабатических условиях достаточно долгое время, то в результате реакции конверсии с углекислотой и водяным паром эти продукты целиком превратятся в окись углерода и водород. А так как реакции конверсии эндотермичны, то температура смеси по мере расходования сажи и ацетилена будет понижаться. Это поиижение температуры будет происходить до тех пор, пока не будут израсходованы все промежуточные неустойчивые продукты и не будет достигнуто состояние истинного равновесия. Этому равновесию соответствует определенная температура, не зависящая от того, каким путем система пришла к конечному состоянию прямо из исходных метана и кислорода или через образование промежуточных продуктов. [c.5]

    По методике, описанной в работах [41, 42], навеску органического вещества (около 1 мг) подвергают быстрому пиролитическому сожжению в токе кислорода. В полученных газах воду вымораживают смесью сухого льда с ацетоном, а оставшуюся СО2 пропускают в ячейку с поглотительным раствором, в качестве которого используют 0,01 н. растворы Ва(0Н)2 или NaOH. Затем ловушку с вымороженной водой включают в установку для определения водорода. При этом используют конверсию воды над накаленной платинированной сажей в токе чистого азота или аргона, при которой кислород воды количественно переходит в окись углерода. Полученную окись углерода окисляют над окисью меди до СО2, которую пропускают в ячейку для измерения электропроводности, содержащую раствор Ва(0Н)2 или NaOH. В работе детально описана установка для сожжения и определения углерода, установка для конверсии воды и ячейка для измерения электро- [c.26]

    Водород, окись углерода, синтезгаз, HGN, ацетилен и сажу получают, как правило, из сухих природных газов. Синтезгаз образуется при конверсии метана водяным паром либо при неполном горепии метана в кислороде. Состав получающейся при конверсии метана водяным паром смеси газов (СН4, НоО, СО, На, Oj) зависит от темп-ры и количества нара, вводимого в процесс. Реакция идет со значительным потреблением тепла, проводится обычно на никелевом катализат(и)е при 700—800 . Реактор представляет собой трубчатую печь. Реагирующие газы проходят по вертикальным трубкам из жаропрочной стали, заполненным катализатором. Снаружи трубки обогреваются горячими дымовыми газами. При неполном горении метана в кислороде (наз. также кислородной конверсией) процесс протекает при 1400— 1300 без катализаторов, в печах, выложенных огнеупорным материалом. Состав сырого газа, получаемого при конверсии метана водяным паром и при неполном горении метана в кислороде, приведен в таблице. [c.386]

    Нами показано, что восстановление окисью углерода неорганических ионов и хицонов в присутствии. ацидокомплексов металлов платиновой группы осуществляется череа стадию образования нестойких карбонильных соединений. При взаимодействии окиси углерода с солями Pt (II) образуются галоидкарбонилы линейного и мостикового строения, причем только первые ответственны за катализ. Твердые металлы платиновой группы также способны осуществлять достаточно интенсивное окисление СО в Oj за счет кислорода воды. Из предложенных моделей адсорбционной связи наиболее вероятными пред- ставляются мостиковая и линейная . Как следует из доклада 2, первая форма устойчивее второй. Оказалось, что степень конверсии окиси углерода пропорциональна концентрации линейных структур. Напротив, концентрация мостиковой формы не влияет на глубину превращения и, следовательно, она является нереакционноспособной. Исходя из обнаруженных закономерностей, легко объяснить крайне малую каталитическую активность металлического палладия, отличающегося тем, что почти вся адсорбированная на нем окись углерода находится в инертной мостиковой форме. Эта же причина определяет больший выход углекислоты на родии по сравнению с выходом на платине. Оптимальными каталитическими свойствами должны, таким образом, обладать сплавы с наибольшей концентрацией линейных ст]>уктур. Сравнение констант комплексообразования окиси углерода и родия (II) с аналогичными данными для этилена и родия показывает, что первые на два порядка выше вторых. Это подтверждает правильность вывода доклада 2 о большей устойчивости поверхностных карбонилов. Таким образом, в механизме гомогенной и гетерогенной активации СО имеется много общего. Можно считать, что в обоих случаях элементарный акт протекает через образование линейной связи М — СО. [c.92]


Смотреть страницы где упоминается термин Кислород конверсии окиси углерода: [c.83]    [c.9]    [c.126]    [c.80]    [c.13]   
Изотопы в органической химии (1961) -- [ c.609 ]




ПОИСК





Смотрите так же термины и статьи:

Конверсия с кислородом



© 2025 chem21.info Реклама на сайте