Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инкремент взаимодействия

    Дальнейшее развитие аддитивно-групповой метод получил в серии работ Ю.Д. Орлова и Ю.А. Лебедева, обобщенной в монографии [82]. Авторы учли отражающееся на величинах инкрементов взаимодействие неспаренного электрона с атомами различной удаленности от радикального центра, преодолев таким образом недостаток метода [74, 83]. Были разработаны различные приближения метода. Это компактная схема, первое и второе приближения. Компактная схема базируется на функциональной зависимости группового вклада от степени удаления группы от радикального центра [87] [c.336]


    Значения истинных аддитивных вкладов и инкременты взаимодействия (по Б. А. Зайцеву) для некоторых структурных единиц в сравнении с инкрементами групп или связей, принятыми в классической аддитивной схеме [c.203]

    Инкремент взаимодействия (гипер-  [c.203]

    Инкремент взаимодействия группы СНз с карбонильной для СНз—С = 0 1 —0,114 — — [c.203]

    Эти системы имеют определенные преимущества перед системами атомных рефракций (ковалентных и ионных), так как связевые рефракции учитывают взаимодействие атомов, их связь и поэтому содержат в себе некоторые структурные инкременты рефракций атомной системы. В результате система связевых рефракций имеет меньшее число параметров, чем атомная система. Например, для вычисления молекулярных рефракций алифатических аминов при помощи ковалентных рефракций надо знать пять параметров рефракции углерода, водорода и три значения рефракции азота (для первичных, вторичных и третичных аминов) связевая же система [c.142]

    Более трудной задачей является очистка исходных атомных или групповых (связевых) инкрементов от вкладов, обусловленных относительно небольшими эффектами гиперконъюгации и других взаимодействий, имеющих место в алифатических системах. В табл. 51 приведены значения истинных аддитивных вкладов и инкрементов взаимодействия для некоторых структурных единиц. [c.204]

    Как видно, свободная энергия переноса молекулы реагента из воды в мицеллярную фазу может практически полностью компенсировать предполагаемую потерю энтропии при включении молекулы общеосновного или общекислотного катализатора в переходное состояние реакции. Эта компенсация и обусловливает некоторое подобие механизмов ферментативного и мицеллярного катализа. В отличие от реакций высокого кинетического порядка, протекающих в результате взаимодействия низкомолекулярных реагентов непосредственно в растворе, в том и другом случае катализа почти отсутствует неблагоприятный инкремент свободной энергии активации, связанный с потерей поступательного и вращательного движений при включении в переходное состояние реакции дополнительной частицы. Разумеется, конкретный механизм этого явления в каждом из видов катализа несколько иной. В мицеллярном катализе имеет место рассмотренная выше компенсация энтропийных потерь за счет свободной энергии термодинамически выгодных ионных и гидрофобных взаимодействий реагента с мицеллой. В ферментативном катализе компоненты активного центра (злектрофильные и нуклеофильные группы) заранее связаны с белковой глобулой (как правило, химически) и обладают до- [c.122]


    Сумма аддитивных групповых инкрементов. Взаимодействующие объекты — одновалентные группы (заместители). В принципе этот подход аналогичен предыдущему, если рассматривать заместители в качестве квазиатомов. Однако отклонения от аддитивности еще несколько ниже, поскольку определенная часть взаимодействия между атомами включена теперь в аддитивные инкременты групп, вследствие чего она исключается из величины отклонения от аддитивности. [c.14]

    Инкременты взаимодействия и взаимного влияния связей, по системе Сейфера и Смоленского [c.246]

    Здесь метод будет рассмотрен применительно к расчетам ДЯ . 298- А. Л. Сейфер и Е. А. Смоленский описывают три возможные формы расчета этой величины, отвечающие трем степеням приближения. Для каждой из этих форм расчета может быть построена своя система инкрементов, отвечающих взаимодействию различных связей между атомами углерода, причем влияние связей С—И отдельно не учитывается, а входит в указанные инкременты. Система инкрементов, отвечающая первому приближению, основывается на рассмотрении взаимодействия только между двумя смежными связями, причем учитывается влияние различия состояний углеродного атома, которому принадлежат эти связи (С(2) — вторичный, С(з) — третичный и С(4) — четвертичный). Этому соответствуют три инкремента /2, отвечающий сочетанию связей [c.242]

    Фундаментальное свойство экстракционной модели, обусловленное самой природой гидрофобных взаимодействий, заключается в том, что инкремент свободной энергии переноса углеводородного фрагмента в молекуле лиганда из воды в органический растворитель практически не зависит от природы последнего [43—47]. Это связано с тем, что главный вклад в эту величину вносит свободная энергия сольватации углеводородного фрагмента в воде. Так, например, независимо от природы органического растворителя инкремент свободной энергии переноса СНа-группы из воды в органическую фазу составляет примерно 700 кал/моль (3000 Дж/моль) [45]. Приблизительно та же величина свободной энергии характеризует адсорбцию алифатических соединений на поверхности раздела фаз вода — масло или вода — воздух, адсорбцию их из водного раствора на поверхность ртутной капли или же процесс солюбилизации органических молекул мицеллами детергентов [45]. Значение этого факта трудно переоценить, поскольку именно поэтому (пользуясь сопоставлением термодинамики гидрофобного взаимодействия белок — органический лиганд с аналогичными данными для модельных процессов) можно выявить, в принципе, специфические свойства структуры или микросреды гидрофобных полостей в белках.  [c.27]

    Наличие инкрементов поляризуемости для кратных связей обусловлено большей подвижностью я-электронов по сравнению с ст-электронами. В сопряженных и ароматических системах возникает дополнительное взаимодействие я-электронов которое нарушает аддитивность молекулярной рефракции — вызывает ее экзальтацию. Это же [c.66]

    Иначе говоря, величины кажущихся свободных энергий взаимодействия сайтов, которые могут быть определены с помощью измерения относительных частот расщепления связей, включают инкремент, связанный со специфичностью ферментативного катализа, а именно с влиянием степени полимеризации субстрата на скорость ферментативного гидролиза. [c.69]

    В связи с этим основная ценность картирования активных центров заключается не в нахождении абсолютных значений показателей сродства Аг, гидролитических коэффициентов ко или инкрементов свободной энергии активации ферментативной реакции при переходе от сайта к сайту АСа, а, по-видимому, в практической демонстрации следующего положения количественный состав продуктов ферментативной реакции в любой момент времени в ходе гидролиза, а также зависимость скорости реакции от степени полимеризации субстрата могут определяться небольшим числом параметров активного центра (числом сайтов, положением каталитического участка) и эффективностью взаимодействия мономерных остатков субстрата с отдельными участками активного центра. [c.75]

    В третьей главе с учетом слабых дисперсионных и сильных (диполь-ди-польных и водородных связей) взаимодействий получены формулы для расчета термического коэффициента объемного расщирения в зависимости от химического строения полимера. При этом вид атомов полимерной цепи и тип межмолекулярного взаимодействия оценивается ограниченным числом соответствующих инкрементов, численные значения которых определены. [c.15]

    Очень важное значение для интерпретации спектров протонного резонанса имеет тот факт, что влияние заместителей на резонансные частоты в первом приближении аддитивно. На этом основании оказалось возможным вывести эмпирические константы заместителей S(6), или инкременты, которые в общем позволяют хорошо предсказывать резонансные частоты. Конечно, следует ожидать исключений, если не соблюдается условие для аддитивности 5(6), а именно при наличии сильных электронных или пространственных взаимодействий между заместителями. В этих случаях значения 5(6) зависят от структуры оставшейся части молекулы. [c.110]

    В качестве второго примера мы проанализируем ароматическую область спектра 1,2,4-замещенного бензола, 2-гидрокси-4-метилацетофенона (рис. 9.3-29). В спектре имеются три мультиплета при 6 = 7,5 дублет с небольшой константой мета-взаимодействия, равной 1 Гц при <5 = 7,29 дублет дублетов с константами взаимодействия 7,0 Гц (орто) и 1,5 Гц (мета) при 6 = 6,9 дублет с константой орто-взаимодействия, равной 7,0 Гц, как и в предыдущем случае. Очевидно, что пара-взаимодействие слишком мало и не проявляется в спектре. Отнесение сигналов к соответствующим протонам показано на рисунке. С помощью констант легко прийти к выводу о 1,2,4-замещении, но непонятно, какой заместитель находится в каждой позиции. Для того чтобы решить эту задачу, необходима информация о химических сдвигах. В этом случае следует опираться на оценки инкрементов, вычисленных для заместителей. [c.241]


    Таким образом, поскольку физическая адсорбция органических неэлектролитов и слабых электролитов на углеродных материалах осуществляется, в основном, в результате дисперсионного взаимодействия, величина стандартного уменьшения свободной энергии адсорбции хорошо аппроксимируется суммой инкрементов, обусловленных вкладом отдельных структурных элементов и функциональных групп в это взаимодействие. На основе изучения адсорбции алифатических спиртов и кислот [28], алифатических аминов [37], хлорпроизводных [38], а также моно- и пара-дизамещенных производных бензола [39— 41] и пиразолона [42] нами вычислены инкременты стандарт- [c.94]

    Ациклический фрагмент (а) в представленной конформации со сближенными метильными группами дестабилизован, прежде всего, за счет водород-водородных взаимодействий. В циклическом фрагменте (б) такие взаимодействия отсутствуют. Соответственно, любая схема, основанная на инкрементах и включающая эти ациклические скошенные взаимодействия, не может быть прямо использована для циклических алканов. Скошенные взаимодействия входят обычно в инкременты для групп НзС—, поскольку их невозможно избежать, когда эта группа связана с любой другой группой, кроме метильной. В нащей схеме, основанной на инкрементах групп и описанной выше, неизбежные скошенные взаимодействия включены в инкременты групп, а более существенные скошенные взаимодействия учитывают, вводя поправки на пространственные затруднения. Шлейер и сотр. [66], следуя методике Бенсона и Басса [65], разработали схему, в которой каждое скошенное взаимодействие учитывают отдельно, что позволяет включить в рассмот рение циклические алканы. [c.110]

    Инкремент взаимодействия атома азота с алкильной группой для Н — N— 1 0,269 — — [c.203]

    В восьмой главе на основании формулы Лоренц-Лорентца получены уравнения для расчета показателя преломления полимеров и сополимеров по их химическому строению. Для определения коэффициента оптической чувствительности по нагфяжению предложены эмпирический и полуэмпири-ческий подходы, в коох)рых оценивается вклад каждого атома и типа межмолекулярного взаимодействия соответствующим инкрементом. С использованием полученных зависимостей величины коэффициента оптической чувствительности по напряжению от химического строения повторяющегося звена полимера оценен вклад различных атомов и полярных фупп на величину такого коэффициента, и предложен полимер с уникальными для метода динамической фотоутфугости свойствами. [c.16]

    Согласно изложенному выше, на молекулярную рефракцию влиякУг только разные типы резонансного взаимодействия. Необходимость учета такого влияния не вызывает сомнения. Однако пе исключено, что существует также некоторая зависимость от индукционного взаимодействия. Так, инкременты взаимодействия атома азота или карбонильной группы с алкильными заместителями трудно увязать с резонансными эффектами. Более конкретно эта проблема пока не разработана. [c.204]

    Во втором приближении система инкрементов строится с учетом не только взаимодействия смежных связей, но и взаимного влияния связей, расположенных через два атома углерода. Так как каждый из этих атомов может быть вторичным, третичным или четвертичным, требуется ввести щесть инкрементов /2,2, /2, з, /2,4, /3.3, /3,4 и /4,4. Две цифры в индексе здесь выражают состояние-двух атомов углерода (табл. VI,24). Таким образом, наряду с тремя инкрементами /2, /3 и //, отражающими взаимодействие смежных связей, здесь вводится еще щесть инкрементов, отвечающих взаимному влиянию связей, расположенных чере з два углеродных атома. Конечно, численные значения /2, /3 и /4 в этой системе инкрементов отличны от значений /2, /3 и /4 в системе инкрементов первого приближения (т. е. построенной без учета взаимного влияния связей, расположенных через два углеродных атома). [c.242]

    Одним 113 основных параметров оценки межмолекулярного взаимодействия компонентов нефти, удобных для практических целей, является плотность энергии когезии, численно равная от-нощению энтальпии испарения жидкого компонента к его мольному объему [36]. Необходимые данные об энтальпиях испарения для расчета плотности энергии когезии и соответственно параметра растворимости жидких компонентов можно определить либо из непосредственных калориметрических данных, либо по температурной зависимости давления насыщенного пара, описываемой известным уравнением Клаузиуса — Клапейрона, либо по эмпирическим формулам через температуру кипения компонента. Однако энтальпию испарения экспериментально можно определить липль для углеводородов, испаряющихся без разложения. Для тех соединений, температура деструкции которых ниже температуры кипения, приемлемы методы расчета параметра растворимости на основе инкрементов плотности когезии отдельных групп атомов (ЛЯ ) [37]  [c.20]

    В согласии с механизмом (4.40) субстратоподобный ингибитор действительно вытесняет из активного центра несколько молекул воды, как это было обнаружено при рентгеноструктурном анализе кристаллического химотрипсина [123]. Однако этот механизм не согласуется с данными по влиянию среды на гидрофобное фермент-субстратное взаимодействие (см. 4 этой главы). Кроме того, механизм (4.40) противоречит тому, что двойной выигрыш свободной энергии экстракции реализуется лишь в переходном состоянии химической реакции [см. уравнение (4.39)], в то время как в комплексе Михаэлиса вклад гидрофобного фермент-субстратного взаимодействия меньше [см. уравнение (4.29)]. Иными словами, в химотрипсиновом катализе не вся потенциальная свободная энергия сорбции, которую предполагает модель (4.40), равная 2АСэкстр, реализуется в виде прочного связывания субстрата с ферментом. Из диаграммы, представленной на рис. 44, видно, что в комплексе Михаэлиса (или ацилферменте) реализуется в виде свободной энергии связывания E-R лишь инкремент свободной энергии сорбции, отражающий перенос субстрата из воды в неводное окружение (в среду белковой глобулы), равный АО кстр [см. также уравнение (4.29)]. Для объяснения этих фактов следует допустить, что гидрофобное фермент-субстратное взаимодействие идет в две стадии 1) образование фермент-субстратного комплекса протекает по механизму (4.19), который не противоречит данным по солевому эффекту (на их основании он был и предложен), и термодинамические закономерности его согласуются с уравнением (4.29). Этот механизм также предполагает вытеснение нескольких молекул воды из [c.155]

    Численные значения lZiDQi, харакгерные для каждого атома и каждого типа межмолекулярного взаимодействия, определены с помощью статисти-чесгой обработки экспериментальных данных по методу наименьших квадратов . Получающиеся в результате обработки экспериментальных данных значения энергий связи, как отмечено выше, соответствуют энергиям межмолекулярного взаимодействия. Наличие в полимерах полярных групп, приводящих к сильному межмолекулярному взаимодействию, учитывается введением специальных инкрементов. [c.127]

    Используя соотношение (84), можно рассчитать температуру стеклования офомного количества полимеров. Это связано с тем обстоятельством, что описываемый подход является атомистическим , те. каждый атом ха-рактеризу ется своим инкрементом а, (их величины приведены в табл. 13) Что же касается специфических межлюлекулярных взаимодействий (диполь-дипольные, водородные связи), то они характеризуются своими инкрементами bj, не зависящими от химического строения полярной фуппы. Так, например, диполь-дипольные взаилюдействия разных типов характеризу ются одним и тем же инкрементом = -55 10 -А К". Несколько сложнее дело обстоит с водородными связями в полиамидах, гго связано со специ([ икой их влияния на Tg в пределах данного класса полимеров (табл. 18).  [c.128]

    ТНЫХ данных по температуре стеклования. Это может быть вызвано как пением полярной фуппы, обладающей особым влиянием на энергию меж- кулярного взаимодействия, так и, наоборот, выключением какой-либо рной группы из образования сетки физических связей междз соседними ми полимера. В первом случае потребуется введение нового инкремен-, но нужно всегда помнить, что чем больше введено инкрементов в рас-ую схему, тем ее предсказательная сила становится меньше, и в предель-случае когда каждый новый полимер требует введения нового инкремен-, предсказательная сила расчетной схемы становится равной ну лю. [c.139]

    Второе уравнение системы (216) использовано в работе [91 при расчете значений инкрементов 5С, для различных агомов и типов межмолеку лярного взаимодействия. Калибровка метода проводилась на основании эксперимсн- [c.245]

    Инкремент д/ вводится при расчете й для диполярных апрото1П1ых растворителей амидного типа при этом обычное диполь-дипольное взаимодействие за счет полярных групп учитывается введением соответствующего количества инкремстов. [c.329]

    Инкремент Дй са2 учитывает специфическое взаимодействие при на гичии группы [c.329]

    Рис, 8.40. Двумерный спектр INADEQUATE лимонена (7). Время регистрации по составляло 30 мс (256 инкрементов при спектральной полосе 9 кГц 128 прохождений на инкремент). Остаточные одноквантовые еи1 налы видны на линии Vi = 0. Поскольку X было подобрано для средней по величине константы С—С между алифатическими углеродами, два корреляционных пика за счет взаимодействия через двойную связь имели низкую интенсивность и не проявились на [c.335]

    Так, Задо и Фабесик [1] сопоставили адсорбционные свойства неполярного и полярного сорбентов порапаков Q и Т, определили теплоты адсорбции воды, нормальных алканов Сз—Сз, нормальных спиртов С —С4, ацетона, диэтилового эфира, циклогексана и бензола. Разница между теплотами адсорбции компонента на порапаках Р и Т принималась равной энергии специфического взаимодействия, разница в теплотах адсорбции соседних гомологов на каждом сорбенте — инкременту энергии СНа-груипы, разница в теплотах адсорбции нормального спирта и нормального алкана с одинаковым числом углеродных атомов — инкременту гидроксильной группы. Таким способом были рассчитаны инкременты энергий для групп СНа (отдельно в спиртах и алканах), СН3 (в алканах), ОН (в спиртах), Н (в гидроксиле спиртов и воды), О (в эфире и кетоне). [c.95]

    Величины инкрементов энергий, рассчитанные авторами [1], для СНд-группы на исследованных пористых полимерах, значительно больше инкрементов для СНа-групп. На порапаке Q эта разница составляет 2,4 ккал1моль, на порапаке Т 1,8 ккалЫоль. Такая большая разница в значениях энергий взаимодействия СН3- и СНа-групи не наблюдается на других адсорбентах и, по мнению авторов, не может быть объяснена только процессами адсорбции, а является следствием особого механизма удерживания на пористых полимерах. [c.95]

    Несмотря на эти и некоторые другие отдельные удачные демонстрации принципов аддитивности, можно утверждать, что в целом аддитивность вкладов структурных фрагментов в удерживание соблюдается редко. Поэтому расчеты удерживания по уравнениям типа (4.23) не нашли при хроматографии на силикагеле широкого применения. В то же время концепция адди-5 п тивности может служить в отдельных случаях эффективным инструментом выявления внутримолекулярных эффектов. Так, в уже упоминавшемся исследовании производных полиядерных аренов нами выявлены инкременты параметра Ь (табл. 4.30). С их помощью для соединений, не использованных непосредственно при определении ббг, найдены значения Ьрасч- Эти значения сопоставлены с Ьэксп в табл. 4.31. Видно, что типичная разность между расчетным и экспериментальным значениями не превыщает 0,2. Следовательно, постоянство и аддитивность вкладов структурных фрагментов в целом соблюдаются. Ярко выраженное исключение составляют соединения с оксихиноновым фрагментом. В результате внутримолекулярного взаимодействия между гидроксилом и карбонилом резко уменьшается вероятность взаимодействия этих групп с сорбентом. Поэтому расчетное удерживание оказывается завышенным в 600 ( ) раз по сравнению с экспериментальным в случае реализации одного внутримолекулярного взаимодействия и примерно в 160 000 раз при возможности двух таких взаимодействий. Этот эффект не может остаться не замеченным экспериментатором, несмотря на невысокую точность аддитивного расчета. [c.148]

    Наиболее сложной является схема Сомаяджулу и Зволинского [63], в которой рассмотрено в определенных пределах, по крайней мере формально, каждое отдельное межатомное взаимодействие между несвязанными атомами. Схема содержит суммы всех энергий связей и взаимодействий между геминальными и вицинальными парами атомов плюс добавочные поправочные члены. Схема применима к таким конформациям молекул, которые невозможно обсуждать на основе схем, включающих инкременты групп. Следует однако, подчеркнуть, что энергии, приписываемые взаимодействию данной пары атомов, не обязательно представляют собой физическую реальность, а являются лишь удобным способом разделения полной энергии молекул. [c.103]

    Первый тип пространственных затруднений встречается в том случае, когда сильно замещенные углеродные атомы связаны друг с другом. Хотя 1,4-взаимодействия имеют место вокруг каждой С—С-связи, они обычно отражены в основной системе инкрементов и их следует учитывать отдельно только для сильно пространственно затрудненных систем. Используют следующие поправки (в кДж/моль) +3,00 для КгСН—СНКг, +9,55 для КзС—СНКг и +20,80 для КзС—СКз- Эти поправки просто добавляют к инкрементам групп, когда в алкане встречается соответствующая структурная единица. Второй тип пространственных затруднений встречается, когда две сильно пространственно затрудненные группы Связаны с одним и тем же углеродным атомом. Для таких случаев [c.107]

    Положении, Например, в адамантане. В настоящее время кажется очевидным, что вопрос о напряжении в таких молекулах может решаться только с использованием инкрементов единственной (наиболее устойчивой) конформации, не включающих скошенных взаимодействий (т. е. инкрементов, которые применяются по схеме, основанной на ЭНЕК). Совпадение рассчитанной с использованием обычного поликонформационного инкремента для СНз теплоты образования циклогексана с экспериментальной затрудняет понимание природы энергии напряжения в циклогексане. Небольшое напряжение в циклогексане возникает частично за счет водо-род-водородного взаимодействия через кольцо. Вследствие этого молекула переходит из конформации совершенного кресла к конформации уплощенного кресла. Структура с минимальной энергией является, таким образом, результатом одновременного уменьшения напряжения, несвязанного взаимодействия за счет уплощения кольца и увеличения торсионного искажения за счет отклонения от идеальной тетраэдрической геометрии. Невозможность уменьшения подобным путем напряжения в циклогексановых кольцах, входящих в каркасные структуры, такие как адамантан, является важным фактором возникновения энергии напряжения в таких системах. [c.118]

    С помощью простых эмпирических уравнений, базирующихся на огромном экспериментальном материале, можно рассчитать химический сдвиг данного протона. Три такйх уравнения, а также таблицы инкрементов, учитывающих положения алифатических, ароматических и олефиновых протонов, приведены в приложении 4.16.1. На практике, однако, часто нет необходимости прибегать к этим таблицам, поскольку резонансные сигналы протонов разных типов находятся в различных, строго определенных диапазонах спектра (см. рис. 4.43). В общем случае положение сигнала протона зависит от электронной плотности на окружающих его атомах, которая в свою очередь определяется главным образом индукхщонным и резонансным эффектами, передаваемыми через химические связи, и анизотропным эффектом, проявляющимся во взаимодействии непосредственно не связанных атомов (взаимодействие через пространство ). [c.81]


Смотреть страницы где упоминается термин Инкремент взаимодействия: [c.98]    [c.121]    [c.139]    [c.226]    [c.128]    [c.238]    [c.354]    [c.420]    [c.102]    [c.116]   
Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень (1999) -- [ c.81 ]




ПОИСК







© 2024 chem21.info Реклама на сайте