Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Расход адиабатическая

    Технологическая схема процесса получения стирола каталитическим дегидрированием этилбензола в адиабатическом реакторе представлена на рис. 1Х 4 [110]. Смесь прямого и возвратного стирола разбавляется водяным паром и поступает на испарение и перегрев в систему теплообменников /. Нагретая до 520—530 °С смесь направляется в нижнюю часть вертикального туннельного реактора шахтного типа 2. На входе в реактор к смеси добавляется перегретый водяной пар, расход которого вычисляется из его энтальпии с учетом количества теп- [c.264]


Рис. 11-21. Диаграмма х = (Т) для адиабатического реактора при постоянно увеличивающемся расходе питания. Рис. 11-21. Диаграмма х = (Т) для <a href="/info/25767">адиабатического реактора</a> при постоянно увеличивающемся расходе питания.
    При разработке мероприятий, направленных па интенсификацию системы увлажнения воздуха перед АВО, принимают, что 20—30% воды расходуется на адиабатическое снижение температуры воздуха перед теплообменными секциями и 70—80% при ее испарении с оребренной поверхности. Эффект увлажнения характеризуется отношением плотности теплового потока в [c.80]

    Полная конверсия нефтезаводских газов и бензинов в трубчатых реакторах с внешним обогревом фактически протекает в две стадии первая — частичная конверсия — паровая конверсия гомологов метана преимущественно в метан на нача-льном участке реакционной зоны и вторая — конверсия метана с получением водорода и окислов углерода. Первую стадию можно осуществить в отдельном реакторе при 350—500 °С в режиме, близком к адиабатическому. Это позволит более эффективно использовать дорогие печи конверсии с трубчатыми реакторами для проведения основной реакции полной конверсии метана и сократить расход пара, не опасаясь отложения углерода на катализаторе. [c.66]

    Если учесть расходы на предварительный подогрев и промежуточное охлаждение, задача становится несколько более сложной, но характерные черты исследованной выше задачи сохраняются. Для упрощения примем, что расходы на охлаждение и подогрев одинаковы и пропорциональны количеству тепла, которое надо отвести или подвести ясно, что в случае надобности от этого ограничения легко избавиться. Между адиабатическими слоями п тз. п надо отвести количество тепла, пропорциональное Гд+х — а перед слоем М, скорей всего, требуется подвести количество тепла, пропорциональное ТВ любом случае можно записать критерий оптимальности в виде  [c.236]

    Как известно, площадь диаграммы выражает работу, совершаемую в процессе сжатия газа. Легко видеть, что эта работа будет наименьшей при изотермическом сжатии и наибольшей — при адиабатическом. При охлаждении газа в компрессоре через рубашку процесс сжатия приближается к изотермическому, причем соответственно снижается расход энергии на сжатие газа. [c.224]


    Мощность, КВт Давление, МПа на входе на выходе Производительность, млн. м /сут Число ступеней сжатия Число компрессорных цилиндров Применяемое масло Удельный расход масла, г/КВт-ч Коэффициент полезного действия привода адиабатический Ресурс, тыс. ч межремонтный общий Габариты, м длина ширина высота [c.58]

    Железо-молибденовый катализатор мало чувствителен к качеству метилового спирта и к каталитическим ядам. Срок службы катализатора в трубчатой части реактора — 1,5 года, в адиабатической секции — до 7 лет. Однако его производительность существенно ниже, чем металлического, и не превышает 700- 00 кг 100%-ного формальдегида на 1 м катализатора в 1 ч. Недостатками процесса являются более высокие удельные капитальные затраты, повышенный расход электроэнергии и более сложная технологическая схема, чем при производстве формалина на серебряном катализаторе. [c.203]

    Заметим, что для учета влияния на к. п. д. внешних утечек с массовым расходом Шу адиабатическая мош,ность подсчитывается [c.184]

    Полученные формулы легко обобщаются для любого числа ступеней г. При одинаковых адиабатических к. п. д., полном охлаждении и постоянстве расходов газа во всех ступенях получим условие  [c.246]

    Условия смешения двух потоков (питания и маточного раствора) в процессе кристаллизации могут быть охарактеризованы критерием смешения, т. е. соотношением энтальпий и расходов этих потоков. При определенных значениях указанных параметров смещение не приводит к образованию новой фазы. Схема DTB-кристаллизатора представлена на рис. 2.11. Работа рассматриваемого вакуум-кристаллизатора сопряжена с адиабатическим смешением двух потоков (питания и рецикла), насыщенных или ненасыщенных по целевому компоненту и различающихся по температуре и концентрации. При этом поток рецикла должен быть настолько большим, чтобы упругость пара потока смеси (зона /) была меньше суммы гидростатического давления столба жидкости от точки ввода потока питания до зеркала испарения и давления паров в сепараторе кристаллизатора. В зоне 2 с помощью мешалки происходит вторичное смешение поднимающегося по циркуляционному контуру потока с суспензией. При этом температура вторичного потока смеси на 0,1—0,2° С выше температуры кипения раствора при данном вакууме в аппарате. Таким образом, съем пересыщения происходит в зоне 3, ограниченной зеркалом испарения и слоем жидкости в несколько сантиметров. [c.208]

    На рис. 15 приведена зависимость удельного расхода энергии на ожижение водорода от величины давления для различных циклов. Сопоставление кривых позволяет оценить относительную эффективность циклов. В расчетах учтен расход энергии для предварительного охлаждения. Кроме того, принято величина недорекуперации Д1=1°С, адиабатический к. п. д. детандера Т1 = 0,8. [c.47]

    Холодное пламя. Явление самовоспламенения может осложниться возникновением холодного пламени, характери-зующе о такой режим горения, при котором химическое взаимодействие сопровождается свечением, но реакция остается незавершенной. В этом случае смесь разогревается в меньшей степени, чем при полном адиабатическом сгорании, когда вся химическая энергия горючей смеси расходуется на разогрев продуктов реакции. Зона холоднопламенного горения в виде свечения наблюдается в пространстве между аппаратами [c.127]

    Цель этого процесса — ограничение повышения температуры уровнем, необходимым для протекания реакции взаимодействия водорода и окиси углерода при их больших концентрациях в адиабатическом реакторе. Выделяемая при реакции теплота в данном (Случае частично расходуется как полезная, необходимая для процесса, а частично на покрытие затрат тепла, необходимого для испарения циркулирующего инертного разбав ите-ля. Использование тепла в этом процессе весьм а высокое, что обеспечивает получение пара высоких параметров, необходимого для других стадий процесса. [c.189]

    Обычно для промыщленных реакторов крекинга потери теплоты через стенку составляют не более 4% от общего расхода теплоты. Поэтому можно считать, что реактор адиабатический и Об — это теплота, передаваемая от нагретой внешней поверхности катализатора парам сырья в результате теплоотдачи. Тогда имеем [c.138]

    Достоинства адиабатических реакторов 1) полнота использования объема реактора 2) простота конструкции и удобство в эксплуатации 3) небольшой удельный расход металла. [c.125]

    В этом случае вся затраченная в компрессоре работа обращается в тепло и расходуется на нагревание газа, вследствие-чего его энтальпия возрастает. При адиабатическом сжатии значительно повышается температура сжимаемого газа. [c.217]

    Сравнение выражений для ад. И /из. показывает, что при изотермическом сжатии газа расход энергии меньше, чем при адиабатическом процессе. Поэтому стараются по возможности осуществлять процесс сжатия газа изотермически, для чего приходится отнимать от сжимаемого газа определенное количество тепла. С этой целью цилиндры компрессоров снабжают либо наружными ребрами для воздушного охлаждения, либо специальными рубашками для водяного охлаждения. Однако [c.175]


    При адиабатическом, т. е. не сопровождающемся тепловыми потерями сгорании, весь запас химической энергии горючей среды расходуется на нагревание продуктов реакции. Температура равновесных продуктов адиабатического сгорания не зависит от скоростей протекающих в пламени реакций, а лишь от их суммарного теплового эффекта и теплоемкостей конечных продуктов. Эта величина называется температурой горения Ть. Она является важной характеристикой горючей среды. У распространенных горючих смесей величина Ть лежит в пределах 1500—3000 К. [c.14]

    Абсолютное давление на де (ат) вхо- 250,0 Расход газа по байпасу (нм /ч) Адиабатический разогрев ( С) 0.0 1697,68 [c.191]

    Выбор типа реактора для осуществления данного химического процесса зависит от многих факторов, из которых важнейшими являются необходимость использования катализатора, его свойства и расход термодинамические особенности процесса — адиабатические, изотермические или политропические условия проведения химической реакции методы теплообмена, используемые для обеспечения заданного температурного режима в зоне реакции свойства используемых теплоагентов периодическое или непрерывное осуществление процесса. [c.631]

    Для уменьшения расхода энергии цилиндр компрессора обычно интенсивно охлаждают, чтобы приблизить процесс к изотермическому. Такой процесс, называемый политропным, оказывается средним между адиабатическим и изотермическим. При его проведении изменяется температура системы (dT) и появляется некоторый тепловой эффект (dQ). По этим данным можно определить удельную теплоемкость системы  [c.249]

    Для последовательности адиабатических реакторов идеального смешения мы рассмотрим только одну задачу оптимизации. Пусть требуется получить максимальную конечную степень полноты реакции в последовательности N реакторов одинакового объема V путем надлежащего распределения байпаса исходной смеси. Эта система представлена на рис. VIII.3 здесь снова принята нумерация реакторов от конца последовательности к началу д — полный объемный расход сырья и — объемная скорость потока в тг-м, считая от конца, реакторе. Таким образом, исходная смесь делится на поток подаваемый в Л -й реактор, и байпасный поток (1—д. Этот байпасный поток служит для охлаждения реагирующей смеси, выходящей из п-го реактора, до подачи ее в (и—1)-й реактор, путем добавления холодного сырья с объемной скоростью п = М, N — 1,. . ., 2). Таким образом [c.219]

    Теперь становится ясно, что применение многостадийного реактора пе даст никаких преимуществ, если только не ввести предварительного подогрева сырья перед стадией N. Действительно, кривые Г , не могут достичь начала координат до тех пор, пока NQ, по крайней мере, не сравняется с временем контакта, необходимым для того, чтобы прийтп на кривую Tj пз начала координат, а в этом случае химический процесс можно вести и в единственном адиабатическом реакторе. Точки пересечения кривых Г с осью абсцисс дают оптимальную температуру предварительного подогрева для Л -стадийного процесса без учета расходов па подогрев. Если С (Тд,) — расходы на предварительный подогрев, выраженные в единицах степени полноты реакции, то было бы разумно искать максимум разности — С (т ). В этом случае по-прежнему оптимальное состояние реагирующей смеси на выходе из TV-го реактора должно [c.223]

    На рис. Vni.19 даны зависимости веса каждого слоя катализатора и полной массы всего катализатора от стоимости предварительного подогрева. Линию для Wg в этом масштабе нельзя начертить действительно, в предельном случае х = О оптимальные массы находятся в отношении И д = 1 9 ООО 130000, что заставляет задуматься над тем, стоит ли делать реактор многостадийным. Для двухстадийного реактора, как следует из рис. VIII.19 (для N = 2), пропорции более разумны (самое большее 1 20). Рис. VIII.20 показывает, что уменьшение числа стадий очень слабо влияет на максимальное значение критерия оптимальности Р. Десятикратное увеличение стоимости катализатора v приводит к почти десятикратному уменьшению его оптимальной массы и небольшому комненсируюш ему увеличению температуры, однако максимальное значение критерия оптимальности Р уменьшается при этом только на 10%. Такого рода расчеты оптимальных режимов на вычислительных машинах позволяют понять обш,ую структуру оптимальных решений даже в том случае, когда не представляется возможным точно оценить величины (х и v. Например, тот факт, что общая масса катализатора уменьшается почти в том же отношении, в каком увеличивается его стоимость, свидетельствует о том, что общие расходы на катализатор всегда остаются почти постоянными. Непропорционально малая масса катализатора в одном из адиабатических слоев, вычисленная при оптимальном расчете, сразу заставляет сделать вывод, что рационально проектировать реактор с меньшим числом стадий. [c.246]

    В компрессор поступает 150 м /мин воздуха при 20 С, где он сжимается с 1 до 8 ата. Вычислить расход энергии, если сжатие идет по адиабатическому закону як = onst. [c.151]

    Другие задачи оптимизации. Рассмотренные здесь примерь дают представление о б основных идеях и методах, лежащих в основе решения разнообразных задач оптимизации реакторных узлов. Можно указать три направления уточнения и развития оптимальных расчетов. Первое из них — это анализ различных стадийных схем. Укажем, например, па расчет цепочек адиабатических реакторов, где охлаждение реагирующей смеси между стадиями происходит не в промежуточных теплообменниках, а путем добавления холодного сырья или инертного вещества. Другой пример — расчет оптимального трубчатого реактора с секционировапным теплообменником. Второе направление состоит в уточнении критерия оптимальности путем более полного учета затрат на ведение процесса. Например, результаты оптимального расчета цепочки адиабатических реакторов можво уточнить, приняв во внимание расходы на устройство промежуточных теплообменников. Наконец, третье направление — выбор оптимальных значений других управляющих параметров, помимо температуры процесса. Так, в работе [25] рассматривается вопр1>с об оптимальном профиле давления по длине трубчатого реактора, а в работе [26] — об оптимальном изменении состава каталитической системы. При проектировании стадийных схем, наряду с определением оптимального перепада температур между стадаями, может рассчитываться оптимальное количество свежего реагента, добавляемого к реагирующей смеси. Вряд ли можно даже перечислить все возможные варианты задач оптимизации методы их решения, однако, мало отличаются друг от друга. [c.397]

    Результаты расчета затрат (см. табл. 1У-6) на реализацию такой схемы процесса позволяют сделать следующие выводы основные затраты связаны с потерями этилена и высокой стоимостью низкотемпературного хладагента (хладагент второго типа). Здесь следует подчеркнуть тот факт, что величина потерь этилена полностью определяется температурой сепаратора на выходе хвостовых газов , т. е. чем ниже температура в сепараторе, тем меньще потери этилена. При модификации схемы № 1 оказалось возможным достичь более низких температур в сепараторе путем введения дополнительного охлаждения за счет адиабатического расширения хвостовых газов и введения допсГлнительного реку-перационного теплообменника. Достигаемый эффект самоохлаж-дения , кроме того, позволяет несколько снизить расход хладагента для дефлегматора. Схема № 2, полученная в результате модификации исходного простейшего варианта, представлена на рис. 1У-19. [c.184]

    Адиабатическое сгорание и температура горения. При адиабатическом сгорании, т. е. не сопровождающемся тепловыми потерями, весь запас химической энергии горючей смеси расходуется на нагревание продуктов реакции, Температура продуктов адиабатического сгорания не зависит от скорости протекающих в пламени реакций, а зависит лишь от их суммарного теплового эффекта и теплоемкости конечных продуктов. Эта величи la называется температурой горения Та и является важной характеристикой горючей смеси. Величина Тв распространенных горючих смесей лежит в пределах 1500—3000 К. [c.131]

    Технологическая схема газофазного нитрования пропана азотной кислоты изображена на рпс. 100. Процесс осуществляется в цилиндрическом аппарате 2 адиабатического тппа, не имеющем теплообменных устройств. Теплота реакции расходуется на нагревание исходного углеводорода и испарение азотной кислоты, которую впрыскивают в реакционное пространство через форсунки, расположенные в разных точках по высоте аппарата. Этим достигается большой избыток углеводорода по отношению к кислоте во всем объеме реактора, предотвращается возможность образования пзрывоопасных смесей, перегревов и слишком глубокого окисления. [c.348]

    Сущность эксперимента заключается в следующем. Теорией теплового взрыва установлена связь между характеристиками рассматриваемого явления, с одной стороны, и кинетическими параметрами и условиями протекания процесса, с другой. Если известны условия процесса и экспериментально измерены характеристики, то по теоретическим формулам, решая обратную задачу, можно определить кинетические параметры. В нашем случае условия процесса адиабатические - езуаьтате экспери -мента мы снимаем конкретные характеристики — время индукции теплового взрыва и характер изменения температуры, т. е. исходные данные для решения указанной обратной задачи. Полученная в результате опыта информация в виде кривых температура — время несет в себе данные о периоде индукции теплового взрыва и о критической температуре. Серия экспериментов с различными исходными температурами реакционной массы дает зависимость периода индукции теплового взрыва от температуры. Информацию об изменениях концентрации реагентов в реакционной массе несут полученные кривые электропроводность — время . Важные стороны характера физико-химического превращения раскрывает записанный во времени расход смеси газов и паров из реактора. [c.177]

    Анализ изменения температуры во времени в разных точках по длине адиабатического слоя показывает, что такое изменение имеет характерный вид 5-функции, причем максимум температуры по направлению к выходу из регенератора возрастает. Тогда при определенных условиях в центральной части адиабатического слоя в нестационарном режиме горения кокса могут возникнуть значительные динамические тепловые забросы. Такой результат и был получен в работах [146, 161], где показано, что помимо начальных условий на максимум температуры в слое сильно влияет скорость подачи газового потока. При уменьшении расхода газа (увеличении времени контакта) температура слоя из-за динамических забросов может превзойти максимальное асимптотическое значение, соответствуюшее величинам Т , х° и Механизм появления забросов, по-видимому, следующий в область высоких температур из частично регенерированных участков слоя катализатора поступает реакционная смесь с достаточно высоким содержанием кислорода, результатом чего является ускорение химической реакции и увеличение тепловыделения. Выделяющееся в горячей зоне тепло вызывает рост температурного максимума до тех пор, пока тепловые потери на нагрев соседних участков не скомпенсируют тепловыделение. По-видимому, можно реализовать такие условия выжига кокса, при которых в слое появятся так называемые горячие пятна и в результате произойдет спекание катализатора. [c.87]

    Энергетический баланс установившегося динамического режима распространения фронта реакции (3.436), представляющий собой взаимно однозначное соответствие между 0 и ю, характеризует отличие процесса распространения в гетерогенных и гомогенных газовых или конденсированных средах, в которых б(со)= 1 и, зна--чит, 0 = 00 + А бадЖ. В гетерогенных системах это условие выполняется только в случае стоячей волны, когда со = 0. Если же м > О, то 0 > 00 + АОадЗ , а если о)<0, то 0 < 0о + АбадЗ . Объясняется этот эффект тем, что вследствие большого различия теплоемкостей твердых и газовых фаз инерционность теплового поля гораздо больше инерционности концентрационного поля, что обусловливает возможность быстрой подачи непрореагировавшего компонента — теплового источника — в медленно перемещающееся тепловое поле. При движении фронта в направлении фильтрации газа максимальная температура выше адиабатической, так как в этом случае тепло, выносимое волной, складывается из адиабатического разогрева и тепла, отдаваемого слоем катализатора при его охлаждении. При движении фронта навстречу потоку газа, наоборот, часть тепла реакции расходуется на прогрев слоя катализатора, вследствие чего максимальная температура в зоне реакции ниже адиабатической. [c.84]

    Расход смеси 40 м /с расход углеводорода 22 л/ч адиабатический разогрев смеси 37,6°С . чинейная скорость 0,46 м/с длительность цикла 20 мин. Стрелки указывают направление фильтрации смеси и—4 — <1 — <4 = 0 5 10 и 18 мин). [c.171]

    Поскольку для каталитической очистки газов в стационарном режиме с учетом 75% рекуперации тепла отходящих газов температура адиабатического разогрева газов должна б1ыть не менее 150°С, при обезвреживании отходов с низким содержанием органических веществ необходим подвод топлива, нанример природного газа. Расход природного газа для исходных смесей с температурой адиабатического разогрева О, 10, 50, 100, 150°С составляет соответственно 4,88 4,55 3,25 1,53 и 0,0 м на 1000 м газообразных отходов. При исиользовании метода каталитического обезвреживания в нестационарном режиме расход топлива необходим только для переработки отходов с температурой адиабатического разогрева ниже 20°С. [c.179]

    Выбор типа реакционного аппарата для осуществления данного химического процесса зависит от многих факторов, из которых важнейшими япляются необходимость использования катализатора, его свойства и расход термодинамические особенности процесса — адиабатические, изотермические или политропическио условия проводе- [c.618]

    Рассмотрим поток воздуха над жидкостью в закрытом сосуде (рис. VHI-2). Входящий воздух имеет параметры t, X (Р = onst), насыщается при протекании над жидкостью и уходит в состоянии насыщения (ф=100%, 4ас, Хнас). Процесс адиабатический, испарение воды, насыщающей воздух, происходит за счет тепла воздуха. Для покрытия расхода тепла в сосуд вводится вода в количестве Хнао — X на 1 кг сухого воздуха. Температура [c.598]

    Для увлажнения воздух пропускают через камеру, в которой разбрызгивается вода (рис. VIII-8). Количество разбрызгиваемой воды значительно превышает количество воды, нужное для получения заданного увлажнения. Такой большой расход воды вызван кинетическими соображениями, т. е. необходимостью образования сильно развитой межфаз ной поверхности. Избыток воды возвращается насосом в камеру вместе с добавленной водой. ПоэтсУму можно принять, что вода находится в постоянном контакте с воздухом в адиабатических условиях. Следовательно, она должна достигнуть температуры мокрого термометра t , которую легко найти по положению адиабаты, проходящей через точку (ti, Xi) соответствующую входящему воздуху. Добавляемая вода составляет небольшой процент от рециркуляции, поэтому конечное состояние ti, Хг можно представить точкой, лежащей на той же адиабате (рис. VIII-8). [c.607]

    Таким образом, можно принять, что во время адиабатического высушивания изменение состояния воздуха 1—2 (рис. VHI-32) происходит по линии 1 = onst (ii = t2). Зная температуру 2 уходящего воздуха, можно найти его влагосодержание и на основе материального баланса определить расход воздуха на 1 кг сухого материала (G/R). [c.628]

    Однако практически преимущества детандирования, по сравнению с дросселированием, не столь значительны, как следует нз теоретических соображений. Действительно, согласно уравнению (IV) для идеального газа, работа адиабатического расширения, при прочих равных условиях, пропорциональна абсолютной температуре газа в первой степени. Расширение газов в детандере происходит при значительно более низких температурах, чем их сжатие в компрессоре, и поэтому доля расхода энергии, компенсируемая работой детандера, невелика. Она уменьшается еще больше при работе детандера в (збласти, где происходит частичное сжижение газа, т. е. когда свойства газа весьма значительно отклоняются от законов идеального состояния. Эффективность охлаждения при расширении газа в детандере также заметно снижается вследствие гидравлических ударов и вихреобразования, приводящих к выделению тепла и потерям холода, обусловленных несовершенством тепловой изоляции детандера. [c.653]


Смотреть страницы где упоминается термин Расход адиабатическая: [c.237]    [c.397]    [c.179]    [c.62]    [c.33]    [c.177]    [c.202]    [c.29]    [c.630]    [c.176]    [c.589]   
Абсорбция газов (1976) -- [ c.231 ]




ПОИСК







© 2025 chem21.info Реклама на сайте