Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость в смеси азот—кислород

    Пример 42. Газовая смесь, имевшая объемный состав О, — 20,00%, N2 — 75,00%, СО, — 0,50%, — 4,50% была растворена в воде при 0°С под общим давлением 5,0 атм. Вычислить массу каждого из газов в 1 л раствора. Растворимость при 0°С кислорода 0,049 азота 0,023 двуокиси углерода 1,70 и хлора 4,60 объема на 1 объем воды. [c.33]

    Растворимость в топливе кислорода, азота и инертных газов, являющихся компонентами воздуха, различна. При 15,5° С коэффициент растворимости кислорода в керосине равен 0,0285, азота — 0,0157. Вследствие этого, кислород растворяется в топливе в большей пропорции, чем его содержится в воздухе. Поэтому газовая смесь, которая выделяется из топлива, богаче кислородом, чем обычный воздух. Объемное отношение азота к кислороду в ней составляет 2,07 1, тогда как у воздуха оно равно 3,76 1. Это явление увеличивает пределы взрываемости смесей, образующихся с парами топлива. [c.54]


    Если в жидкости растворяется смесь газов, то в уравнение закона действующих масс входит парциальное давление растворенного газа, а константа К меняется в зависимости от природы газа (она как раз соответствует стандартному (химическому) потенциалу данного газа). Например, растворимость кислорода в воде в два раза выше, чем растворимость азота это имеет большое значение для процесса обмена веществ у рыб. В применении к газовым смесям рассмотренная выше закономерность называется законом Генри — Дальтона. Константа К может иметь различные размерности. Для применяемых чаще всего размерностей эта константа называется коэффициентом поглощения Бунзена. Он представляет собой отношение объема газа (приведенного к О С и нормальному давлению) к единице объема растворителя при парциальном давлении газа р=101 325 Па. [c.260]

    Проба на растворимость в серной кислоте. Растворители, не содержащие кислорода и азота, практически нерастворимы в концентрированной серной кислоте. При взаимодействии растворителя с концентрированной серной кислотой могут быть потери в результате улетучивания, частичного сульфирования, образования олефинов и т. д., поэтому используют смесь, содержащую 100 масс. ч. 85%-НОЙ серной кислоты и 170 масс. ч. 85%-ной фосфорной кислоты. Этой смесью можно практически полностью извлечь кислородсодержащие растворители из углеводородов или хлорированных углеводородов. Встряхивают пробу испытуемого растворителя с 3—5-кратным объемом смеси кислот, кислородные соединения растворяются в кислотах, это замечают по изменению первоначальных объемов. [c.145]

    Атмосферный воздух — это сложная газовая смесь. Основные его компоненты — кислород и азот — при сжижении образуют смесь с полной взаимной растворимостью. Температура кипения этой смеси зависит от содержания азота и кислорода. Более легколетучим компонентом является азот. [c.426]

    Исследование газопроницаемости пленок полимеров, находящихся в равновесии с сорбированными парами, показало, что при сорбции паров СеНи и U полиэтиленом низкой плотности наблюдается значительное повышение проницаемости полиэтиленовых пленок по отношению к азоту и кислороду . При этом значение коэффициентов газопроницаемости Р полиэтилена линейно возрастает с увеличением весовой концентрации сорбированного гексана, а значение энергии активации Ер остается приблизительно постоянным. Изменение значений Р обусловлено ростом коэффициента диффузии D, в то время как коэффициент растворимости газов а при сорбции пленкой органических растворителей существенно не изменяется. В системе гидрат целлюлозы — вода значение Р для О2 и N2 и в особенности для СО2 быстро возрастает с увеличением относительного давления паров воды. График зависимости Р для Oj от весовой концентрации воды в гидрате целлюлозы имеет два линейных отрезка, пересекающиеся в точке, отвечающей относительной влажности, равной 74%. На значения Р полиэтилена для О2, N2, СО2 относительная влажность газов не влияет. Предполагается, что сорбция паров воды не влияет на содержание кристаллической части и набухание происходит только в аморфных областях полимеров. Газопроницаемость смеси газов часто зависит от высокой растворимости одного из входящих в смесь газов. Так, исследование полиэтилена по отношению к смеси этана с бутаном показало что проницаемость смеси увеличивается с ростом концентрации бутана по сравнению с расчетной (по исходным коэффициентам Р) [c.172]


    САВ представляют собой сложную многокомпонентную исключительно полидисперсную по молекулярной массе смесь высокомолекулярных углеводородов и гетеросоединений, включающих, кроме углерода и водорода, серу, азот, кислород и металлы, такие как ванадий, никель, железо, молибден и т. д. Выделение индивидуальных САВ из нефтей и ТНО исключительно сложно. Молекулярная структура их до сих пор точно не установлена. Современный уровень знаний и возможности инструментальных физико-химических методов исследований (например, n-d-М-метод, рентгеноструктурная, ЭПР- и ЯМР-спектро-скопия, электронная микроскопия, растворимость и т. д.) позволяют лишь дать вероятностное представление о структурной организации, установить количество конденсированных нафтено-ароматических и других характеристик и построить среднестатистические модели гипотетических молекул смол и асфальтенов. [c.45]

    Горючее для немецких ракет Фау , которыми фашисты обстреливали Лондон в 1944 г., представляло собой бесцветную, сильно дымящую на воздухе жидкость, хорошо растворимую в воде. В молекулах этого вещества содержались атомы только водорода и азота. Второй компонент горючей смеси немецких ракет ( окислитель ) — тоже был жидким, но светло-желтого цвета при комнатной температуре он начинал выделять бурые пары. В составе молекул окислителя содержались атомы только азота и кислорода. Смесь горючего и окислителя самовоспламенялась. Что это за вещества и как они взаимодействуют между собой  [c.130]

    В процессах разделения воздуха путем ректификации участвуют его постоянные части, так как переменные части почти полностью удаляются в предыдущих стадиях процесса. Содержание в воздухе гелия, неона и криптона настолько незначительно, что они не оказывают существенного влияния на ход процесса разделения. Поэтому воздух, подвергаемый ректификации, с достаточной точностью можно принять за смесь азота ( 78,1% по объему), кислорода ( 21,0%) и аргона (- 0,9%). В сжиженном виде эти газы полностью взаимно растворимы во всех соотношениях. [c.55]

    Пример 2. Газовая смесь, состоящая из 78 об. % N2 и 22 об. % О2, содержится над водой. Вычислить процентный состав газовой смеси, растворенной в воде при 0° С, если коэффициент растворимости азота /N1=0,024, а кислорода /ог = 0,049. [c.196]

    Жидкие азот и кислород полностью взаимно растворимы в любых отношениях, причем смесь их не обладает постоянной температурой кипения. Свойства таких смесей описаны в главе XII. Более легколетучим компонентом смеси является азот, и поэтому пары всегда будут более богатЕл азотом, чем находящаяся с ними в равновесии жидкая смесь. [c.759]

    Углеводороды способны растворять значительные количества таких газов, как воздух, азот, кислород, углекислоту и др. Так, при нормальных условиях керосин может растворять до 20—23% воздуха (по объему). Растворимость воздуха в керосине зависит от поверхностного натяжения и уменьшается с его увеличением. На растворимость не влияют плотность и фракционный состав. Растворимость газов в углеводородах, используюпдихся как горючее в ракетных двигателях, отрицательно сказывается в условиях эксплуатации, увеличивает возможность возникновения кавитации в насосах, вызывает вскипание компонентов в баках при понижении давления и увеличивает испаряемость топлива прл дренировании баков. При уменьшении давления в баке в случае растворения воздуха образуется газовая смесь, содержапхая большую долю кислорода, чем воздуха. Это создает опасность взрыва или вспышки газовой смеси в объеме над уровнем жидкости. [c.114]

    Смесь перемешивают при 250 °С до тех пор, пока ее кислотное число не станет меньше 5 (об определении кислотного числа см. с. 196). Во избежание попадания кислорода в реакционный сосуд через колбу непрерывно пропускают медленный ток азота. Через 6 ч поликонденсацию заканчивают и охлаждают смесь до комнатной температуры. Полученная алкидная смола представляет собой вязкую жидкость, растворимую в ароматических углеводородах, бутилаце-тате и ацетоне. [c.202]

    Растворимость кислорода в топливе примерно в 2 раза выше растворимости азота. Поэтому газовая смесь, выделяемая из топлива, богаче кислородом, чем обычный воздух. Пределы взрываемости паров топлива в такой смеси кислорода с азотом шире, чем в воздухе. Опасность возникновения паровоздушных пробок в топливной системе и кавитационных режимов работы насосов снижается при создании в топливных баках небольшого избыточного давления. [c.175]

    На практике обычно вода соприкасается не с каким-либо одним газом, а со смесью газов. При этом растворимость каждого газа в воде будет зависеть от парциального давления Р его в смеси. Если над водой имеется смесь водяных паров (Р о), азота Р , кислорода Рд и углекислого газа Рсо,> то, используя закон [c.116]


    Газовая смесь, имевшая объемный состав, % Оз 20,00, Na 75,00, СО2 0,50, I2 4,50, растворена в воде при 0°С под общим давлением 1 атм. Какова масса каждого иэ газов в 1 л раствора, если растворимость лри 0°С кислорода 0,049, азота 0,023, днуокиси углерода 1,70, хлора 4,60 объема на 1 объем воды  [c.129]

    Образующаяся окись азота выделяется из нитрозы, в к-рой она плохо растворима, а затем частично окисляется кислородом в газовой фазе до двуокиси азота полученная смесь N0 и NOj вновь поглощается серной к-той и т. д. Окислы азота не расходуются, а возвращаются в производственный цикл. Но поскольку окислы азота не полностью поглощаются серной к-той и частично уносятся отходящими га- [c.411]

    Образующаяся окись азота плохо растворима в нитрозе и потому выделяется из нее, а затем частично окисляется кислородом в газовой фазе до двуокиси азота ЫОа. Смесь окиси и двуокиси азота N0 и НОа вновь поглощается серной кислотой и т. д. Окислы азота по существу не расходуются в нитрозном процессе и возвращаются в производственный цикл. Однако вследствие-неполного поглощения окислов азота серной кислотой они частично уносятся отходящими газами это составляет невозвратимые потери окислов. [c.315]

    ЗОг и образования N0, плохо растворимой в кислоте. С повышением содержания кислорода в газе процесс денитрации несколько замедляется (кривые 4—6), так как N0 окисляется в ЫОа и образующаяся при этом смесь окислов азота лучше растворяется в серной кислоте. [c.333]

    Назначение экстракционных процессов — деасфальтизации, селективной очистки, депарафинизации — выделение из перерабатываемого сырья асфальтов, экстрактов, парафинов и церезинов. Сырье (смесь углеводородов и с лементорганических соединений, содержащих серу, азот, кислород, металлы) разделяется на группы компонентов при помощи растворителя- растворимая часть образует фазу экстрактного раствора, нерастворимая — фазу рафинатного раствора. Целевой продукт может переходить как Б рафинатную (селективная очистка), так и в экстрактную (деасфальтизация, депарафинизация) фазы. В производстве масел применяются различные типы экстракционных процессов- экстракция неполярными (деасфальтизация) и полярными (селективная очистка) растворителями, экстрактивная кристаллизация с использованием полярных и неполярных растворителей (депарафинизация). [c.199]

    Растворимость в топливе кислорода, азота и инертных газов, являющихся компонентами воздуха, различна. При 15,5° С коэффициент растворимости кислорода в топливе типа керосина равен 0,02в5, азота — 0,0157. Вследствие этого, кислород растворяется в топливе в большей пропорции, чем его содержится в воздухе. Поэтому газовая смесь, которая выделяется из топлива богаче кислородом, чем обычный воздух. Объемное отношение азота к кислороду в ней составляет 2,07 1, тогда как у воздуха оно равно 3,76 1. Это явление увеличивает пределы взрываемо-сти смесей, образующихся с парами топлива. Кроме того, газ с повышенным содержанием кислорода является более агрессивной средой, чем обычный воздух, в отношении коррозии материалов. [c.67]

    Полученная в аппарате Клода смесь азота, гелия ж неона подвергается дальнейшей очистке, которую можно произвести различными способами. Первый способ состоит в том, что смесь азота, гелия и неона пропускается под большим давлением (до 100 ат) через спираль, охлаждаемую жидким азотом. При этих условиях, благодаря малой растворимости гелия и неона в жидком азоте, образуюш,емся в спирали, происходит практически полное отделение гелия и неопа от азота. Получившуюся смесь гелия и неона можно подв ергнуть еш е дальнейшей очистке, пропуская газ через уголь, охлаждаемый жидким азотом. Второй способ очистки смеси со-стоит в том, что ее непосредственно пропускают через баллоны и с углем охлаждаемые жидким воздухом или жидким азотом. Третий способ состоит в удалении азота химическим путем. Для этой цели можно воспользоваться или соединением азота с кислородом при электрических разрядах или соединением азота с металлическим кальцием при нагревании его до температуры красного каления. [c.82]

    Предполагают, что ацетилен и закись азота попали в конденсатор в результате частичной регенерации силикагелевого фильтра во время отключения установки без полного размораживания за шесть месяцев до взрыва. Оставалось неясным, почему в течение шести месяцев не взорвалась взрывчатая смесь в конденсаторе, если она в него попала. Исследования показали, что твердый ацетилен очень медленно растворяется в жидком кислороде. Растворимость же закиси азота приблизительно в 27 раз больше растворимости ацетилена. Твердое вещество, отложившееся виачале, преимущественно содержало закись азота [90% (мол.)], а поэтому было невзрывоопасным. Как показали расчеты и подтвердили эксперименты, через шесть месяцев твердый слой ацетилена толщиной 1 мм растворился, что и привело к образованию взрывчатой смеси. [c.372]

    Гелий, так же как п аргон, ислоль-зуют для создания защитной атмосферы прп работе с веществами, pea гирующпмп с кислородом, азотом и другими газами. Смесь гелия с кислородом применяют для дыхания при подводных работах на большой глубине. Это связано с очень малой растворимостью Не в воде. Если же пользоваться воздухом, то при высоком давлёпии азот значительно растворяется в крови, что вызывает тяжелые последствия. [c.489]

    Каменноугольный пек представляет сложную смесь различных органических веществ (до нескольких сот). Из них химически индентифици-рованы лишь несколько десятков [93]. Поэтому пеки характеризуют по фракционному или компонентному составу. Группы веществ в пеках, имеющих определенную молекулярную массу, растворяются в одних растворителях и не растворяются в других. В результате многочисленных работ по разделению селективным растворением пека на фрак ции в настоящее время отобраны следующие растворители петролейный эфир (гептан), бензол (толуол), пиридин (хинолин). Часть пека, растворяемая в петролейном эфире, названа -у-фракцией, или мальтенами растворимая в бензоле, нерастворимая в петролейном эфире — -фракцией, или асфальтенами часть, нерастворимую в бензрле (толуоле), а-фрак-цией, или карбоидами. В последнее время а-фракцию стали подразделять на ai-фракцию и а2-фракцию. Фракция а не растворима в пиридине (хинолине). Предполагается, что она состоит из частичек угля, попавших в смолу, частичек сажи, образовавшихся при деструкции летучих продуктов, выделяющихся из каменного угля при его нагреве, а также из высокомолекулярных органических веществ. Молекулярная масса (средняя величина) каждой фракции мальтены 400—500 асфальтены — 700-800 карбоиды - 2000. Каменноугольный пек состоит в основной своей массе из ароматических, а также из гетероциклических молекул. В пеке обнаружены соединения, имеющие гетероциклы с кислородом, азотом и серой. Элементарный состав пека, отличающийся способом получения и температурой начала размягчения, представлен ниже, % [94]  [c.150]

    В целях упрощения будем рассматривать жидкий воздух . как двойную (бинарную) смесь N2—О2, учитывая при этом, что зот и кислород взаимно растворимы во всех соотношениях. .Поскольку прн атмосферном давлении кислород кипит при --182,81 °С, а азот — прн —195,61 С, то азот является низко- кипящим компонентом, а кислород — высококипящим. Извест-но, что температ гра кипения смеси прн данном давлении зависит от ее состава и тем ииже, чем больше в смеси низкокипи-щего вещества. Так, пар, находящийся в равновесни с жидко- Стъю, всегда содержит больше низкокипящего вещества, чем жидкость. [c.62]

    Суммарный тепловой эффект реакции, до продуктов полного окисления, составляет около 13 ООО ккал/кг метана. Это сильно затрудняет температурное регулирование процесса до нужной стадии окисления. Окисление метана и других газообразных углеводородов проводится воздухом или кислородом. Окисление кислородом воздуха проводится в присутствии гомогенных и гетерогенных катализаторов. В качестве гомогенного катализатора применяются окислы азота, которые более правильно назвать инициатором окисления. Процесс окисления метана воздухом нри 400— 600° С был впервые осуществлен в промышленных условиях в Германии в 1941—1942 гг. Реактор для этого процесса представляет пучок из 50 вертикальных труб длиной 3 м п диаметром 0,08 м. В поток газа, циркулирующего через реактор, вводится 98%-ный метан и воздух в соотношении 3,7 1. Соотношение циркулирующего газа и вновь поступающего 9 1. Подогретая в теплообменнике газовая смесь поступает в реактор, где поддерживается температура в пределах 400—600° С. Гомогенным катализатором (инициатором) является азотная кислота, которая добавляется в количестве 0,08 объемн. % к газовой смеси перед поступлением в реактор. Выходящие из реактора газы охлаждаются и поступают в скруббер, где формальдегид и другце растворимые продукты реакции отмываются водой. Водный раствор содержит 5—10% формальдегида, нейтрализуется [c.290]

    Трудность собирания таких хорошо растворимых в воде газообразных соединений, как аммиак, хлористый водород, сернистый ангидрид и т. д., была устранена Пристли, который начал использовать ртуть вместо применявшейся до того воды тем самым была открыта возможность для изучения самых различных газов. Правда, представление об индивидуальности газов и об их составе все еще оставалось довольно неясным вплоть до конца XVIII в., но никто из исследователей не сомневался, что их следует отличать от атмосферного воздуха, всегда рассматривавшегося как прототип газообразного вещества, от которого должны брать начало все остальные газы. Этому способствовала и аристотелевская концепция элементов, долго удерживавшаяся и в новую эпоху. Ни наблюдения Бойля, согласно которым в процессах горения, обжигания, а также дыхания принимает участие составная часть воздуха, ни важные наблюдения Мей-ова, согласно которым в воздухе присутствует огненно-воздушное или селитряно-воздушное вещество (ignoaereus или пигоаёгеиз), необходимое для процессов горения и играющее активную роль в дыхании, поскольку оно превращает венозную кровь в артериальную,— ничто не поколебало убеждения в том, что воздух представляет собой простое вещество. Когда Резерфорд отделил азот от сгоревшего воздуха (а до него Шееле в 1770 г. выделил азот таким же способом, но не сообщил об этом) и когда Пристли и Шееле нашли, что кислород представляет собой другую составную часть воздуха, способную поддерживать горение и дыхание, только тогда воздух стали рассматривать как смесь газов. Представления теории флогистона помешали этим двум химикам дать правильное истолкование роли кислорода в явлениях горения и дыхания заслуга такого объяснения принадлежит Лавуазье. Тем не менее экспериментально было установлено, что атмосферный воздух является смесью для того времени это было важным результатом [c.86]

    Мягкое окисление битуминозных углей сопровождается их разложением, в результате чего образуется смесь относительно простых единиц, а именно гуминовых кислот. Несмотря на то что эти продукты первичного окисления углей еще не были охарактеризованы достаточно определенно, можно считать, что они, безусловно, обладают конденсированной циклической структурой, некоторые циклы которой состоят только из углеродных атомов, в то время как другие, повидимому, содержат также и кислород, азот и серу. Функциональные группы—карбоксильные и гидроксильные—обусловливают растворимость продуктов в щелочи, причем количество присутствующих карбоксильных групп приводит к средним значениям эквивалентных весов, составляющих от 200 до 300. Нри жестком окислении образуются растворимые в воде кислоты угольная, щавелевая, уксусная, янтарная, а также члены ряда бензолкарбоновых кислот. Имеются несомненные доказательства того, что все члены этого ряда, за исключением бензойной кислоты, присутствуют в продуктах низкотемпературного окисления углей. Продукты окисления углей низкой степени обуглероживания характеризуются большим содержанием угольной кислоты, простых алифатических кислот и низших членов ряда бензолкарбоновых кислот, в то время как продукты окисления веществ высокой степени обуглероживания—большим содержанием кислот бензолкарбонового ряда и, особенно, высшего члена этого ряда—меллитовой кислоты. Этих результатов следует ожидать, если рассматривать уголь, как ряд структур, начиная от смешанной алифатической, гетероциклической и карбоцикличе-ской структуры растительных остатков до полностью конденсированной карбоциклической структуры графита. Значительно содержание линейных систем и заключающих кислород колец в веществах низкой степени обуглероживания. Как можно было бы ожидать, значительное содержание линейных систем и заключающих кислород колец в веществах низкой степени обуглероживания должно было привести к большим выходам простых алифатиче- [c.362]

    Пятиокись азота — белое кристаллическое нестойкое веш,ество, которое легко возгоняется при комнатной температуре [8]. Разложение N2O5 на кислород и равновесную смесь NO2 — N2O4 идет, как реакция первого порядка. Пятиокись азота растворяется в холодном хлороформе, не реагируя с ним в меньшей степени она растворима в четыреххлористом углероде. Раствор неочищенной пятиокиси азота в хлороформе хранится в течение недели при —20° без существенного разложения. Он является очень эффективным, быстрым и безопасным нитрующим средством, особенно если им пользоваться в присутствии фтористого натрия, адсорбирующего побочный продукт реакции — азотную кислоту [10]. Нитрование хлороформенным раствором N2O5 открывает интересные возможности для осуществления непрерывного нитрования. [c.78]

    Фракционированная конденсация применяется в тех случаях, когда температура кипения отдельных компонентов сильно разнится, например для разделения коксового газа, водяного газа и др. Ректификация применяется в тех случаях, когда температура веществ, входящих в смесь, мало разнится. Разделение воздушной смеси производится путем предварительного сжижения воздуха и последующей ректификации сжиженной газовой смеси. Основные составляющие воздуха (кислород и азот) при сжижении образуют смесь с полной взаимной растворимостью. Легкокипящим компонентом является азот, труднокипящим — кислород. [c.368]

    Окись азота ест газ бесцветный, мало растворимый в воде (720 объема при обыкновенной температуре). Легко идущих реакций двойного разложения для окиси азота неизвестно (т.-е. она окисел безразличный, не солеобразный). От накаливания она, как и другие окислы азота, распадается, начиная с 900°, при 1200° 60°/о дают № и 2№0 , полное разложение на № и 0 при температуре плавления платины (Эмих, 1892). Характернейшее свойство окиси азота состоит в способности прямо и легко (с отделением тепла) соединяться с кислородом. С кислородом она дает азотистый и азотноватый ангидриды 2Н0 + 0 = НЮ 2НО 4-02 2НО . Если смешать N0 с кислородом и тотчас взбалтывать со щелочью, то получается почти одна азотистокалиевая соль, а спустя некоторое время, когда образуется уже N-0, происходит со щелочью смесь КНО и КНО . Если в колокол, наполненный окисью азота, пропускать кислород, то образуются (даже при отсутствии влаги) бурые пары Н-О и НО , которые в присутствии воды дают, как нам уже известно, азотную кислоту и окись азота, так что, при избытке кислорода и воды, всю окись азота легко прямо и вполне превратить в азотную кислоту. Техника часто употребляет эту реакцию возобновления азотной кислоты из окиси азота, воздуха и воды 2Н04 Н 04 4-0 = 2НН0 . Опыт превращения окиси азота в азотную кислоту весьма нагляден и поучителен. По мере примешивания [c.202]

    При нагревании с кислородными кислотами хромовая кислота выделяет кислород, напр., с серною 2СгО - - 3№50 = = Сг (50 ) - -0 + ЗНЮ. Понятно, вследствие этого, что смесь хромовой кислоты или ее солей с серною кислотою составляет отличное окисляющее средство, которое употребляется часто в химической практике и в технике, для некоторых случаев окисления. Так, №5 и 50 переводится этим путем в Н ЗО . Действуя как сильно окисляющее вещество, СЮ переходит в окись Сг Оотдавая половину содержащегося в нем кислорода 2СЮ = Сг-О О 558]. Действуя на раствор иодистого калия, СгО, как многие окислители, выделяет иод, причем реакция идет пропорционально содержанию СгО , и количество освобождающегося иода может служить для определения количества СгО (количество иода может быть с точностью определяемо иодометрически, гл. 20, доп. 535). Накаливая хромовый ангидрид в струе аммиачного газа, получают тоже окись хрома, воду и азот. Во всех случаях, когда хромовая кислота действует окислительно при нагревании и в присутствии кислот, продукт ее раскисления составляет соль СгХ окиси хрома зеленого цвета, так что красный или желтый раствор соли хромовой кислоты переходит при этом в зеленый раствор соли окиси хрома СгЮ . Окись эта сходна с А1ЮЗ, РеЮ и тому подобными основаниями состава кЮ . Это сходство видно в трудной растворимости безводной окиси в кислотах, в студенистом виде коллоидального гидрата, в образовании квасцов [и] летучего безводного хлорного хрома r l . в применении гидрата для протравы при крашении и т. п. Окись хрома, r O редко в малых количествах встречается в хромовой охре, образуется окислением хрома и низших его окислов, раскислением и разложением солей хромовой кислоты (напр., прокаливанием аммиачной и ртутной солей) и распадением солеобразных соединений самой окиси СгХ или Сг Х , подобно глинозему, с которым окись хрома разделяет и то свойство, что образует слабое основание, легко дающее, кроме средних СгХ , двойные и основные соли. Здесь особо примечательно, что соли окиси хрома обладают или фиолетовым, или зеленым цветом даже при совершенно том же составе, так что нагревание или другие условия переводят [c.237]

    СМОЛЫ НЕФТЯНЫЕ — высокомолекулярные неуглеводородные компоненты нефти нейтрального характера, растворимые в петролейном эфире и нефтяных фракциях обладают жидкой или полужидкой кон-систепцией, плотность ок. 1. В химич. отпошении С. и. представляют собой гетероорганпч. соединеиия, в состав к-рых, кроме углерода и водорода, как постоянный элемент входит кислород, а во многих случаях также сера, азот и нек-рые металлы (Fe, Mg, V, Ni и др.). Строение С. н. изучено еще недостаточно большая часть исследователей считает, что это сложная смесь конденсированных соединений, молекулы к-рых включают в различном соотпошении и сочетании ароматич., нафтеновые и гетероциклы. В состав последних в качестве гетероатомов входят кис.чород, сера и азот. Значительное место в структуре С. н. занимают также парафиновые компоненты в виде боковых цепей. [c.468]

    На практике обычно вода соприкасается не с каким-либо газом, а со смесью газов. При этом растворимость каждого газа в воде будет зависеть от парциального давления P его в смеси. Если над водой имеется смесь водяных паров PhjOi азота Pn , кислорода Ро и углекислого газа Рсо , то, используя закон Дальтона, уравнение (4.37) можно записать для растворимости, например, О2 в воде  [c.143]


Смотреть страницы где упоминается термин Растворимость в смеси азот—кислород: [c.177]    [c.96]    [c.231]    [c.231]    [c.358]    [c.349]    [c.446]    [c.118]   
Справочник по разделению газовых смесей (1953) -- [ c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Азот кислород

Растворимость азота

Растворимость смеси

смеси с азотом



© 2025 chem21.info Реклама на сайте