Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гаммета диссоциации

    Свойство заместителя оттягивать электронную плотность предполагается неизменным, а влияние этого явления на скорость реакции зависит от ее типа и условий. Если для кислотной диссоциации и еще для некоторых реакций оттягивание электронной плотности от реакционного центра приводит к облегчению процесса, то в других случаях, наоборот, это тормозит реакцию. Поэтому в общем случае константа скорости реакции может с ростом о как возрастать, так и уменьшаться, что отражается уравнением Гаммета [c.300]


    Для эталонной реакционной серии — диссоциации ароматических карбоновых КИСЛОТ Гаммет положил значение р = 1. Как видно ИЗ табл. 13, в различных реакционных сериях р варьирует в широких пределах как по знаку, так и по, абсолютной величине. По физическому смыслу константа р характеризует относительную (в сравнении с эталонной серией) чувствительность данного равновесия или реакционного превраш,ения к структурным изменениям в реагирующих соединениях. Изменения констант реакции при переходе от одной реакционной серии к другой обусловливаются рядом факторов типом реакционного превращения, т. е. механизмом реакции степенью передачи электронных эффектов заместителей на реакционный центр условиями протекания реакции. [c.171]

    Постоянные Гаммета а рассчитаны главным образом исходя из значений констант диссоциации замещенных бензойных кислот. Значения ст. усредненные по данным для ряда реакционных серий, даны в скобках. В таблице приведены также значения сг = Оп и а+ = От в случае тех заместителей, для которых одно из этих равенств с несомненностью вытекает из строения. [c.397]

    Понятия заместителя и функциональной группы широко применяют в химии, особенно в органической. Так, в бензойной-кислоте карбоксильную группу рассматривают как функциональную группу, так как большинство химических реакций, в которых участвует эта кислота, включают карбоксильную группу. В п-хлорбензойной кислоте атом хлора влияет на относительные скорости многих реакций, протекающих с участием карбоксильной группы, но обычно не влияет на действительный механизм реакции. Поэтому атом хлора рассматривают как заместитель. Было бы естественным, если бы атом хлора оказывал аналогичное влияние на относительные скорости целого ряда реакций, включающих карбоксильную группу. Сравнение влияния одной и той же серии заместителей на относительные скорости ряда довольно близких реакций приводит к так называемым соотношениям свободной энергии, из которых наиболее известно уравнение Гаммета. Если сравнить логарифмы скоростей гидролиза эфиров с логарифмом отношения констант диссоциации соответствующих кислот, то найдем, что данные для мета- и пара замещенных кислот и эфиров лежат на прямой, в то время как данные для орто-замещенных соединений и алифатических кислот и эфиров лежат вне линии. Эта прямая определяется соотношением [c.339]


    Органические функциональные группы определенным образом влияют на распределение электронов в тех группах, к которым они присоединены, Выражение этих эффектов в виде линейных соотношений, в которые входит свободная энергия, позволяет получить весьма полезную связь между определенными химическими свойствами. Наиболее известным из таких линейных соотношений является уравнение Гаммета, которое связано с передачей влияния на распределение электронов через бензольные и другие ароматические кольца. Рассмотрим константы диссоциации соединений трех классов  [c.234]

    Хотя приведенные здесь примеры касаются лишь диссоциации протонов, уравнение Гаммета справедливо и для многих других процессов. Более того, поскольку скорость реакции связана со свободной энергией активации, можно установить корреляцию между константами скорости (гл. 6, разд.Д.5.д). [c.237]

    Электростатические эффекты в таких ароматических системах, как правило, удовлетворительно описываются уравнением Гаммета. В качестве упражнения можно сначала рассчитать четыре микроскопические константы диссоциации для 3-оксипиридина, используя значения констант, соответствующих разным стадиям, /5/Са = 4,91 и 9,62, а также значение таутомерного отношения [7] [c.260]

    Из величин окислительно-восстановительных потенциалов были вычислены константы равновесия и применено к ним уравнение Гаммета. Таким образом, сравнивается влияние заместителей на константы диссоциации замещенных бензойных кислот с влиянием тех же заместителей на окисление железа в производных ферроцена. Если брать значения а , то линейной зависимости пе получается, еслп же использовать значения Ор, то наблюдается линейная зависимость, но не вполне удовлетворительная (коэффициент корреляции 0,942), что указывает на заметное различие в суммарном полярном влиянии заместителей в ферроценовом и бензольном рядах. Применение идеи Тафта о раздельном изучении взаимодействия по связям реакционный центр—ароматическое кольцо и заместитель—ароматическое кольцо дало возможность выяснить это различие. [c.21]

    В качестве стандартной реакции (серии) Гаммет избрал диссоциацию замещенных бензойных кислот в воде при 25 °С, поскольку соответствующие константы могут быть определены достаточно точно Для этой реакционной серии значение р было принято равным единице Тогда уравнение Гаммета принимает вид [c.302]

    Для оценки кислотности в неводных средах используется предложенная Гамметом функция Но, численно равная р , т. е. отрицательному логарифму константы диссоциации индикаторов, обесцвечивающихся при соответствующей величине pH водных растворов кислот. Так, например, о-нитроанилин имеет Н = -0,3, что соответствует 10 % концентрации серной кислоты в водном растворе. Окрашивание антрахинона соответствует Но = -8,27, т. е. кислотности 90 % серной кислоты. [c.893]

Рис. 7.1. График уравнения Гаммета для диссоциации перекиси бензоила в присутствии 3,4.дихлорстирола как ингибитора индуцированного разложения [15]. Рис. 7.1. <a href="/info/591906">График уравнения</a> Гаммета для диссоциации перекиси бензоила в присутствии 3,4.дихлорстирола как ингибитора индуцированного разложения [15].
    Ферроцен представляет собой своеобразную ароматическую систему, в которой влияние заместителей из одного циклопентадиенильного кольца передается во второе почти так, как влияние из мета-положения в бензоле, если судить по константам диссоциации замещенных ферроценкарбоновых кислот [202 Аналогичное влияние заместителя через всю ферроценовую систему можно проследить также по частоте инфракрасного спектра карбонила в другом циклопентадиенильном кольце[203. Синтез этих веществ описан в работах [204, 205]. Влияние заместителей в циклопентадиениле на потенциал окисления ферроцена изучено подробно [206], подвергнуто а, р-анализу и обнаруживает применимость констант оо Тафта в уравнении Гаммета [241]. Таким образом, устанавливается индуктивный характер [c.477]

    Для определения силы очень слабых оснований Гаммет использовал последовательный ряд кислых растворителей, таких, как смеси соляной, азотной, хлорной или серной кислот с водой. Предположим, что в качестве эталонного основания В выбран индикатор, для сопряженной кислоты которого ВН+ известна термодинамическая константа диссоциации в воде Ка-Для определения силы несколько более слабого основания С в качестве растворителя может быть использована 10%-ная серная кислота. Основания В и С и растворитель подбирают таким образом, чтобы можно было измерить соотношения концентраций В/ВН+ и С/СН+ в выбранном растворителе. Тогда [c.100]


    При ЭТОМ константа а зависит только от заместителя, в то время как р — константа реакции — изменяется с типом реакции и с внешними условиями. Произвольно выбрано, что константа р равна единице для процесса диссоциации бензойной кислоты и замещенных бензойных кислот в водном растворе отсюда следует, что а — это отношение логарифмов констант ионизации замещенной и незамещенной бензойных кислот. Используя определенные таким путем значения ст, можно вычислить значения р для других реакций. Оказалось, что уравнение Гаммета применимо с очень малой ошибкой к большому числу констант [c.253]

    Линейные корреляции формулируются как принцип линейных соотношений свободной энергии (ЛССЭ), который применяется для создания количественной теории органических реакций [29, 30]. Эта теория базируется на трех известных уравнениях уравнении Бренстеда, связывающем скорость каталитической реакции с константой диссоциации катализирующей кислоты (основания) уравнении Гаммета — Тафта, связывающем скорости однотипных реакций с индуктивными, стерическими и другими эффектами заместителей в гомологическом ряду соединений уравнении Поляни—Воеводского—Семенова, связывающем энергию активации взаимодействия радикала и молекулы с тепловым эффектом этой реакции в ряду однотипных превращений. [c.158]

    Для характеристики кислотных свойств сильных кислот Л. Гаммет предложил использовать функцию кислотности Но, экспериментально определяемую с помощью цветных кислотно-основных индикаторов-оснований. Из выражения константы диссоциации протонированной формы индикатора-осно-вания [c.60]

    Карбоновые кислоты относятся к слабоионизированным средам. Вследствие их низкой диэлектрической проницаемости растворенные в карбоновых кислотах сильные минеральные кислоты и соли находятся в основном в виде ионных пар с низкими константами диссоциации. Поскольку индикаторные основания Гаммета протонируются и протонами, входящими в состав ионных пар, и протонами, находящимися в растворе отдельно, линейную зависимость IgA от Hq раствора следует трактовать как зависимость константы скорости реакции от суммарной прото-нодонорной способности среды. Изменение Яд в изученных растворах достигалось при изменении и концентрации минеральных кислот, и концентрации воды при этом все данные зависимости gk2 от Hq описывались общей прямой линией. Это позволяет сделать вывод, что катализ осуществляется протонированиём одного из реагентов, а не в результате ассоциации его с молекулой катализатора. [c.303]

    Эти уравнения связывают огромное количество данных, относящихся к реакциям ароматических соедиаення. Численные значения Белнчип п и р определяются выбором стандартной реакции, в частности ионизации бензойных кислот. Этой реакиии условно приписывают константу реакции р = 1. Тогда константы заместителей, а, могут быть определены для серии заместителей путем измерения констант кислотной диссоциации замещенных бензойной кислоты. Определенные таким образом значения а используются для корреляции других серий реавдий таким образом можно определить значения р для других коррелируемых реакций. Связь между уравнениями (4,12) и (4.14) становится очевидной, еслн уравнение Гаммета выразить в терминах свободной энергии. [c.131]

    В водном р-ре К. способны к диссоциации с отщеплением Протона, образующего гидроксоний-катион, напр. НлХОт -t- Н2О = H iXOm -t- НэО+. Характеристикой силы К. может служить степень их диссоциации [сильные К. диссоциируют в разбавленном ( 0,1 н.) р-ре практически нацело, слабые— лишь незначительно], а также ф-ция Гаммета (см. Сверхкислоты). Для качеств, оценки силы К. иногда использ. эмпирнч. зависимости. Так, согласно правилу Полинга, для очень слабых оксокислот т — я = О, для слабых, сильных и очень сильных эта разность составляет соотв. 1, 2 и 3. [c.258]

    Уравнение (3.30) назьшается уравнением Гаммета. В него входят два параметра. Один из них - константа заместителя 2 - является мерой влияния 2 на бензойной кислоты. Другой параметр - константа реакции р - есть мера отиосительной чувствительности данной реакции к введешпо заместителя в бензольное кольцо (относительно эффекта тех же заместителей на диссоциацию бензойной кислоты в воде ири 25°С, когда но определению р =1). [c.297]

    Реакц. серия диссоциации бензойных к-т в воде прн 25 °С выбрана как стандартная, при этом величины (К/Ко) = а представляют константы заместителей R. Ур-ние (4) известно как ур-ние Гаммета и обычно записывается в форме  [c.474]

    Постоянные ст Гаммета рассчитывались, главным образом, из значений констант диссоциации замещенных бензойных кислот, беличи- [c.177]

    Уменьшение рКа фенилуксусной кислоты, вызванное замещением мета-водорода на С1 или N02, составляет соответственно —0,18 и —0,34, что существенно меньше, чем для бензойной кислоты. Для фенолов же эти различия достигают —0,90 и —1,53, т. е. гораздо больше, чем для бензойной кислоты. Согласно уравнению Гаммета (3-66) , для таких реакций, как диссоциация протонов в фенилуксусных кислотах и фенолах, изменение ЛО, вызванное Л1е7 а-замещением, пропорционально о, т. е. изменению ЛО в ходе стандартной реакции диссоциации протона бензойной кислоты [32—34].  [c.235]

    В 1937 г. Л.Гаммет на основании большого экспериментального материала предложил известное рст-уравнение, связывающее константу скорости реакции ароматического соединения с константой диссоциации соответствующей бензойной кислоты. Годом позднее М.Иванс и М.Поляни вывели эмпирическое соотнощение а = а АН для реакции атомов натрия с алкилгалогенидами. В 1954 г. Н.Н.Семенов рассмотрел и показал применимость такого соотношения к большому числу реакций радикального отрыва. В эти же годы (1952-1953) Р.Тафт выдвинул постулат об аддитивном влиянии структурных факторов. В 50-70-х годах был накоплен обширный экспериментальный материал по разнообразным реакциям ароматических и алифатических соединений и применению к ним уравнений Гаммета, Тафта и Поляни-Семеиова. [c.228]

    В 1935 г. Гаммет и Буркхардт обнаружили линейную зависимость между константами скорости и константами равновесия в ароматическом ряду, в сериях однотипных реакций. За основу были взяты константы равновесия кислотной диссоциации бензойной кислоты Ко) и ее мета- и пара-функциональных производных К)  [c.252]

    Из констант диссоциации замещенных бензойных кислот вычислены для ферроценила [ИЗ] значения о Гаммета Ор = —0,18 = —0,15. Следовательно, ферроценил, в отличие от фенила, в ле-положении остается сравнительно сильным электронодонорным заместителем. Ферроценил как заместитель в бензольном кольце обладает положительным индукционным эффектом (поскольку из л1-положепия влияние заместителя главным образом индукционное). [c.23]

    Так называемая константа заместителя прямо связана с ти-Ы реакции. В конце 1960-х гг. был проделан следующий экс-фимент. Была проанализирована применимость уравнения Гам-Ьта более чем к тридцати различным реакциям разнообразных шов (ионизация фенолов и анилинов, диссоциация бензойных 1СЛОТ, сольволиз бензилгалогенидов и т.д.), осуществляющихся действии электрофильных или нуклеофильных агентов. При ом для всех ле/яа-заместителей константы ст считались извест-I (по таблице Гаммета), а для яара-нитрогруппы константу определяли с помощью наилучшей прямой, проведенной че-точки, соответствующие заместителям с известными зна- НИЯМИ ст. В результате для разных реакций получили констан-I ст (К02), которые имели значения от 0,76 до 1,33, причем 1НЫ ст не концентрировались вокруг известных констант пг (М02) = 0,78 и ст (КО = 1,28), а плавно изменялись в указан-эм интервале. [c.431]

    Смит и Эллиот , применяя в качестве индикаторов а-нафтол-бензоил и о-нитроанилин, вычислили функцию кислотности Гаммета для разбавленных растворов ряда сильных кислот в ледяной уксусной кислоте. Используя данные Колыгофа и Уил-мэна по электропроводности, они подсчитали, что константа диссоциации хлорной кислоты в растворе ледяной уксусной кислоты составляет 9-10 . Это было интерпретировано как результат диссоциации ионной пары. При добавлении к раствору воды устанавливается равновесие  [c.32]

    Необходимо подчеркнуть, что линейное соотношение между скоростью реакций специфического кислотно-основного катализа и концентрацией катализатора на практике наблюдается лишь применительно к разбавленным водным растворам. В водно-органических и неводных средах, а также при повышенных концентрациях компонентов, первый порядок по катализатору обычно меняется на дробный. Для объяснения таких фактов многие авторы прибегали к сложным построениям, касающимся механизма реакции на уровне субмолекулярных частиц и активированных комплексов. Просто и убедительно решил этот вопрос Гаммет [209], предложивший применять для количественной оценки кислотно-основных свойств реакционных сред величину Яо, названную функцией кислотности. В основе метода Гаммета лежит измерение в исследуемой среде степени диссоциации какого-либо вещества — индикатора, равновесное содержание недиссоцииро-ванной и ионизированных форм которого удобно для экспериментального определения (например, спектрофотометрическим [c.76]


Смотреть страницы где упоминается термин Гаммета диссоциации: [c.71]    [c.275]    [c.257]    [c.339]    [c.339]    [c.304]    [c.235]    [c.349]    [c.44]    [c.55]    [c.94]    [c.257]    [c.258]    [c.245]    [c.337]    [c.433]    [c.434]    [c.321]   
Основы синтеза промежуточных продуктов и красителей Издание 4 (1955) -- [ c.56 ]




ПОИСК





Смотрите так же термины и статьи:

Гаммета



© 2025 chem21.info Реклама на сайте