Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация радиоактивными частицами

    Особенности аэрозолей заключаются в том, что из-за низкой вязкости воздуха седиментация и диффузия частиц аэрозоля протекают очень быстро. Кроме того, дымы и туманы легко переносятся ветром, что используют для создания дымовых завес, окуривания и опрыскивания сельскохозяйственных культур. Электрические свойства аэрозолей чрезвычайно сильно отличаются от электрических свойств систем с жидкой средой, что объясняется резким различием плотностей и диэлектрических свойств газов и жидкостей. В газовой среде отсутствуют электролитическая диссоциация и ДЭС. Однако частицы в аэрозолях имеют электрические заряды, которые возникают при случайных столкновениях частиц друг с другом или с какой-нибудь поверхностью. Возможна также адсорбция ионов, образующихся при ионизации газов под действием космических, ультрафиолетовых и радиоактивных излучений. Для аэрозолей характерна крайняя агрегативная неустойчивость. Их длительное существование связано с высокой дисперсностью и малой концентрацией. Это значит, что устойчивость аэрозолей является лишь кинетической, термодинамические факторы устойчивости отсутствуют. [c.447]


    Ионный ток возникает в детекторе под действием какого-либо источника ионизации (радиоактивного изотопа, пламени, разряда, фотоионизации, электронной и ионной эмиссии) и электрического поля (разности потенциалов) между электродами детектора. В любой момент времени в детекторе достигается равновесие, характеризующееся тем, что скорость образования заряженных частиц (ионов, электронов) равна сумме скоростей рекомбинации и сбора заряженных частиц на электродах детектора. Скорость сбора определяет ток детектора. В ионизационных детекторах создаются такие условия, при которых либо плотность (концентрация) заряженных частиц, либо скорость переноса их в электрическом поле зависит от состава газа. [c.49]

    Рассмотрим влияние заряда на процесс конденсационного образования новой фазы. Явления, происходящие в камере Вильсона, показывают, что радиоактивная частица, проходящая через пересыщенный пар, оставляет видимый след (трек), образованный жидкими капельками аэрозоля (тумана). Прохождение частицы с высокой энергией вызывает ионизацию, а следовательно появление электрических зарядов, облегчающее образование зародышей, которое в обычных условиях затруднено в связи с большой величиной давления пара над малыми каплями. [c.300]

    Явления, происходящие в камере Вильсона, показывают, что радиоактивная частица, проходящая через пересыщенный пар, оставляет видимый трек (след), образованный жидкими капельками аэрозоля (тумана). Прохождение частицы с высокой энергией вызывает ионизацию, облегчающую образование зародышей, которое в обычных условиях затруднено в связи с большой величиной давления пара над малыми каплями. [c.292]

    Камера Вильсона является одним из старейших методов исследования в ядерной физике. Регистрация радиоактивного излучения с помощью этого прибора основана на том, что пересыщенный пар, заполняющий камеру, при попадании во внутреннее пространство камеры радиоактивной частицы конденсируется на пути следования (по треку) этой частицы. Это обусловлено тем, что при ионизации молекул пара, заполняющего камеру, образуются центры конденсации и, таким образом, трек частицы становится видным. [c.116]

    Пассивирующее действие галоидов выражается в резком замедлении анодной реакции — ионизации металла. Как и в случае пассивации металла кислородом, здесь образуется адсорбированное химическое соединение галоида с железом, вытесняющее с поверхности другие адсорбированные частицы при этом емкость электрода уменьшается. Как показывают определения, проведенные с помощью радиоактивного индикатора, [c.446]


    Пороговая чувствительность детектора по сечениям ионизации ограничена главным образом тем, что число ионизирующих частиц П], излучаемых в 1 сек радиоактивным источником, а следовательно, ионизационный ток 1д, создаваемый ими, имеют статистические флуктуации. Если постоянная времени регистратора ионизационного тока составляет t сек, то регистрируемые статистические флуктуации ионизационного тока лежат в пределах [c.138]

    Значит, предел детектирования зависит не от величины фонового тока /о, а только от поперечных сечений ионизации газа-носителя и анализируемого вещества и числа ионизирующих частиц, излучаемых радиоактивным источником в ионизационное пространство в единицу времени. При точных количественных анализах необходимо учитывать, что расчет поперечных сечений ионизации молекул по формуле (1) является приближенным, так как при атом не принимаются во внимание связи между атомами. Кроме того, природа газа-носителя также оказывает влияние на эффективное поперечное сечение ионизации. Поэтому при высоких требованиях к точности анализа необходимо, как и при работе с другими детекторами, эмпирическое определение поперечных сечений ионизации или относительных поправочных коэффициентов. [c.138]

    Существуют также ячейки с мембраной, впаянной непосредственно в их боковую стенку. Конструкция одной из таких ячеек, предназначенной для исследования кинетики и механизма процессов разряда-ионизации на амальгамных электродах, позволяет не только следить за накоплением радиоактивного металла в электролите, но также фиксировать переход металла в индикаторный ртутный электрод вследствие протекания на его поверхности реакции дис-пропорционирования низковалентных промежуточных частиц растворения амальгам. [c.214]

    Основные характеристики. Дисперсионную среду характеризуют хим. составом, т-рой, давлением, степенью ионизации, параметрами внеш. физ. полей, полем скоростей течения, наличием турбулентности и ее параметрами, наличием и величиной градиентов т-ры и концентрации компонентов. Важнейшие параметры дисперсной фазы А.-объемная доля частиц ср и их массовая доля ф , число частиц в единице объема (счетная концентрация) Пр, средний размер частицы йр и ее электрич. заряд. Параметры дисперсной фазы атм. А. 1ШИ нормальных т-ре и давлении составляют 5-10 -10- см, Ир 1-10 м ф 10- -10" , 10" В верх, слоях атмосферы = 10 -10 см" 10" -10" Наряду с усредненными величинами дисперсную фазу характеризуют распределением частиц по размерам и по величине электрич. заряда (последнее даже для моно-дисперсных А.). Если в-во дисперсной фазы радиоактивно, необходимо знать также уд. активность частиц. [c.235]

    В ионизационных радиоизотопных В. для ионизации газа используют гл. обр. а-излучение. Особенность таких В. в отличие от электронных-отсутствие электрода, ускоряющего а-частицы, энергия к-рых при радиоактивном распаде очень велика. Достоинство строго линейная зависимость тока ионизации от давления, недостаток не очень высокая чувствительность. [c.344]

    Обнаружение и измерение радиоактивности при испускании альфа-, бета- и гамма-лучей основано на их способности вызывать ионизацию среды, сквозь которую они проходят. Быстро движущиеся альфа- и бета-частицы способны выбивать орбитальные электроны из обычных атомов, вблизи которых они пролетают, и создают ионные пары, что приводит к появлению ионной проводимости в среде. Гамма-лучи также могут выбивать орбитальные электроны из атомов, и эти выбитые электроны присоединяются к нейтральным молекулам, в результате чего в среде возникает ионная проводимость. [c.432]

    Таким образом, в зависимости от типа частицы, ее энергии, химического состава образца, времени облучения в смазочном материале происходят различные микроскопические изменения, начиная от ионизации атомов и молекул и кончая полным превращением одних атомов в другие. При этом разрываются химические связи и образуются свободные радикалы, ионы и радикал-ионы, которые обладают свободными валентностями и избыточной энергией. В результате в облучаемой среде возникают различные химические реакции синтез и разложение, полимеризация и деструкция, окисление и восстановление, изомеризация или любая комбинация из этих процессов. Совокупность микроскопических процессов, происходящих под действием радиоактивного излучения, вызывает возникновение макроскопических эффектов в смазочных материалах. Изменения, которые при этом претерпевают смазочные материалы, могут быть весьма значительными и зачастую приводят к полной потере их эксплуатационных свойств. [c.240]

    Радиоизотопные ионизаторы представляют собой излучатели радиоактивных частиц, которые обладают свойством ионизировать тот объем воздуха, через который они про.чодят. Для ионизации воздуха используют а- и -излучения. Наибольшее применение в радиоизотопных ионизаторах получили плутоний-239, прометий-147 и итрий-90. Эффективная ионизирующая способность плутония-239 наблюдается на расстоянии до 40 мм от поверхности источника излучения, а прометия-147— до 400 мм. [c.175]


    I — катод 2 — радиоактивный источник 3 — молекулы газа-носнтеля 4 — положительные ноны газа-иосителя 5 — отрицательные иоиы пробы б — молекулы пробы 7 — электроны 5 —анод 9 — вход газа-носителя /О — зона ионизации //-р-частицы /2 — выход газа из детектора. Скорость дрейфа электрона — 10 см/с скорость дрейфа иона— 1 — 10 см/с скорость газа-иосителя в детекторе 1—2 см/с [c.172]

    Жидкие ионизационные детекторы имеют ряд особенностей. Зависимость амплитуды импульса от напря-жсЕшости электрического поля для заряженных частиц с большой удельной плотностью ионизации (а-частицы радиоактивного распада, осколки деления) не имеет плато вплоть до напряженностей электрического поля 20МВ/м. Для легких заряженных частиц (электроны) [c.100]

    РадиоизотОпные ионизаторы представляют собой излучатели радиоактивных частиц, которые обладают свойством ионизировать тот объем воздуха, че,рез который они проходят. Для ионизации воздуха используют а- или р-излучение. Наибольшее применение в радиоизотоиных ионизаторах получили плутонйп-239, проме- [c.215]

    Иониза1 иомные счетчики. Их действие основано на возникновении ионизации или газового разряда, вызванного ионизацией при попадании в счетчик радиоактивных частиц или у-квантов. Среди десятков приборов, использующих ионизацию, типичными [c.266]

    Обычно в ионизованных системах, находящихся в ква-зиравновесном состоянии, количество положительно и отрицательно заряженных частиц примерно одинаково или очень редко отрицательно заряженных частиц больше, чем электронов. Так как электроны в силу своей малой массы двигаются с большей скоростью, чем атомы и ноны, то нейтрализация иона определяется в большей степени столкновениями ионов с электронами, чем ионов с ионами. Только в газах при высоких давлениях или при ионизации радиоактивным излучением, а также в сильно нагретых ионизованных газах осуществляются условия, при которых начинает преобладать рекомбинация ионов с ионами. [c.103]

    В настояш,ее время идентифицировано небольшое число соединений кюрия. Вследствие высокой радиоактивности приходится работать с количествами кюрия порядка 0,5 мкг или меньше и для получения удовлетворительных рентгенограмм давать экспозиции менее одного часа. Это необходимо для предотвра-щеипя засвечивания пленки и сведения к минимуму разрушения кристаллической решетки за счет отдачи и ионизации а-частицами. Такое положение, конечно, улучшится, когда станет доступным поскольку будет обеспечена возможность работы с образцами весом до 10 мкг и экспозициями до 20 ч. Окислы кюрия исследовались на этом долгоживущем изотопе. Из возможных твердых соединений кюрия данные имеются только для окислов кюрия, а также для три- и тетрафторидов. [c.424]

    Изучение механизма процесс.ов электроосаждения и анодного растворения металлов осложняется том, что п случае твердых металлов, наряду с двумя обычными стадиями всякой электрохимической реакции (перенос реагирующих частиц, разряд или ионизация этих частиц), имеется еще стадия включения разрядившегося атома в кристаллическую решетку металла. Изучение кинетики процессов ионизации и разряда иопов металлов па амальгамных элвктpo lдx позволяет устранить одну из этих стадий (кристаллизация) при использовании амальгам обеспечивается однородность поверхности и легко достигается ес чистота кроме того, при работе с амальгамами можно изучать зависимость скорости анодного процесса от концентрации металла в амальгаме, т. е. получать более полную характеристику анодного процесса, чем в случае твердого металла. Основная трудность изучения механизма стадии разряда — ионизации состоит в том, что для многих металлов ее скорость настолько велика, что в обычных условиях скорость всего процесса лимитируется стадией переноса вещества. Тем не менее, в настоящее время можно считать доказанным, что для значительпопз числа металлов ток обмена имеет конечную величину. Путем применения новых экспериментальных методов к изучению электрохимической кинетики, а именно переменноточного метода [1—3], нестационарных методов с осциллографической записью изменения нотенциала электрода после включения тока постоянной плотности [4—7] или изменения плотности тока при постоянном потенциале электрода [8] в начальной стадии процесса, а также метода радиоактивных индикаторов [9, 10] для ряда систем были измерены величины тока обмена. Результаты изучения зависимости тока обмена от концентрации амальгам и растворов [1, 3,9, 10] хорошо согласуются с теорией замедленного разряда. [c.116]

    Важным является также выбор надежных и достаточно чувствительных методов регистрации СОг. Распространенным типом регистрирующих счетчиков являются газо-разрядные счетчики, основанные на способности радиоактивных частиц вызывать ионизацию в газовой фазе. В принципе анализ при помощи газо-ионизационной техники применим ко всем радиоактивным изотопам, по на практике возникают ограничения как при обнаружении, так и в случае нриготовления образцов, имеющих слабую энергию радиации Н, Те и др. Для высокоэффективного счета этих и [c.117]

    ЦЫ имеют средний пробег в газе 4 см, так что в ионизацион ной камере с такими размерами -частицы будут создавать на всем пути, от места их зарождения до стенок камеры, почти максимальную возможнз ю ионизацию. Как отмечалось раньше в приборах, работающих на принципе интегрирования ионизационного тока, -частица дает во много раз больший прирост тока ионизации, чем отдельные частицы космических лучей или Р- и 7-лучп внешнего происхождения. Напротив, в счетчиках Г.—М. все такие частицы дают одинаковые импульсы. Конечно, с другой стороны, а-частица от радиоактивных примесей даег примерно в 25 раз более сильный прирост тока ионизации, чем -частица углерода. Однако количество а-активных примесей можно снизить до очень незначительной величины. Кроме того,, можно построить настолько чувствительные динамические конденсаторные электрометры, что с их помощью можно отдельно определить долю а-частиц и вычесть ее из суммарного тока ионизации. [c.179]

    При умеренных температурах ионы могут образовываться из молекул газа под действием частиц высоких энергий или жесткого электромагнитного излучения. Это происходит, -например, при прохождении через газ а- и (З-частиц и у-излучения при радиоактивном распаде, при облучении рентгеновскими луча ,и1, при действии пучка электронов или других частиц, полученного в ускорителях элементарных частиц, при действии нейтронов в ядерных реакторах, при прохожденш через газ электрического разряда. В частности, ионизацией газа сопровождается действие жесткой солнечной радиации и космических лучей на верхние слои атмосферы н действие газовых разрядов на нижние слои атмосферы. [c.27]

    У незаряженных нейтронов не может быть электрического взаимодействия они останавливаются при столкновении с ядром подобно биллиардным щарам. Бомбардируемые атомы отскакивают со скоростью, достаточной для потери орбитальных электронов, и прохо-. дят через поглотитель в виде тяжелых заряженных частиц. Нейтроны могут быть также остановлены в результате поглощения атомными ядрами с сбразсванием новых, обычно радиоактивных, изотопов, но при облучении этот процесс, как правило, не имеет большого значения. Таким образом, все типы ионизирующего излучения приводят к образованию заряженных частиц большой энергии, которые в конечном итоге теряют ее, образуя ионизированные и возбужденные атомы или молекулы. Конечный результат такой ионизации и возбуждения зависит от природы химических связей в облученном материале. [c.157]

    На нонизацпонном эффекте, производимом радиоактивным излучением, основан принцип работ следующих типов детекторов ионизационной камеры, пропорционального счетчика и счетчика Гейгера — Мюллера. Все эти детекторы представляют собой наполненные той или иной газовой смесью сосуды, которые имеют два электрода. Схема включения детектора показана на рис. 125. Механизм ионизации газов излучением различного типа и энергии не одинаков, но энергия, затрачиваемая на образование пары ионов во всех случаях составляет около 34 эв. Величина первичной ионизации, т. е. ионизация, производимая ядерной частицей непосредственно, зависит только от доли энергии, [c.334]

    Главным элементом радиоизотопных детекторов является ионизационная камера, в которой происходит ионизация анализируемого газа излучением радиоактивного источника. Для получения высокой разрешающей способности камера должна обладать возможно меньшим объемом. В то же время сопротивление изоляции между обоими электродами камеры, а также между измерительным электродом и заземленным корпусом детектора должно быть существенно больше величины измерительного сопротивления электрометра, применяемого для регистрации изменений понизационного тока. Наконец, число ионизирующих частиц в ионизационной камере должно быть настолько велико, чтобы можно было определить очень малые [c.140]

    При взаимодействии радиоактивного излучения с веществом происходят процессы ионизации и возбуждения атомов и молекул. Фотоны и частицы с достаточно высокой энергией могут вызвать ядерные реакции. Однако преобладающий процесс — взаимодействие излучения с электронами атомных оболочек и электрическим полем атомного ядра. При подобном взаимодействии частицы или фотоны теряют энергию или часть ее. Некоторые столкновения приводят к изменению направления движения частицы. Это значит, что радиоактивное излучение абсорбируется и рассеивается веществом. Указанные процессы взаимодействия положены в основу методов обнаружения а-, Р- и у-излучения. На этом же принципе основаны методы радиометрического анализа веществ без их разру шения [1,2, 6]. [c.304]

    Во многих случаях устойчивость аэрозолей увеличивается благодаря присутствию стабилизатора. Стабилизация при этом осуществляется путем приобретения электрического заряда или путем образования защитных слоев на поверхности частиц. Электрический заряд частиц возникает либо в результате адсорбции ионов-из газовой среды или за счет ионизации газа (воздуха) под действием ультрафиолетовых, рентгеновских и космических лучей, а также радиоактивных излучений либо, наконец, за счет трения. Знак заряда пылевых частиц зависит и от химического состава пыли и дыма основные вещества (СаО, ZnO, MgO, РегОз) дают отрицательно заряженные пыли, а кислые (SiOj, РгОб, а также уголь) — положительно заряженные. В отличие от гидрозолей частицы аэрозолей не имеют диффузного слоя ионов (слоя противоионов) кроме того, частицы в аэрозолях могут jie TH paMH4№ie по знаку и величине заряды или быть нейтральными. При этом наибольшую устойчивость проявляют аэрозоли с одноименно заряженными частицами. [c.350]

    В детекторе по сечениям ионизации газ, выходящий из колонки, проходит между двумя электродами маленькой ионизационной камеры н облучается радиоактивным источником, установленным в камере. Под действием этого излучения атомы либо возбуждаются, либо ионизируются. Мерой вероятности того, что атом будет ионизирован пролетающей мимо электрически заряженной частицей, служит в большинстве случаев поперечное сечение ионизации атома. Оно не идентично геометрическому поперечному сечению и зависит главным образом от электронной структуры атома. Сечение ионизации растет с числом заполненных электронных оболочек и с числом электронов на частично заполненной внешней электронной оболочке (Отвос п Стивенсон, 1956). Поперечные сечения ионизации. молекул во многх х случаях могут быть очень точно вычислены путем суммирования поперечных сечений ионизации атомов, входящих в молекулу. В табл. 2 даны отно- [c.136]

    Кинематические методы. Этими методами проводится прямое измерение скорости ш как пути, пройденного элементом жидкости за некоторое время ш) = Д5/Лт. Наблюдения ведутся за перемещением меток , в отношении которых нредполагает-ся, что их скорость совпадает со скоростью окружающей жидкости (газа). Кинематические методы применяются как для исследования. осредненных во времени скоростей, так и, главным образом, для измерения мгновенных скоростей в потоке. В качестве меток обычно используют взвешенные частицы (например, дым для газовых потоков, порошок из алюминиевой пудры для водных потоков и т.п.). Метками могут быть различного рода неоднородности в движущейся среде, отличающиеся от средь температурой, плотностью, светимостью, коэффициентом преломления, коэффициентом поглощения, радиоактивностью, зарядом, степенью ионизации и т. п. Метки могут вноситься искусственно или же содержаться в потоке как его естественные примеси (подробнее см. в [c.414]

    ИОНИЗАЦИИ ПОТЕНЦИАЛ, см. Потенциал ионизации. ИОНИЗЙРУЮЩИЕ ИЗЛУЧЕНИЯ, потоки фотонов или частиц, взаимод. к-рых со средой приводит к ионизации ее атомов или молекул. Различают фотонное (электромагнитное) и корпускулярное И.и. К фотонному И.и. относят вакуумное УФ и характеристическое рентгеновское излучения, а также излучения, возникающие при радиоактивном распаде и др. ядерных р-циях (гл. обр. 7-излучение) и при торможении заряженных частиц в электрич. или магн. поле - тормозное рентгеновское излучение, синхротронное излучение. К корпускулярному И. и. отиосят потоки а- и Р-частиц, ускоренных ионов и электронов, нейтронов, осколков деления тяжелых ядер и др. Заряженные частицы ионизируют атомы или молекулы среды непосредственно при столкновении с ними (первичная ионизация). Если выбиваемые при этом электроны обладают достаточной кинетич. энергией, они также могут ионизировать атомы или молекулы среды при столкновениях (вторичная ионизация) такие электроны наз. 5-электрона.ми. Фотонное излучение может ионизировать среду как непосредственно (прямая ионизация), так и через генерированные в среде электроны (косвенная ионизация) вклад каждого из этих путей ионизации определяется энергией квантов и атомным составом среды. Потоки нейтронов ионизируют среду лишь косвенно, преим. ядрами отдачи. [c.254]

    Ионы в атмосфере Земли и Солнца. В разных слоях земной атмосферы ионизация обусловлена действием источников разной мощности в приземном слое-это излучение радиоактивных изотопов земной коры, в тропосфере и нижней стратосфере (0-25 км)-космич. лучи, в ионосфере (65-600 км)-коротковолновое УФ излучение Солнца. Наиб, вклад в ионизацию земной атмосферы вносит поток УФ излучения с длинами волн короче 103 нм, к-рый поглощается на высотах 100-300 км, ионизируя в осн. О, N2, Ог- На высоте 300 км абс. максимум дневной концентрации заряженных частиц (гл. обр. 0+ и е) составляет 10 см . Концентрация электронов здесь зависит от скорости ионно-молекулярных р-ций, превращающих атомарные ионы О , практически иерекомбини-рующие, в быстро рекомбинирующие молекулярные ионы [c.270]

    Десорбционная ионизация основана на бомбардировке труднолетучего в-ва, помещенного в матрицу (глицерин, монотиоглицерин, полиэтиленгликоли, этаноламины и др. жидкости), пучками ускоренных частиц (атомы или ионы инертных газов Аг, Кг, Хе, а также ионы щелочньк металлов, напр. С ). В результате диффузионного обмена в жидкости с облучаемой пов-сти непрерывно удаляются продукты деструкции в-ва, что позволяет получать хорошо воспроизводимые масс-спектры. Применяют также метод ионизации тяжелыми продуктами деления радиоактивного и ионами тяжелых элементов, получаемыми на ускорителях. В местах попадания таких тяжелых частиц в мишень, к-рая представляет собой пленку исследуемого в-ва на металлич. фольге, металлизир. пластике или нитроцеллюлозе, за 10 " с достигаются т-ры до 3-10 °С. Такое быстрое нагревание позволяет ионизировать тяжелые молекулы без разложения. [c.660]


Смотреть страницы где упоминается термин Ионизация радиоактивными частицами: [c.76]    [c.461]    [c.53]    [c.11]    [c.24]    [c.599]    [c.370]    [c.52]    [c.80]    [c.208]    [c.215]   
Методы практической биохимии (1978) -- [ c.189 ]




ПОИСК





Смотрите так же термины и статьи:

Ионизация частиц



© 2025 chem21.info Реклама на сайте