Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стокса течения

    Однако при исчезающе малом, но конечном значении величины Ог, граничное условие (10.32) означает, что градиент концентрации в сечении на выходе равен нулю. Это несколько неожиданный вывод, потому что явно превалирующее условие, когда = О, не может рассматриваться как предел общего решения задачи при Ог, стремящемся к нулю. Рассмотренная ситуация имеет аналогию в классической механике жидкости, решенную Прандтлем путем введения концепции пограничного слоя. В последнем случае решения задачи невязкого течения или уравнений Эйлера не являются пределом, к которому стремится решение общих уравнений Навье — Стокса, когда вязкость приближается к нулю. [c.121]


    Рассмотрим плоскопараллельное стационарное течение несжимаемой жидкости, ограниченной динамически гладкой непроницаемой поверхностью, при отсутствии продольного градиента давления. Ось х направим по течению, а ось у — перпендикулярно граничной плоскости. Тогда уравнения, описывающие поведение флуктуаций скорости в турбулентном потоке, получаемые вычитанием уравнении Рейнольдса из полных уравнений Навье—Стокса, примут вид  [c.171]

    Чтобы оценить по достоинству значение работ Н. П. Петрова, нужно учесть, что в то время работы Рейнольдса о сущности ламинарного и турбулентного течения жидкости были мало известны. Позже, проведя глубокий анализ движения вязкой жидкости в канале, образованном двумя поверхностями, находящимися в относительном движении, Рейнольдс показал, что шип может поддерживать нагрузку только при эксцентричном его положении. Свое приближенное уравнение ГТС, разработанное на основании уравнения механики вязкой жидкости Навье — Стокса, Рейнольдс вывел на основании следующих допущений гравитационными и инерционными силами можно пренебречь вязкость смазочной среды постоянна жидкость (смазка) несжимаема толщина пленки смазки мала по сравнению с другими размерами скольжение на границе жидкость— твердое тело отсутствует влиянием поверхностного на--тяжения можно пренебречь смазка является ньютоновской жидкостью. [c.229]

    Уравнения движения для неньютоновских течений могут быть получены из уравнений Навье - Стокса, записанных в компонентах тензора напряжений зависимостями (1.101), (1.102). В случае осесимметричного обтекания уравнения Навье - Стокса в сферических координатах можно записать в виде  [c.32]

    Использование уравнения движения реальной жидкости совместно с уравнениями неразрывности позволяет решить основную задачу гидродинамики — определить поля скоростей, давление и плотность жидкости, движущейся под действием заданных внешних сил. Однако решение уравнений Навье—Стокса получено только для простейших случаев одно- и двухмерного потока. Кроме того, это уравнение ие описывает течение жидкости при турбулентном режиме. [c.276]

    Кинетика расслаивания жидкофазных систем. В связи с распространенностью многофазных систем большое внимание уделяется разработке теории их движения, причем в последнее время наблюдается бурное развитие этой области знаний. Обзор многочисленных работ, посвященных этой теме, изложен в [23, 24—26]. Сложность общего математического описания заставляет при решении конкретных задач делать те или иные допущения, вносящие определенные погрешности в решение задачи. Так, во многих случаях течение двухфазной системы может рассматриваться как ползущее, т. е. числа Рейнольдса, рассчитанные по диаметру частиц, очень малы (седиментация тонких эмульсий, суспензий и т. д.). Тогда возможна линеаризация уравнения Навье—Стокса, если пренебречь инерционными членами. Такое допущение справедливо и в случае, когда течение смеси в целом по отношению к внешним границам характеризуется большими числами Рейнольдса, тем не менее можно говорить о малости чисел Рейнольдса для движения частиц относительно сплошной фазы. Кроме того, инерционные эффекты менее существенны в системах, состоящих из группы частиц в органической жидкой среде. [c.288]


    Для решения задачи с отрывом пограничного слоя от поверхности перегородок при возникновении за ними обратных течений и сосредоточенных вихрей целесообразно использовать известную схему решения задачи о суперкавитирующей наклонной плоской пластинке (режим обтекания, при котором вся тыльная часть соприкасается с каверной) или дуге в неограниченной жидкости под свободной поверхностью или в канале. При этом вводится ряд допущений, согласно которым рассматриваются плоские, потенциальные, установившиеся течения несжимаемой невесомой жидкости [64—66]. Анализ такой схемы суперкавитационного обтекания базируется на применении аппарата теории функций комплексного переменного и комплексного потенциала в отличие от непосредственного решения уравнений Навье—Стокса. Согласно упомянутой схеме, задача движения газового потока в канале с системой наклонных перегородок сводится к рассмотрению плоского течения идеальной жидкости, для которого справедливы условия [c.175]

    При течении газа в тесных каналах между элементами насадки существенную роль играют силы вязкости, что приводит к необходимости применения к процессу движения газа в насадке основных уравнений движения вязкой жидкости Навье—Стокса. Однако прямое интегрирование уравнений Навье—Стокса при столь сложных граничных условиях, какие обусловливает насадочная среда, оказывается невозможным. Поэтому запишем для потока газа уравнения Навье—Стокса в форме уравнений гидродинамики Эйлера, но к действительно существующей массовой силе X прибавим фиктивную массовую силу Х , которая учитывает эффект вязкого трения и называется фиктивной силой сопротивления Жуковского  [c.407]

    При ламинарном режиме течения газа скорость оседания частиц может быть определена по закону Стокса. Уравнение в этом случае имеет вид  [c.87]

    Течения, вызванные подъемными силами. Массовая сила в уравнении Навье — Стокса (51) — это обычно гравитационная сила [c.104]

    Ламинарное течение (Re<2400). Если число Рейнольдса меньше, чем примерно 2400, то течение является ламинарным, причем любые возмущения в нем затухают. В этом режиме уравиения Навье — Стокса (62J — (65) нз 2.2.1 можно существенно упростить их решение приводит к закону Хагена — Пуазейля. [c.120]

    Область промежуточных чисел Рейнольдса. Для течений, характеризующихся промежуточными значениями числа Рейнольдса, обычно возможны только экспериментальные исследования, позволяющие установить некоторые эмпирические соотношения. В настоящее время в связи с бурным развитием вычислительной техники существует тенденция ко все большей замене экспериментов численными расчетами. Основные усилия направлены на решение так называемых усредненных по Рейнольдсу уравнений Навье — Стокса (см. 2.2.1) с использованием более или менее детальных моделей турбулентности. Конечной целью является численное решение полных временных уравнений Навье — Стокса, включая прямое численное моделирование крупномасштабных турбулентных вихрей. При этом модельное описание остается необходимым только для мелких вихрей, размер которых меньше шага разностной сетки. Предполагая, что существующие тенденции развития вычислительной техники сохранятся и в будущем, можно заключить, что к 1990 г. станут реальными расчеты течений с учетом турбулентных вихрей на сетке, состоящей из 10 —10 узлов [12]. [c.136]

    Значение Nuг,, ат определяется из уравнения (2), Миг,(игь— из уравнения (8). Соотношение (17) рекомендуется использовать в следующем диапазоне чисел Рейнольдса и Прандтля 1<Нег<10 0,6<Рг<10 . В области очень малых чисел Рейнольдса уравненне (2) (Не/<1) использовать нельзя, так как толщина пограничного слоя не так мала по сравнению с размером тела. В этой области течения Стокса рекомендуется использовать следующее уравнение  [c.244]

    В области очень низких чисел Рейнольдса (Не <1) уравнение (2) нельзя использовать, так как толщина пограничного слоя соизмерима с диаметром сферы, В этой области (течение Стокса) для расчета чисел Ыи на сфере используется соотношение [c.247]

    Область формирования течения начинается относительно близко к поверхности (согласно [1] расстояние Zg составляет около 11,2 диаметра сопла). Здесь вертикальная составляющая скорости уменьшается и преобразуется в ускоряющуюся горизонтальную составляющую скорости. Известны аналитические решения уравнений Навье-Стокса д.чя такого течеиия в окрестности критической точки для идеализированного предельного случая бесконечно широ- [c.267]

    Это уравнение было получено при условии, что членами уравнения Навье — Стокса, характеризующими силы инерции для жесткой сферы в безграничном потоке, можно пренебречь. Исходя из уравнения (1У.4) коэффициент лобового сопротивления для области вязкого течения может быть представлен в виде [c.200]

    Идеальной моделью движения жидкостей в порах является закон Стокса для течения жидкости в цилиндрическом капилляре. Вывод закона сводится к следующему. Предполагается ламинарный режим течения жидкости по цилиндрическому капилляру радиусом г и длиной I (рис. IV. 15). Каждый слой жидкости в капилляре течет со своей скоростью, возрастающей от нуля (около стенки капилляра) до и акс (в центре его). Сила внутреннего трения по цилиндрической границе движения радиусом х в соответствии с уравнением Ньютона равна [c.231]


Рис. IV. 15. К выводу закона Стокса для течения жидкости в капилляре. Рис. IV. 15. К <a href="/info/1387658">выводу закона</a> Стокса для <a href="/info/15463">течения жидкости</a> в капилляре.
    При малых перепадах давления с увеличением радиуса капилляров возрастает роль силы тяжести жидкости, а с уменьшением их радиуса роль капиллярных сил, обусловленных смачиванием и кривизной поверхности. Пренебрежение указанными факторами иногда может привести к существенным погрешностям в расчетах определяемых параметров. Особенно сильные отклонения от закона Стокса наблюдаются при течении в микропорах, радиусы которых соизмеримы с радиусом действия поверхностных молекулярных ил. Жидкость в таких порах под действием поверхностных сил приобретает определенную структуру. В связи с этим течение в капилляре не может начаться до тех пор, пока перепад давления не скомпенсирует сопротивление структуры. [c.233]

    Сборник объединяет работы, опубликованные автором в научных журналах в 1957-1998 гг. Предложены вариационные принципы газовой динамики без дополнительных ограничений и магнитной гидродинамики при бесконечной проводимости. Выведены полные системы законов сохранения газовой динамики и электромагнитной динамики совершенного газа. Дано аналитическое решение задач оптимизации формы тел, обтекаемых плоскопараллельным и осесимметричным потоками газа, а также формы сверхзвуковых сопел. Построены точные решения уравнений Навье—Стокса дпя стационарных течений несжимаемой жидкости, воспроизводящие вихревые кольца, пары колец, образования типа разрушения вихря, цепочки таких образований и др. [c.2]

    Некоторые решения уравнений Навье—Стокса являются одновременно и решениями более простых уравнений гидродинамики. Возникает возможность выделять из классов решений таких более простых уравнений те, которые реализуются и в случае вязких течений. Вначале будут рассмотрены изобарические течения [3, 4], а затем, в других разделах, и течения более обших видов. [c.183]

    В рассматриваемом случае должны выполняться уравнения Навье— Стокса (1.2). Формулы (3.7) и уравнение (3.32) показывают равенство нулю величин Аи и Ау. Отсюда следует, что давление в этих течениях, как и кинематические переменные, не зависит от числа Рейнольдса. [c.198]

    Стрикверда Дж. К. Разностная схема расщепления по времени для уравнения Навье — Стокса течения сжимаемого газа и ее применение к Расчету течений в соплах со щелями. Ц Параллельные вычисления. М. Наука, 1986.— С. 236-248. [c.361]

    Движение жидкости плотностью р (кг/м ) со скоростью и (м/с) в промежутках между частицами зернистого слоя подчиняется основным законам гидродинамики— уравнениям Навье— Стокса [1, 2]. При этом жидкость и даже газ можно считать практически несжимаемыми (р = onst), поскольку скорости потоков в аппаратах малы по сравнению со скоростью выравнивания деформаций — скоростью звука. Особенности течения неньютоновских жидкостей в зернистом слое [3] изучены недостаточно и реологические свойства потока будем считать целиком определяющимися вязкостью j,[H/(m- )].  [c.21]

    Численные решения уравнения Навье - Стокса для промежуточных значений критерия Рейнольдса. Численное решение задачи обтекания твердой сферической частицы впервые проводилось Кавагути [20], который применил конечно-разностный метод, используемый в работе Тома [21] для течения вокруг цилиндра при Re= 10. В дальнейшем этот метод был усовершенствован и в ряде работ развит в релаксационный метод (метод Саусвелла), - см., например, [22]. Дженсоном [4] метод Саусвел-ла был применен к решению уравнений Навье—Стокса для течения вокруг сферы при Re = 5 10 20 и 40. Хамилек с соавторами [23], используя ту же разностную схему, что и Дженсон, построил решение для Re <100. Решение уравнений Навье - Стокса при Re <100 можно найти также в работе Симуни [24], где стационарная задача обтекания сферы рассмотрена с использованием разностной схемы для нестационарных уравнений методом установления. [c.19]

    Теоретические исследования силы сопротивления, действующей на твердую сферическую частицу, которая стационарно осаждается в дисперсной смеси и испытывает влияние окружаюншх частиц, начались ра-тами Смолуховского [22]. Как известно, точное решение этой задачи принципиально невозможно из-за необходимости удовлетворения граничных условий сразу на нескольких поверхностях. Поэтому Смолухов-ский предложил метод последовательных итераций, в котором краевую задачу можно бьшо решить в любом приближении, рассматривая каждый раз граничные условия только на одной из частиц. Этот метод получил название метода отражений и позволил решить целый ряд задач, связанных с гидродинамическим взаимодействием частиц друг с другом и со стенками канала [22]. Метод основан на линейности уравнений Стокса, описывающих установившееся течение вязкой жидкости, когда значение критерия Рейнольдса, рассчитанное по диаметру частицы, мало по сравнению с единицей. Решение задачи обтекания частицы в облаке, состоящем из N частиц, ищется в виде суммы основного возмущения, вносимогг) в поток произвольно выбранной (пробной) частицей, и последовательных, ,отражений этого возмущения от имеющихся в наличии поверхностей  [c.64]

    Задача определения силы сопротивления, действующей на частицу в суспензии, сводится к задаче отыскания полей скоростей и давлений вокруг частицы, движущейся в замкнутой оболочке. Течение жидкости в ячейке должно удовлетворять уравнениям Навье-Стокса. Рещение в аналитическом виде удается получить только для двух предельных случаев режима ползущего движения, описываемого уравнениями Стокса, и инерционного режима движения, описываемого уравнениями идеальной несжимаемой жидкости. На поверхности частицы должно удовлетворятся обычное условие отсутствия скольжения, т. е. скорость движения жидкости должна быть равной средней скорости движения частицы. Условия на внещней границе ячейки, отражающие воздействие всего потока на выделенную ячейку, не могут быть определены однозначно, поскольку механизм этого воздействия недостаточно понятен. В основном используются три типа условий 1) предполагается, что возмущение скорости, вызванное наличием частицы в ячейке, исчезает на границе ячейки [105] 2) ставится условие непротекания жидкости через границу ячейки (обращается в нуль нормальная составляющая скорости) и предполагается отсутствие касательных напряжений на границе ячейки (модель свободной поверхности) [106] 3) условие непротекания жидкости сохраняется, но предполагается, что на границе ячейки обращаются в нуль не касательные напряжения, а вихрь [107]. [c.68]

    Начнем рассмотрение процессов массопереноса с простейшего случая однокомпонентной жидкости в тонкой прослойке между незаряженными твердыми поверхностями. Здесь следует учитывать только один эффект, а именно — изменение структуры граничных слоев воды. При течении под действием градиента давления это приводит к необходимости учета послойного распределения вязкости по толщине прослойки г)(х). Если вид этой функции известен, то, решая уравнения Навье — Стокса, легко получить соответствующие выражения для скорости течения и потока в плоской щели или капилляре. В случае гидрофильных пористых тел это приводит к снижению коэффициентов фильтрации, а в случае гидрофобных — к их увеличению. [c.20]

    Если пренебречь объемными силами, то для случая ламинарного течения вязкой несжимаемой жидкости уравнение Навье — Стокса и уравнение неразрывности можно заппсать в виде  [c.234]

    Отмечено, что разделение на фильтрах суспензий с неньютоновской жидкой фазой исследовано недостаточно [168]. Дано математическое описание процесса разделения суспензии при допущениях, что оседанием частиц в суспензии можно пренебречь, фильтрат является жидкостью Стокса, движение жидкости в порах осадка ламинарное. В частности, установлено, что в координатах д—(йхЩ) - (где п — индекс текучести) получаются прямые линии в соответствии с экспериментами на системах карб-оксиметилцеллюлоза — двуокись кремния или окись алюминия. Отсюда следует, что в этих системах эмпирическая характеристика сопротивления осадка сохраняет постоянную величину в процессе фильтрования. В других экспериментах обнаружено, что удельное сопротивление осадка изменяется с течением времени. [c.58]

    Первый и второй интегралы в правой части уравнения (7.83) характеризуют соответственно прибыль капель объемом V за счет коалесценции более мелких капель и их убыль вследствие коалесценции капель объемом и с другими каплями. Для определения горизонтальной составляющей скорости движения дисперсной фазы будем рассматривать горизонтальное течение двухфазной смеси как квазигомогенное. Такое допущение справедливо, когда частицы имеют малый размер и отношение вязкостей невелико. Тогда для ламинарного горизонтального потока квазигомогенной смеси по де-кантатору можно использовать решение уравнения Навье—Стокса для ламинарного течения жидкости в открытом канале прямоугозн — ного. сечения при свойствах жидкости, вычисленных через свойства фаз. В этом случае профиль горизонтальной составляющей скорости Ых (г) но высоте канала будет определяться ь/2 [c.301]

    Обтекание сферы при малых, но конечных значениях чисел Re исследовалось Уайтхедом [2], который к решению уравнений Навье—Стокса применил метод последовательных приближений, разлагая поле потока в ряд по степеням критерия Рейнольдса. Однако это решение противоречило граничным условиям вдали от сферы. Причину трудности раскрыл Озеен [3] отношение отброшенных инерционных членов к вязким — порядка Re-а (оно мало вблизи тела при малых Re, но становится сколь угодно большим вдали от него). Решение Стокса уже непригодно в тех областях, где Re имеет иорядок единицы. Озеен для решения подобной задачи использовал линеаризованную форму инерционных членов, заменив uVu на vVv. Уравнения Озеена имеют решение, пригодное во всем иоле течения при Re 1 и совпадающее вблизи сферы с решением Стокса. Согласно Озеену, коэффициент сопротивления для твердой сферы может быть вычислен по формуле [c.248]

    Рассмотрим канал ленточно-поточного типа, образованный пластинами с горизонтальными гофрами с углом при их вершине у = 90° продольное сечение канала представлено на рис. 7.4. Процесс стационарного конвективного теплообмена при ламинарном течении жидкости в таком канале описывается системой дифференциальных уравнений в частных производных, включающих уравнения Навье - Стокса, неразрывности и энергии. Допустим, что физические свойства жидкости не зависят от температуры (и = onst, а = onst, р = onst). Тогда для вынужденного двухмерного движения потока несжимаемой жидкости эта система уравнений имеет вид  [c.352]

    Согласно закону Стокса, скорость движения выпадающих частиц прямо пропорциональна квадрату их радиуса, разности плотностей диспергированных частиц и среды, ускорению силы тяжести и обратно пропорциональна вязкости среды, окружающей частицы. При достаточно малом размере частиц (сотые доли микрона и меньше) скорость их осаждения настолько мала, что практически в течение д [птельного времени не наблюдается заметного расслоения эмульсии. Следовательно, ускорить выпадение капелек воды можно, увеличив их размер, разность плотностей воды и нефти и уменьшив вязкость нефти. [c.33]

    Определяется время протекания нефтепродукта через капилляры вискозиметров Пинкевича (или Воларовича) при заданной температуре выражается в стоксах (ст) или сантистоксах (сст) Определяется условная вязкость нефтепродуктов в вискозиметре (ГОСТ 1532—54) применяется для жидких нефтепродуктов, дающих непрерывную струю в течение всего испытания, но вязкость которых нельзя определить по ГОСТ 33—53 вязкость выражается в условных градусах (°ВУ) [c.658]

    Потенциальны и ламинарные течения являются гидродинамически обрптимыми, т. е, уравнения Эйлера и Навье — Стокса не изменяются при замене знака у временной координаты на обратный. [c.70]

    Ке О- Течение с малыми числами Рейнольдса. В этом предельном случае инерционные слагаемые в уравнениях Навье — Стокса обычно очень малы и ими можно пренебречь (течение Стокса, или ползущее движение). Однако классическая теория Стокса, в которой пренебрегается инерционными слагаемыми в уравнениях Навье — Стокса, строго говоря, непригодна для движения тела в безграничном объеме жидкости, так как в ее рамках невозможно одновременно удовлетворить граничным условиям на поверхности тела и бесконечности [8, 9]. Этот недостаток теории Стокса можно устранить, используя метод сращиваемых асимдтотических разложений [10, 11]. [c.135]

    Для чисел Рейнольдса Re< 1 применяют приближение Озика для уравнения Навье — Стокса, приведенное Ламбом. Функция потока ф в области ламинарного течения записывается в виде [c.300]

    Если рассматривается сопротивление среды в области ламинарного течения, то для определения силы Р может быть использован закон Стокса с учетом поправочного коэффициента Каннингхема С  [c.302]

    Устойчивость против расслоения МДС характеризуется временем, в течение которого ССЕ проходят путь под действием сил тяжести и сопротивления среды. В случае установившегося движения ССЕ в вязкой среде для определения т используют закон Стокса. На значение т ока.зываег в наибольшей степени влияние радиус ССЕ (как и на структурно-механическую прочность). Чем меньше размер дисперсных частиц, тем больше значение т и соответственно дисперсная система менее склонна к расслоению, т. е, более устойчива. Таким образом при т- оо нефтяная днсперсная система устойчива к расслоению, а при т- О—неустойчива. Следует здесь оговориться, что ])счь идет об относительной устойчивости дисперсных систем. В принципе, НДС с термодинамической точки зрения являются неустойчивыми системами. [c.131]

    Остановимся на основных элементарных механизмах иереиоса. Гидродинамический режим переноса газа в капиллярах наблюдается при условии, когда диаметр каиилляра ё значительно гареаы-шает длину свободного пробега молекул X, т. е. (1 к. В этом случае молекулы сталкиваются друг с другом значительно чаще, чем с поверхностью капилляра, что является условием сплошности среды. Таким образом, перемещение газа в капилляре можно рассматривать как вязкое течение, подчиняющееся закону Стокса и уравнению Гагена — Пуазейля. Объемный гидродинамический поток газа в капилляре выражается соотношением IV. 92). Чтобы получить массовый поток, надо умножить объемный поток на плотность газа. Аналогично течению жидкости выражается и поток газа через пористое тело (IV. 94). [c.234]


Смотреть страницы где упоминается термин Стокса течения: [c.12]    [c.28]    [c.193]    [c.137]    [c.453]    [c.526]    [c.235]    [c.190]   
Псевдоожижение (1974) -- [ c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Стокса



© 2025 chem21.info Реклама на сайте