Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель напыление

Рис. 25. Электронно-микроскопический снимок оттененной реплики поверхности поликристаллической пленки никеля, напыленной на стекло при 273 К. Рис. 25. <a href="/info/57033">Электронно-микроскопический</a> снимок оттененной реплики <a href="/info/768585">поверхности поликристаллической</a> <a href="/info/142488">пленки никеля</a>, напыленной на стекло при 273 К.

    В связи с исследованием свойств напыленных в вакууме пленок бариевого геттера Ода и Танака [97] изучали зависимость менаду структурой пленки никеля, напыленной на стеклянную пластинку, и условиями ее получения. Эти никелевые пленки обладают замечательным свойством, состоящим в том, что по мере увеличения их толщины даже при напылении в вакууме по -верхность их стремится ориентироваться параллельно грани (110). Если носитель, на котором конденсируются пары никеля, нагре вать, то параллельно носителю в зависимости от температурь развиваются различного рода кристаллические грани так, напри мер, при 100°С получается грань (ПО), при 200° — грани (ПО) и (200) и при 300° — грань (200), При 350° С получается пленка с неориентированной поверхностью. На основании этого можно предположить, что поверхность даже обыкновенных металлических катализаторов, включая катализаторы на носителях, может состоять из различного рода граней, которые в зависимости от способа приготовления будут ориентированы определенным образом. [c.357]

    Порошки ПТ-19Н-01, ПТ-НА-01 - биметаллические, экзотермические, состоят из смеси никеля и алюминия. Порошок ПТ-19Н-01 коррозионно- и износостойкий. Напыленную поверхность обрабатывают шлифованием. Порошок ПТ-НА-01 применяют в качестве подслоя, на который напыляют другие порошки, соответствующие эксплуатационным требованиям. При восстановлении посадочных мест валов на подслой из этого порошка напыляют сравнительно мягкий порошок ПГ-19М-01 на медной основе. Покрытие легко обрабатывается точением. [c.63]

    НДА (ТУ 6-00-05808009-248-92) — нитрит дициклогексиламина. Это порошок белого цвета с желтоватым оттенком, растворимый в этаноле, метаноле, воде, ацетоне. Предназначен для долговременной (10—20 лет в зависимости от способа применения и условий хранения изделий) защиты от атмосферной и микробиологической коррозии изделий из стали, алюминия и его сплавов, никеля, хрома, кобальта. Ингибитор применяют в виде порошка, засыпаемого в сублиматор для получения ингибированного воздуха порошка для опудривания или напыления на зашитные поверхности спиртовых растворов ингибированной бумаги с содержанием ингибитора 14— 20 г/см1 [c.376]

    Приборы и материалы эллипсометр кремний полупроводниковый (пластина полированная), кварц оптический (пластина полированная), никель или тантал, напыленный на ситалловую подложку. [c.192]

    Сырьем для получения эмалей служит кремнезем с добавками окислов натрия, кальция, калия или лития и фторидов — плавней, понижающих температуру плавления смеси. Для обеспечения высокой прочности сцепления эмалевого покрытия с поверхностью трубы в грунтовку вводят окислы кобальта и никеля, сульфиды мышьяка и сурьмы, а также другие добавки. Из такой смеси (шихты) изготовляют стекломассу, которую измельчают, смещивают с водой, глиной и с некоторыми добавками. Полученную суспензию (шликер) наносят на очищенную металлическую поверхность и оплавляют. Существует несколько способов нанесения шликера и его оплавления пульверизация, окунание, напыление в электростатическом поле и т. д. Оплавление ведут в печах, индукционным или газопламенным способами. [c.48]


    На глубине экспонировали образцы сталей, покрытые цинком, алюминием. напыленным алюминием, титаном-кадмием, кадмием, медью и никелем. Цинковое покрытие (0.304 г/м ) на глубине 750 м защищало сталь в течение 3—4 месяцев пребывания в морской море н в течение примерно 7 месяцев прп частичном погружении в донные осадки. Алюминиевое покрытие (0.304 г/м ) защищало сталь (при той же глубине экспозиции) в течение по крайней мере 13 месяцев в морской воде и в условиях частичного погружения в донные осадки. [c.246]

    Помимо эпитаксиальных монокристаллических пленок, осаждаемых на кристаллические подложки, широко используют в микроэлектронике тонкие поликристаллические и аморфные пленки других материалов. На основе подобных пленок изготавливают не только пассивные, но и активные элементы ИМС, работающие с использованием основных носителей заряда. Для данных целей применяют полупроводниковые (металлические, резистивные, диэлектрические) поликристаллические и аморфные пленки. Последние обычно получают методом вакуумного напыления. Металлические пленки, наносимые на изолирующий слой оксида кремния (IV), служат для создания внутренних соединений элементов ИМС, а также дают возможность осуществлять присоединение электрических выводов к микросхеме. Для этой цели широко применяют материалы на основе золота, никеля, свинца, серебра, хрома, алюминия, а также сплавы систем хром — золото, титан — золото, молибден — золото и некоторые другие. [c.161]

    Напылением, или вакуумной металлизацией, покрывают и маленькие и довольно крупные (длиной до 1 м детали), а также многометровые пленки и ткани, перематывая их в вакуумаппарате из одного рулона в другой. В СССР для вакуумной металлизации созданы специальные аппараты УВ-1, УВ-5, УВ-6, УВ-7, УВ-9, УВ-12, УВ-21, УВ-22, УВ-26М, УВ-ЮМК, УВ-18М, УВ-27М, УВ-35, УВ-40, УВ-501, УВ-800 с объемом рабочей камеры от нескольких литров до нескольких кубометров. В них напыляют алюминий, хром, никель, нержавеющую сталь и некоторые другие металлы. Ежегодно только в Европе вакуумной металлизацией декорируют более 25 тыс. т пластмасс. [c.15]

    Зеркалом называют оптический элемент с полированной поверхностью, образующий требуемые световые потоки или изображения путем отражения падающих на него лучей. Зеркала изготавливают из металлов (серебро, алюминий, золото, хром, никель и др.) или путем напыления пленок из этих металлов на твердые материалы (стекло, керамику, сталь и т. д.). Зеркала могут выполнять те же функции, что и линзы, в частности на их основе могут создаваться зеркальные объективы, а в сочетании с линзами получают зеркально-линзовые объективы. В некоторых случаях используют полупрозрачные зеркала, частично отражающие и пропускающие световое излучение. [c.230]

    Напыление металла на стекло или другое аморфное вещество при высокой температуре может приводить к некоторой преимущественной ориентации кристаллитов. Это сразу видно иа электронограммах образца, хотя метод реплик не позволяет отличить пленки с упорядоченной ориентацией кристаллитов от полученных при той же температуре напыления пленок с неупорядоченной ориентацией кристаллитов. Типичные примеры пленок с преимущественной ориентацией кристаллитов — напыленные на плавленый кварц серебро, >820 К [30] золото, >620 [82] или >750 К [83] палладий, >800 К [82]. В исследованиях ав-тора пленки с некоторой преимущественной ориентацией иногда получались при напылении никеля, платины и палладия на стекло в условиях высокого или сверхвысокого вакуума при 620—670 К в редких случаях это наблюдалось также при комнатной температуре. Для металлов кубической структуры оси <1И> имеют тенденцию к ориентации по нормали к поверхности подложки. В пленке железа, напыленном на стекло, наблюдается некоторая преимущественная ориентация осей <110> [c.145]

    Если ИСХОДИТЬ из механической модели кристаллитов, то можно ожидать, что параметр решетки для небольших металлических частиц меньше, чем для массивного металла, из-за поверхностного натяжения, сжимающего частицы. Однако проверить это экспериментально нелегко, так как на дифракционные картины существенно влияет уширение линий. Тем не менее для пленок, напыленных в СВВ, методом электронографии показано уменьшение параметра решетки на 0,26% для золота [18] и на 0,70% для серебра [19], что связано с величиной их поверхностного натяжения, равного 1,175 и 1,415 Н/м соответственно. Опубликованы также данные [20—22] о форме и структуре ультратонких пленок платины, никеля, палладия, золота и серебра, напыленных в СВВ на расщепленные кристаллы слюды при 370—770 К в таких условиях, когда образуются относительно большие кристаллиты (диаметром 5—20 нм). [c.260]

    Пленки никеля, палладия и золота [20] состоят из хорошо ограненных кристаллитов большей частью правильной геометрической формы с гранями (111), параллельными подложке. На рис. 9 и 10 показаны такие пленки золота и палладия. На снимках видно много кристаллов треугольной формы, которые на самом деле, несомненно, представляют собой тетраэдры, вероятно усеченные в вертикальном направлении в газовую фазу обраш,ены, безусловно, только грани (111). Часто встречаются также пяти- (рис. 9) и шестиугольники (рис. 9 и 10). Обе эти неидеальные формы можно считать структурами многократного двойникования по тетраэдрическим граням (111). Иногда наблюдаются и другие двойниковые структуры [20]. Доказательства многократного двойникования можно получить из электронно-микроскопических снимков темного поля или данных по относительным интенсивностям на дифрактограммах [20]. Очевидно, что пятиугольные кристаллиты не могут иметь идеальную кристаллографическую структуру кубической симметрии. Очень маленькие пятиугольные частицы наблюдаются для ряда систем, в том числе дыма (аэрозоля) серебра [23], золота, напыленного на золотую подложку [24], золота, осажденного из водных растворов [25] или нанесенного на поваренную соль [26, 27], а также для приведенных ранее случаев [20]. Пятиугольная частица фактически является пентагональной бипирамидой (рис. И, а), которая может образоваться в результате многократного двойникования пяти тетраэдров по граням (111) (рис. 11, б) [20, 23, 26]. Электронно-микроскопические снимки не показывают деформации, дислокации или другие дефекты, соответствующие щели на рис. 11, б. По-видимому, структура реальных кристаллитов релаксирует, и поэтому между двойниками не образуются дислокации. Структуру с гексагональной в плане симметрией и отвечающими эксперименту дифракционными свойствами на первый взгляд можно получить двойникованием 16 тетраэдров, однако нерегулярный характер одной из граней делает труднообъяснимой частоту появления гексагональной структуры. Двойникование 20 тетраэдров дает трехмерный икосаэдр (рис. 11, в), имеющий гексагональную проекцию и требуемые дифракционные свойства. Кристаллиты с гексагональной проекцией скорее всего представляют собой икосаэдры. [c.261]


    В отличие от кристаллитов платины, палладия, никеля и золота кристаллиты серебра имеют приблизительно круговую проекцию без очевидных признаков угловатости [21]. Типичный снимок кристаллитов со средним диаметром 8,1 нм приведен на рис. 13. Округлые формы сохраняются и для частиц меньших предела точной наблюдаемости. О том, что эти кристаллиты трехмерны, можно судить по контрастности снимков, обусловленной дефектами упаковки эта контрастность показывает, что срезу в плоскости, перпендикулярной носителю, соответствует форма с ровным закругленным сводом [21, 22]. Пленки серебра имеют ориентацию граней (111), параллельную подложке, только если температура напыления превышает 670 К-По мере снижения температуры ориентация становится все более неупорядоченной, и если напыление проводится при 300 К, то наблюдается разупорядоченная [c.264]

    Решить проблему загрязнения дисперсных никелевых катализаторов гораздо сложнее, чем в случае платины. Сравнение данных по хемосорбции водорода на напыленных пленках [35, 45—47], некоторых типичных нанесенных катализаторах [52—54] и порошке никеля [51, 52] проведено Робертсом [51, 52]. Значительная медленная хемосорбция наблюдается для двух типов образцов порошка никеля и нанесенного никеля. С увеличением степени очистки поверхности и первого и второго катализатора величина медленной адсорбции снижается (но только снижается).  [c.308]

    Надлежащим образом выбранный один-единственный геттер может иногда служить для очистки двух газов. Так, при изучении адсорбции в ионном проекторе как создающий изображение газ — гелий, так и исследуемый газ должны быть тщательно очищены. При исследовании азота оба газа можно хорошо очистить никелем [76]. Масс-спектрометрический анализ эффективности очистки пока еще не доступен. Косвенные доказательства, например измерения работы выхода, дают основание полагать, что в случае N2 содержание примесей уменьшается до 5 частей на 10 . Эти геттеры используются в виде тонких пленок, которые получаются в самой системе путем прямого напыления с нагреваемой электрическим током нити из испаряемого металла, а в случае германия — из проволочной спирали. Поскольку селективность геттеров меньше, чем селективность диффузионных мембран, последние получили более [c.278]

    Реакция этилена с дейтерием изучена на никелевой проволоке [30, 43—45], на системе никель/кизельгур [27, 32, 46] и на напыленных пленках [42, 47] в качестве катализаторов. То, что опыты проводились при различных температурах и различных отношениях парциального давления, затрудняет сопоставление этих данных. Первое подробное исследование [45] при использовании никелевой [c.370]

    На напыленных пленках никеля при —100° с трехкратным избытком дейтерия до 60% общего первоначального продукта составляют дейтерированные этилены [45] с распределением, приведенным в табл. 4. [c.372]

    Механизм данных процессов не установлен, но обычно предполагают, что здесь имеет место либо миграция катионов под влиянием электрического поля, создаваемого хемосорбированными кислородными ионами [34], либо простой обмен местами [35]. Поглощение кислорода сопровождается выделением большего количества тепла, и любые предполагаемые различия в электронных конфигурациях разных металлов имеют второстепенное значение, если учесть эффекты большого химического сродства между кислородом и почти всеми металлами. К тому же затрудненность рассеяния теплоты, выделяющейся при быстром окислении, способствует расхождениям в экспериментальной оценке лимитированного поглощения. Однако удалось измерить теплоту образования защитной окисной пленки в случае порошков меди, никеля и кобальта [36, 37] за исключением тепла, отвечающего начальному поглощению совсем небольшого количества газа, теплота, выделяющаяся в процессе образования защитных нескольких слоев, близка к теплоте образования массивного окисла. Результаты ряда работ, проведенных с напыленными пленками, также привели к этому заключению [38]. [c.331]

    Влияние строения внешней оболочки атомов и величины работы выхода электронов прослеживается также в катализе скелетной изомеризации алканов металлами. Из материалов Справочника [1, 2, 3] следует, что в изомеризации кроме платиновых металлов используются также рений, кобальт и никель, но последние только как компоненты бифункциональных или еще более сложных катализаторов. Платиновые металлы, как отмечалось раньше, ведут изомеризацию и в чистом виде, в форме массивных поверхностей, порошков или напыленных пленок и на различных носителях, инертных в отношении изомеризации или активных в качестве кислотных составляющих бифункциональных катализаторов. [c.31]

    В то время как медноникелевые сплавы исследовались довольно подробно, работ, в которых бы описывались каталитические свойства сплавов никеля с серебром или золотом, чрезвычайно мало. В работе [295] наряду с медноникелевыми сплавами изучались также золото-никелевые катализаторы, которые готовились напылением металлов, полученных в результате соосаждения и последующего восстановления водородом. При добавлении даже малых количеств золота (порядка 10— [c.100]

    Для получения качественного изображения применяют образцы очень малой толщины, которые наносят на тонкие подложки из аморфного материала. Увеличение толщины образца не только ухудшает качество фотографии, но и может привести к его термодеструкции. Очень часто наблюдают не сами объекты, а пользуются репликами (пленки-отпечатки). Метод реплик является косвенным методом изучения микрорельефа поверхности. В качестве материала для реплик используют формвар, вещества типа коллодия и оксид 5162(510), конденсированный в высоком вакууме из паровой фазы. Для усиления контрастности изображения обычно проводят оттенение реплик с помощью напыления на них слоя тя келых металлов (уран, палладий, золото, хром, никель). Напыление проводят путем возгонки металла при высоком вакууме на реплику наносят два-три атомных слоя. [c.251]

    Теперь мы рассмотрим возможность такого электронного переноса между металлом и носителем, который изменяет объемные электронные свойства металлических частиц и вызывает тем самым модифицирование каталитических свойств металла. При этом межфазную поверхность раздела металл—носитель часто описывают как поверхность раздела металл—полупроводник с помощью общепринятой теории объемного заряда [71—73]. Электроны переносятся к металлу или полупроводнику в зависимости от того, где выше работа выхода, и между двумя фазами устанавливается разность потенциалов, численно равная разности работ выхода. В таком случае на поверхности полупроводника возникает объемный заряд соответствующего знака, плотность которого уменьшается по мере удаления от поверхности раздела внутрь носителя, а на поверхности металла индуцируется равный по величине, но противоположный по знаку заряд. Однако количественная оценка явлений с помощью этой теории приводит к весьма серьезным затруднениям, поэтому едва ли ее можно использовать для описания реальных свойств металла. Чтобы подтвердить этот вывод, обратимся к работе Баддура и Дейберта [73], изучавших поведение тонких пленок никеля, напыленных на германиевые подложки, легированные разным количеством добавок п- или / -типа такие пленки использовали как катализаторы дегидрирования муравьиной кислоты. Переносимый заряд пропорционален где п — концентрация носителей заряда в полупроводнике и V — разность потенциалов на новерхности раздела. Наиболее важной переменной является п, изменяющаяся на много порядков в зави- [c.282]

    По некоторым данным, образование истинно хемисорбированного слоя кислорода происходит весьма быстро. Тогда кривые на рис. И,13 и П,14 следует рассматривать как результат быстрого образования адсорбционного слоя и постепенного превращения его в слой окисла. Например, исследование поглощения кислорода никелем, напыленным в высоком вакууме на стеклянную пластинку, показало, что процесс протекает в две стадии 1) очень быстрая адсорбция атомного кислорода 2) сравнительно медленное проникновение кислорода под поверхность [20]. [c.82]

    Так, например, хром и никель в нержавеющих сталях, диффундируя к поверхности, образуют оксидный слой, содержащий шпинель Ni r204 и частично шпинель РеСггО . Оксидный слой такого состава оказывается более устойчивым, чем просто оксид СГ2О3, образующийся на поверхности чистого хрома. Поверхностное легирование представляет собой насыщение поверхности данного сплава металлом, обладающим прочным оксидным слоем, — аллитирование, хромирование, силицирование и т. д. Оно осуществляется диффузионным путем из газовой фазы, содержащей пары или летучие соединения легирующего компонента, или нанесением слоя этого металла вакуумным напылением, плазменным напылением или даже наплавкой, но обязательно с последующей термообработкой изделия. При нанесении на поверхность данного металла легирующего компонента возможно образование между ними интерметаллидов. [c.540]

    Многие исследователи применяли подкисление напыляемой соли. Свиндом и Стивенсон пробовали добавлять серную кислоту в хлористый натрий во время испытания с прерывистым разбрызгиванием, предварительно вводя сульфат, присутствующий в атмосфере промышленной среды. Однако их метод не нашел широкого распространения. В 1Й5 г. Никсон предложил вводить в соль при непрерывном напылении уксусную кислоту. Испытание проводилось в камере при температуре 35° С. Непрерывное напыление 5%-ным раствором хлористого натрия, подкисленным уксусной кислотой до pH = 3,2, позволяло выявить качество никель-хромовых покрытий и достаточно точно воспроизвести вид коррозии, происходивший в реальных условиях. Однако испытание систем пористых хромовых покрытий давало некоторые погрешности. Продолжительность испытаний, составлявшая от 8 до 114 ч, явилась значительной преградой на пути [c.158]

    Метиловый фиолетовый. Этот краситель, также принадлежащий к группе трифенилметановых, образует с Sb lg ионный ассоциат, экстрагирующийся органическими растворителями. Чувствительность экстракционно-фотометрического определения Sb с его применением ниже, чем с применением бриллиантового зеленого и кристаллического фиолетового при использовании бензола е = 5,4-10 при Яшах = 608 нм (2 Л/HG1) для H lg е = = 8,1-10, Ятах = 590 нм (4 М НС1) [327]. Несмотря на указанный недостаток, метиловый фиолетовый довольно часто используется для определения Sb в различных материалах. С его применением определяют Sb в алюминии [254], жаропрочных сплавах [497], железе, чугуне, сталях, железных рудах и ферросплавах [84, 444, 975, 1406], кадмии [456], меди и ее сплавах [93, 341, 359, 489, 490], молибдене и ферромолибдене [401, 645, 655], никеле и его сплавах [502], оловянных рудах и продуктах их переработки [596], припоях [277], рении [645], свинце [1105, 1106], таллии [320], титане [498], хроме и его сплавах [502, 545], цинке, цинковых сплавах, злектролитах и растворах цинкового производства [332, 456, 700], тонких напыленных слоях стибнита [63]. [c.49]

    МВКМ Mg - углеродные волокна получают пропиткой или горячим прессованием в присутствии жидкой фазы, растворимость углерода в магнии отсутствует. Для улучшения смачивания углеродных волокон жидким магнием их предварительно покрывают титаном (путем плазменного или вакуумного напыления), никелем (электролитически) или комбинированным покрытием N1 -В (химическим осаждение,м), [c.115]

    Толщина пластины из пьезоэлектрического материала согласована с желательной частотой искателя. На обеих сторонах пластины нанесен электропроводящий слой в виде электрода. Он должен быть более тонким по сравнению с толщиной пластины, чтобы не нарушать ее акустических свойств. Методы нанесения электродов могут быть разнообразными и выбираются в зависимости от материала пластины и намечаемого ее применения, В случае керамики на поверхность наносят по способу печатных схем специальные суспензии серебра, которые затем обжигают при температуре около 800 °С, или же химически осаждают слой никеля с золотом. Толщина слоя составляет несколько тысячных долей миллиметра подсоединительные про-еода можно припаивать непосредственно к этому слою. На другие пьезоэлектрические материалы электропроводный слой можно наносить напылением из паровой фазы или путем обрыз-гиваиия электропроводным лаком. Подводящие провода в таком случае крепятся при помощи электропроводного клея. [c.225]

    Поверхностно-барьерные детекторы. Поверхност-но-барьерные детекторы (ПБД) используются для спектрометрии и регистрации короткопробежных частиц (осколков деления, тяжелых ионов и а-частиц). В качестве одного из электродов на окисленную поверхность и-кремния напылен слой золота толщиной 30 нм. Между /7-областью и основным объемом и-кремния естественным путем возникает р— -переход, другим электродом служит слой никеля, образующий с кремнием омический контакт. Толщина чувствительной области р— и-перехода составляет (при рабочем напряжении смещения 25-40 В) 40 мкм разрешение 40-50 кэВ для а-частиц с энергией 5 МэВ. [c.87]

    Фасетированию под действием реактантов подвержены и напыленные серебряные пленки при нагревании в кислороде при 500 К или в условиях каталитического окисления этилена [60] при этом величина поверхности увеличивается примерно на 30%, а небольшие кристаллиты серебра (<50 нм) исчезают. При 1120—1290 К в водороде подвижность атомов на поверхности платины сильно увеличивается [61], что значительно ускоряет спекание порошкообразной платины. Подробно описано [62] значительное изменение морфологии платиновой проволоки или сетки — катализатора окисления аммиака (1020—1220 К), состоящее в заметном ее фа( етировании. Эти изменения, происходящие с платиновым катализатором гораздо сильнее в условиях реакции, чем под действием любого из реактантов (при сравнимых температурах), объясняются, по-видимому, выделением тепла реакции на поверхности катализатора и локальными перегревами выше температуры реакции. Не все каталитические реакции, вероятно, приводят к значительным изменениям морфологии поверхности катализаторов такого рода изменения не наблюдаются, в частности, в реакциях с участием только углеводородов и водорода, по крайней мере для массивных металлических катализаторов. Тем не менее вполне понятно, что поверхность металла даже при отсутствии значительных изменений Б ее морфологии, способна к реконструкции, ограниченной од-ним-двумя поверхностными атомными слоями, в результате процессов адсорбции или внедрения в решетку молекул реактантов. В этом смысле даже адсорбция углеводородов может иногда вызывать перестройку поверхности, как, например, хемосорбция этилена или бензола на грани (111) никеля, приводящая к образованию внешнего слоя металла [63]. [c.135]

    Исследования напыленных металлических пленок [60, 61] показывают, что для некоторых переходных металлов (например, родия, вольфрама, молибдена, кобальта, никеля) быстрая адсорбция кислорода при 77—90 К и давлении около 10 Па ( -lO" мм рт. ст.) ограничена заполнением монослоя с Хт -Достаточно надежно можно считать, что другие благородные металлы VIII группы ведут себя аналогично. Однако поглощение кислорода на железе в этих условиях намного превышает емкость монослоя, так же ведет себя титан. Если кислород адсорбируют при комнатной температуре, в список металлов, адсорбирующих больше монослоя кислорода, кроме железа и титана, входят хром, марганец, тантал, кобальт, никель и ниобий, хотя на благородных металлах быстрое поглощение кислорода все еще ограничено приблизительно монослоем [62]. [c.313]

    На богатые никелем сплавы адсорбированный водород оказывает негативное действие. Например, в работе [303] изучалось отравление никельмедных сплавов адсорбированным водородом в отношении реакций рекомбинации атомов водорода, орто-пара-превращения водорода и гидрирования этилена. Исследованный сплав состоял из 3% Си и 97% N1 и использовался в виде напыленных пленок. Сравнивались активности чистых пленок и пленок того же состава, обработанных атомарным водородом, в результате чего на поверхности образовывался гидрид. Чистые пленки были в 3—10 раз более активны, чем обработанные водородом. По-видимому, поскольку сплав содержит всего 3% меди, поверхность его состоит из никеля, как было показано в работе [300], а известно [294], что на чистый никель водород оказывает отравляющее действие. [c.100]


Смотреть страницы где упоминается термин Никель напыление: [c.142]    [c.523]    [c.20]    [c.111]    [c.90]    [c.90]    [c.254]    [c.254]    [c.88]    [c.142]    [c.304]    [c.187]    [c.549]    [c.215]   
Защита от коррозии на стадии проектирования (1980) -- [ c.278 ]




ПОИСК







© 2025 chem21.info Реклама на сайте