Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура н характеристика свойств мембран

    Таким образом, если в пористой мембране удается организовать режим свободномолекулярного течения, проницаемость каждого компонента газовой смеси в изотермических условиях определяется структурными характеристиками мембраны, температурой и молекулярной массой газа и не зависит от давления. Разделительная способность является функцией только соотношения молекулярных масс и не зависит ни от свойств мембраны, ни от параметров процесса Г и Р. Из соотношения (2.52) следует, что для мембраны определенной структуры существует комплекс величин, сохраняющий постоянное значение при разделении любых смесей при любых значениях температуры и давления, если Кп>1  [c.57]


    В настоящей работе проведено систематическое исследование в плане установления связи структуры асимметричной половолоконной мембраны с ее разделительными свойствами и поиск возможностей изменения структуры асимметричной мембраны в направлении достижения высоких сепарационных характеристик. [c.136]

    Наконец, кроме высоких электроизоляционных свойств пленка для мембраны конденсаторного микрофона должна также обладать и достаточными адгезионными свойствами к металлу [2]. Понадобилось проведение специальной исследовательской работы по сравнительной характеристике свойств тонких пленок из различных пленкообразующих полимеров и по длительной эксплуатационной проверке мембран, изготовленных из этих пленок, в конденсаторных микрофонах, чтобы установить наиболее подходящий для указанных целей тип полимерного продукта [2]. Им оказался полиэтилентерефталат (терилен, лавсан), получение и свойства которого были рассмотрены в главе второй. Пленки из полиэтилентерефталата обладали наибольшим объемным электрическим сопротивлением, т. е. наилучшими электроизоляционными свойствами, высокой механической прочностью и влагостойкостью. Так как получение указанных пленок для мембран конденсаторных микрофонов осуществлялось из расплава с радиально-плоскостной растяжкой полученной пленки и последующей тепловой ее обработкой, то высокая устойчивость ее структуры по крайней мере до температуры, при которой осуществлялась ее тепловая обработка (выше 100°), гарантировала отсутствие изменений геометрических размеров в процессе эксплуатации мембраны. [c.163]

    Мембраны второго типа характеризуются существенным влиянием поверхностных явлений, прежде всего адсорбции возможно появление конденсированной фазы и эффекта капиллярности химический потенциал компонента зависит не только от температуры, давления и состава газовой смеси, но также и от свойств матрицы за счет поверхностной энергии. Влияние скелета мембраны на процесс разделения не ограничено, как в газодиффузионных, чисто структурными характеристиками, а предполагает появление новых видов массопереноса. Однако транспорт компонентов в основном материале мембраны исключен. Примером такого рода систем являются микропористые структуры и газовые смеси под давлением, содержащие компоненты со значительной молекулярной массой. [c.13]

    Кристаллические и, плотные аморфные материалы обычно непригодны для создания мембран. Это обусловлено малой долей свободного объема и большим временем релаксации для процессов перераспределения вакансий и других дефектов структуры, в результате чего резко снижается растворимость газов и скорость миграции растворенного вещества. Равновесные и кинетические свойства подобных систем во многом определяются высокими значениями потенциала межатомного (межмолекулярного) взаимодействия, обычно превышающего средние значения кинетической энергии КьГ этим объясняется малая подвижность структурных элементов. Однако легкие разы типа Нг, Не, Оа, N2 с наиболее низкими значениями параметров (е,/, о, ) парного потенциала молекулярного взаимодействия могут в некоторых плотных матрицах образовывать системы с повышенной растворимостью и удовлетво рительными диффузионными характеристиками. Наиболее перспективны металлические мембраны на основе палладия для извлечения водорода, а также стекла для выделения гелия [8, 10, 19—21]. [c.114]


    В результате воздействия высокого давления на полимерный материал наблюдаются значительные остаточные деформации. Такие свойства полимеров называются вязкоэластичными. Опыты показали [153], что вязкоэластичные свойства характерны и для ацетатцеллюлозных мембран при снятии давления структура мембраны не возвращается в исходное состояние. Усадка структуры мембраны с течением времени (особенно заметная в первые часы работы мембраны) снижает проницаемость и повышает селективность. Спустя сутки после снятия давления характеристики мембраны не восстанавливаются до исходных значений— произошла некоторая остаточная деформация структуры мембраны. Практически установившийся режим по проницаемости и селективности обычно наступает через 5—6 ч. [c.177]

    Как известно [171—173, 216—227], в зоне контакта двух фаз, например жидкости и твердого тела, действуют поверхностные силы, такие, как силы прилипания, поверхностного натяжения, молекулярного притяжения. Поэтому граничный слой жидкости, связанный с материалом мембраны, по структуре и, следовательно, по физико-химическим свойствам, может значительно отличаться от подобных характеристик жидкости в объеме. Так, граничные слои полярных жидкостей вблизи гидрофильных поверхностей (на расстоянии 10- —10- мкм) обладают [c.200]

    Берестовский с соавт. [121, 232] провел сравнение оптических свойств мембран нервных клеток и модифицированных черных пленок. При развитии потенциала действия в возбудимой биологической мембране наблюдаются изменения двулучепреломления, которые авторы работ [121, 232] связывают с изменением структуры мембраны. Такие же изменения двулучепреломления наблюдались у модифицированных пленок, имеющих М-образную вольтампер-ную характеристику на участке отрицательного сопротивления. Молекулярный механизм этих явлений не ясен. [c.169]

    Рассмотрены мембраны различных типов монолитные (непористые), пористые, жидкие и биологические (природные и синтетические), асимметричные и композиционные, а также области их применения. Подытожен опыт интенсивного развития мембранных процессов за последнюю четверть века. Основное внимание уделено влиянию структуры мембраны на характеристики различных мембранных процессов. Обсуждены особенности полимеров, определяющие свойства мембран. Даны рекомендации для изготовления мембран определенной структуры. [c.4]

    Средний размер макромолекул, их распределение по размерам, структура, специфическая природа химических групп, расположение этих групп в цепи, форма агрегации макромолекул составляют основные свойства полимеров, которые, в свою очередь, определяют их характеристики. Главная особенность, которая отличает полимеры от соединений любого другого класса и определяет их как материал, идеальный для мембраны,— это фибриллярная природа и большой размер, которые, в свою очередь, обусловливают существование когезионных сил, действующих на макроскопическом уровне. [c.104]

    МОЖНО получить, если удалить ацетильные группы из ацетилцеллюлозы уже готовой мембраны. В результате образуется мембрана из регенерированной целлюлозы. Деацетилирования можно добиться обработкой ацетилцеллюлозной мембраны щелочью. Пористая структура и физические характеристики этих мембран почти идентичны свойствам мембран из ацетилцеллюлозы, из которых они получены [80]. [c.67]

    Мембранные методы позволяют реализовать широкий спектр процессов ргьзделения, причем для решения ргьзных задач требуются мембраны различного типа и с разнообразными структурами. Таким образом, мембраны могут существенно различаться по структуре и функциям. Известны многочисленные попытки связать структуру мембран с их транпортными характеристиками, тем самым достигаются более глубокое понимание процессов разделения и возможность предсказания типа структур, необходимых для осуществления данного процесса разделения. Одновременно требуется создать методы испытания мембран с тем, чтобы можно было определить, насколько данная мембрана подходит для осуществления тех или иных процессов разделения. Небольшие изменения в одном из факторов, определяющих условия формования мембран, могут изменить структуру рабочего слоя и таким образом существенно повлиять на показатели ее работы. Часто важнейшей проблемой является воспроизводимость. Создание методов исследования мембран необходимо, чтобы связать структурные характеристики мембран, такие, как размер пор или распределение пор по размерам, свободный объем и кристалличность, с транспортными и разделительными свойствами мембран. Хотя обычно производители мембран представляют весьма конкретные значения таких параметров пористых мембран, как размер пор, их распределение по размерам, отсечение, не делается попыток более широкого и сопоставительного использования этих данных. В связи с этим возникает вопрос, какие из данных, получаемых при испытаниях мембран, могут помочь при прогнозировании рабочих характеристик мембран в конкретном процессе. При этом крайне важно делать различие между характерными свойствами мембраны и особенностями ее конкретного применения. Например, потоки через ультрафильтрационные мембраны, применяемые в пищевой и молочной промышленности, обычно составляют менее 10% от потока чистой воды. При использовании микрофильтрационных мембран различия в потоках очищаемых сред и чистой воды могут быть еще большими. Подобные различия в основном вызваны явлениями концентрацион- [c.164]


    В заключение отметим, что метод адсорбции — десорбции газа очень прост при наличии соответствующего оборудования. Главная проблема заключается в отнесении геометрии порового простран-ства к определенной модели, которая позволит на основании измеренных изотерм адсорбции — десорбции определить размер пор и их распределение по размерам. С помощью этого метода регистрируются также тупиковые поры, не дающие вклада в транспортные свойства мембраны. Метод более пригоден для определения характеристик керамических мембран, поскольку их структура более мо-нодисперсна, а также в связи с тем, что керамические мембраны менее чувствительны к капиллярным силам. [c.184]

    В газодиффузионных мембранах влияние матрицы на перенос массы определяется только характеристиками поровой структуры и, прежде всего функцией распределения пор. Свойства исходного материала не сказываются на кинетике процесса, хотя могут ограничивать область использования, рели спектр размеров пор достаточно широк, то в мембарне при заданных параметрах газовой смеси может одновременно реализоваться несколько режимов течения для каждого компонента. Если же учесть, что фильтрационный перенос и концентрационная диффузия не способствуют разделению смеси, то очевидно, что более целесообразны мембраны с монокапиллярной структурой типа пористого стекла Викор , в которых можно создать свободномолекулярный режим течения. Обсудим закономерности массопереноса при этом режиме. [c.54]

    В-гречъих, сольватная оболочка вокруг ядра каждой частицы дисперсной фазы характеризуется определенными законами изменения компонентного состава, структуры, интенсивности и природы ММВ, устойчивости надмолекулярных структур, а следовательно, и свойств вдоль радиуса. Разнозвенность молекул органических соединений, составляющих сольватную оболочку, предполагает ее ажурность. В связи с этим можно допустить возможность проникновения молекул дисперсионной среды в эти пустоты, где они, очевидно, будут находиться в состоянии, отличающемся от состояния молекул в объеме дисперсионной среды. По этой же причине и вследствие относительной неустойчивости обратимых ассоциатов и комплексов, составляющих сольватную оболочку, она играет роль проницаемой мембраны для НМС как в сторону ядра частицы дисперсной фазы, так и в сторону объема дисперсионной среды. Кроме того, нельзя исключать возможность того, что сольватная оболочка обменивается молекулами составляющих его соединений с подобными молекулами, имеющимися в объемах, к ней примыкающих. Наконец,важно то, что сольватная оболочка в процессе карбонизации представляет собой реакционную подсистему и изменения ее состава происходят не только вследствие указанных выше причин, но и вследствие протекания химических реакций в ее объеме и на поверхностях соприкосновения с ядром и дисперсионной средой. Таким образом, нефтяная СДС является системой весьма чувствительной к воздействию различных внешних и внутренних энергетических факторов, интенсивность которых определяет степень изменения всех ее характеристик. [c.96]

    Изменения активности некоторых белков коррелируются, как правило, с изменениями ряда физических свойств. Так, изменение формы белковой молекулы можно установить по изменению некоторых гидродинамических характеристик (например, коэффициента трения, инкремента вязкости), по изменению светорассеяния, поверхностных свойств, диффузии через полупроницаемые мембраны и скорости седиментации [90]. Изменения термодинамических свойств (энтальпии и энтропии), объема, растворимости, оптического вращения, поглощения в инфракрасной области, дифракции электронов, а также некоторые другие характеристики, приведенные Каузманом [90], используются для Оцейки изменений формы белковых молекул. Большинство этих измерений было проведено па макромолекулах неизвестной структуры, для которых не была установлена последовательность аминокислотных остатков. В настоящее время благодаря усовершенствованию методов деградации белков, аналитического определения Концевых групп, методов разделения и идентификации отдельных фрагментов можно успешно изучать белки с молекулярным весом порядка 20 ООО. Хотя эта работа еще не достигла молекулярного уровня, тем не менее она дает возможность лучше использовать значения физических констант белковой молекулы известной структуры для объяснения механизма взаимодействия фермента с субстратом. Структура такого белка, как фиброин (белковое вещество натурального шелка), в настоящее время хорошо изучена благодаря сравнению рентгенограммы и ИК-спектров нативного волокна с рентгенограммами [35, 38, 108, 140] и ИК-спектрами [168] небольших фрагментов белка известной структуры, полученных при деградации, а также синтетитегаихпмшнептидо [c.386]

    Опыт показал, что мембраны, изготовленные с использованием ионогенных поликонденсационных смол, имеют неудовлетворительные механические и электрохимические характеристики и не применяются на практике. Использование полимериза-ционных смол позволяет получить мембраны с хорошими свойствами. Наиболее перспективными являются гомогенные мембраны их получают полимеризацией или сополимеризацией ненасыщенных соединений, одно из которых содержит либо готовые ионогенные группы, либо такие функциональные группы, которые легко переводятся в ионогенные (амидные, эфирные). Примерами такого типа мембран могут быть разработанные в 70-х годах фирмой Дюпон мембрана нафион и фирмой Асахи гласс мембрана флемион, представляющие собой сополимеры тетрафторэтилена и перфторированного винилового эфира. Их структуру можно представить схемой [c.77]

    Исследование электрохимических характеристик гетерогенных и гомогенных катионитовых мембран [115, 116, 120] показало несомненное превосходство последних. На примере мембран нафион и МК-40 установлено, что гомогенная мембрана набухает меньше. Прежде всего это связано с тем, что обменная емкость мембраны нафион (0,82 ммоль/г) меньше емкости МК-40 (2,5 ммоль/г). Кроме того, набухаемость гетерогенных мембран повышается вследствие неоднородности структуры, наличия пустот между зернами связующего и ионообменной смолы. Эти же самые факторы усиливают перенос воды при электролизе. Установлено, что вода переносится преимущественно гидратированными ионами натрия при их миграции под действием электрического тока [120], и поэтому перенос направлен из анодного пространства в катодное. Различие в свойствах гомогенных и гетерогенных мембран иллюстрируют представленные на рис. П.З данные исследования переноса воды через гомогенную мембрану МФ-4СК и гетерогенную МК-41 [120]. [c.79]

    Внешняя граница клетки образована клеточной (или плазматической) мембраной (или оболочкой). Типичная двох1ная мембрана (называемая элементарной мембраной) толщиной около 80 А, очевидно, представляет собой относительно жесткую и упорядоченную структуру, состоящую И.З бимолекулярного слоя полярных липидов, покрытого с обеих сторон белковыми пленками. Эту мембрану ни в коем случае нельзя считать гомогенной на всем ее протяжении. Наоборот, она представляет собой мозаику из различных функциональных единиц, слегка различающихся по своей структуре, высокоизбирательных и специализированных в клетках разных типов. Мембрана определяет такие весьма разнообразные и вместе с тем чрезвычайно ванлные характеристики клетки, как избирательная проницаемость, активный перенос питательных веществ и ионов (т. е. их поступление в клетку), контрактильные свойства, способность клеток вступать в ассоциацию друг с другом и распознавать друг друга (например, при формировании органов). Плазматические мембраны могут слунгить также местом протекания некоторых сложных ферментативных процессов, таких, как гликолиз или даже синтез белка (у микроорганизмов). [c.248]

    Механическим свойствам полимерных мембран на ранних стадиях их разработки уделяли мало внимания особое значение придавалось эксплуатационным характеристикам, таким как проницаемость, селективность. В результате не удалось добиться повышения прочности патронных фильтров, особенно тех, которые содержат микрофильтры с максимальной пористостью (а следовательно, с минимальной прочностью). Механические свойства зависят от строения химических групп, макромолекул, микрокристаллического и коллоидного уровней. Рассмотрим, например, значение структуры для одного из основных механических свойств — эластичности. Аморфные полимеры типа поликарбонатов и полисульфонов имеют характерную эластичность как в плотном, так и в пористом состоянии. Сильнокристаллические и сильносшитые полимеры, с другой стороны, имеют тенденцию к хрупкому состоянию. Поликристаллические полимеры могут быть отнесены к любому из этих классов в зависимости от природы сил молекулярного взаимодействия и способа, которым их перерабатывают. Например, разветвленный полиэтилен низкой плотности со слабыми когезионными силами проявляет соответствующую эластичность, поскольку подвижные аморфные области, не содержащие поперечных сшивок, проявляются как одна из форм внутренней пластификации со снятым напряжением. С другой стороны, поликристаллические полимеры, проявляющие склонность к образованию водородных связей, имеют тенденцию к повышению хрупкости, поскольку межмолекулярные и внутримолекулярные связи являются эффективными поперечными связями, а хрупкость пропорциональна плотности поперечных связей. Если набухшие в воде мембраны из целлюлозы и найлона 6,6 высушить, то капиллярные силы будут способствовать высокой концентрации эффективных поперечных связей, и в результате мембрана уплотнится и хрупкость ее повысится. Однако в том случае, когда сушку проводят, заменяя растворитель (например, часто заменяют изопропанол гексаном), плотность поперечных связей минимальна, а эластичность будет сохраняться и в сухом состоянии. [c.117]

    Как и в случае сухого формования, структура первичного теля хорошо регулируется условиями процесса и, особенно, переменными параметрами отливочного раствора, благодаря чему свобода в выборе окончательной структуры и эксплуатационных характеристик мокросформованных фазоинверсионных мембран оказывается больше, чем это удается сделать модификацией первичного геля во вторичный. Так как свойства первичного геля определяют в значительной степени свойства вторичного, первичный гель должен рассматриваться как более важная структура при обсуждении влияния производственных параметров, например состава отливочного раствора, на эксплуатационные характеристики мембраны. Как только первичный гель образовался, он в принципе может быть использован самостоятельно (в частности, для процессов с применением невысокого [c.259]

    Физические и химические свойства белков, Р-ры Б. обладают рядом свойств, характерных для лиофильных коллоидных р-ров. Частицы Б. не проходят через полупроницаемые мембраны, что используется для их очистки от низко-молекулярных соединений диализом. Наличие на поверхности частиц Б. многочисленных полярных групп обусловливает их значительную гидратацию. Так, количество гидратационной воды, связанной с альбуминами и глобулинами, составляет 0,2—0,6 г на 1 г сухого веса Б. В определенных условиях Б. образуют гели (студни). Во многих случаях Б. удается получить в кристаллич. виде. Б. в р-рах седимен-тируют в ультрацентрифугах при ускорении порядка 200 000 константы седиментации (s) Б. находятся в пределах от l-10 i до lOO-lO i сек. Коэфф. диффузии Б. О,МО —10-10 см /сек средний удельный объем 0,75 см г. Эти физико-химич, характеристики используются для определения мол. веса Б., а также степени асимметрии их молекул е/а, где в и а — продольная и поперечная полуоси гидродинамически эквивалентного эллипсоида, приближенно принимаемого за форму молекулы Б. Мол. вес Б. — от 5000 до нескольких миллионов, в/а — от 1 до 200. Для определения мол. весов и размеров молекул Б. широко применяется метод светорассеяния. Мол. веса могут быт1> определены также методом осмометрии, методом исследования монослоев на поверхности жидкой среды. Размеры молекул Б. определяются методом двойного лучепреломления в потоке, измерением коэфф. вращательной диффузии. Макромолекулы некоторых Б. наблюдались в электронном микроскопе. Для изучения структуры Б. широко применяется метод рентгеноструктурного анализа и электронографии. [c.193]

    Свойства неорганических сорбентов определяются их составом-структурой, степенью оформленности кристаллической решетки. Эксплуатационные характеристики сорбентов во многом зависят от их формы сферические частицы, гранулы различных типов, тонкие пленки на поверхности инертных материалов, мембраны, волокна, стержни, трубки, пористые блоки. Поэтому много внимания уделяется разработке и совершенствованию методов их синтеза. [c.31]

    Изучение физико-химических свойств мембран удобно проводить на моделях монослоев, которые получаются при нанесении липидов на поверхность воды. Повышение давления и уплотнение монослоя приводят к тому, что подвижность углеводородных цепочек уменьшается, их взаимодействие друг с другом растет, а полярные головки фиксируются на поверхности раздела фаз. В пределе происходит такое уплотнение монослоя, где плошадь поперечного сечения молекулы липида не зависит от длины углеводородной цепи. Монослой представляет собой лишь половину липидного бислоя мембраны, и более удобной моделью служат различные искусственные бислойные липидные мембраны (БЛМ). Плоские ламеллярные структуры, могут сливаться, образуя замкнутые везикулярные частицы (липосомы), в которых липидные бислои отделяют внутреннюю водную фазу от наружного раствора. В везикулярные частицы можно встраивать белковые молекулы и другие компоненты биологических мембран для изучения механизмов их функционирования в биомембранах. Плоские БЛМ используются для изучения барьерных функций, электромеханических характеристик, а также межмолекулярных взаимодействий в мембранах. Электростатические взаимодействия осуществляются между заряженными группами либо в пределах одного полуслоя (латеральные), либо между разными слоями (трансмембранные). Дисперсионные вандерваальсовы взаимодействия между поверхностями мембран обнаруживаются на расстояниях до 1000 А. Это значительно превышает расстояния, где проявляется [c.131]

    Метод моделирования и получения искусственных мембран основан на получении и исследовании моно- и бимолекулярных липидных слоев, везикул, липосом и протеолипосом. Сущ ествует два основных типа искусственных мембран классические плоские и сферические мембраны различного размера. Для получения искусственных мембран используют различные фосфатиды, нейтральные глицериды, смеси липидов биологического происхождения, добавляя к ним холестерин, а-токоферол и другие минорные добавки. Потенциальная ценность искусственных мембран для исследований зависит от возможности включения в них природных белков, в особенности тех, которые обладают транспортными свойствами. Липосомы, со-стоящ ие из белков и липидов, стали получать в 60-е гг. термин протеолипосомы был введен В. П. Скулачевым. В настоящее время разработан целый ряд методов приготовления различных типов липосом и протеолипосом, а также их стандартизации по размерам, структуре, гомогенности, стабильности и другим характеристикам. Липосомы используют для доставки в клетку лекарственных и химических соединений, стабилизации ферментов в инженерной энзимологии, введения в клеточные мембраны молекул зондов, модифицирующих и моделирующих их поверхность. Большой интерес для генной инженерии и медицины представляют работы по введению в клетки при помощи липосом нуклеиновых кислот и вирусов. В липосомы включают митохондриальные компоненты и изучают на таких модельных системах процессы генерации энергии в клетках. Ультра-тонкие искусственные мембранные структуры — полислои Лен-гмюра—Бложе (ПЛБ) — применяют для получения био- и иммуносенсоров. Создаются ПЛБ с иммобилизованными ферментами и компонентами иммунологических систем. При использовании смешанных липид-белковых пленок ПЛБ получают информацию о функционировании белков и о липид-белковых взаимодействиях в мембране. Результаты изучения физических характеристик, проводимости, проницаемости и других свойств искусственных липидных мембран имеют большое зна- [c.216]

    Классификация, структура, функции и локализация мембранных йвлков. Структурно-функциональная организация мембранного каркаса эритроцитарной клетки. Характеристика основных белков эритроцитарной мембраны спектрина, актина, белка полосы 3, гликофоринов и др. Понятие о векторных ферментах биомембран. Структура, функциональные и некоторые физикохимические свойства интегральных мембранных белков на примере Ма" , К" -АТФазы и ацетилхолинэстеразы. [c.282]

    Величина потока через мембрану является столь же вгьжной характеристикой, как селективность по отношению к различным типам растворенного вещества. Если выбор материала для мембраны основывался на характеристических разделительных свойствах, поток через приготовленную из этого материала мембрану можно улучшать за счет уменьшения толщины мембраны. Поток приблизительно обратно пропорционален толщине мембраны, поэтому большинство мембран обратного осмоса выполняются как асимметричные с плотным верхним слоем (толщиной до 1 мкм) и нижележащей пористой подложкой (толщиной 50-150 мкм). Сопротивление транспорту в такой мембране определяется в основном плотным верхним слоем. Различают два типа мембран с асимметричной структурой 1) интегральные или асимметричные мембраны и 2) композиционные мембраны. [c.300]


Смотреть страницы где упоминается термин Структура н характеристика свойств мембран: [c.80]    [c.241]    [c.193]    [c.18]    [c.237]   
Смотреть главы в:

Обратный осмос и ультрафильтрация -> Структура н характеристика свойств мембран




ПОИСК







© 2025 chem21.info Реклама на сайте