Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал ионизации и сродство атома к электрону

    Экспериментально энергия ионной кристаллической решетки может быть определена по термохимическому циклу (циклу Борна-Габера), включающему атомизацию простых веществ, ионизацию атомов (перенос электрона от атома одного типа к атому другого типа) и образование кристаллической решетки из ионизированного газа. Если известны энергии атомизации, потенциал ионизации, сродство к электрону и теплота образования рассматриваемого вещества из простых веществ, то может быть вычислена энергия кристаллической решетки по термохимическому закону Гесса. Оказалось, что формула (1.74) хорошо описывает энергию образования решеток галогенидов щелочных металлов, несколько хуже — оксидов и галогенидов щелочноземельных металлов и значительно хуже — сульфидов, селенидов, соединений металлов в высоких степенях окисления и т.д. Это, очевидно, связано с тем, что химическая связь в этих веществах не является полностью ионной. Отклонение от ионной модели может быть следствием поляризаций (смещения электронной плотности) анионов с относительно рыхлыми электронными оболочками под действием катионов с достаточно высокой плотностью заряда (т. е. может происходить перенос части электронной плотности от аниона обратно к катиону). [c.80]


    Как и потенциал ионизации, сродство атома к электрону определяется его электронной конфигурацией. Галогены имеют самое высокое сродство к электрону, так как при присоединении одного электрона к их атому он приобретает законченную электронную конфигурацию инертного газа. Следует отметить, что прямое определение сродства к электрону из-за больших экспериментальных трудностей сделано лишь для небольшого числа элементов, например галогенов. Большинство значений получено путем соответствующих расчетов. Значения сродства к электрону (эВ) для некоторых атомов приведены ниже  [c.55]

    Атом Сродство к электрону, эВ Потенциал ионизации, эВ Атом Сродство к электрону, эВ Потенциал ионизации, эВ Атом Сродство к электрону, эВ Потенциал ионизации, эВ [c.68]

    Чтобы вычислить Ig ki= g p-ri щелочных металлов, нужно брать первый потенциал ионизации, щелочноземельных металлов — второй потенциал ионизации, металлов, образующих полуторные окислы,— третий потенциал ионизации и т. д. (табл. 8). У элементов с переменной валентностью берем соответственно разные потенциалы ионизации. Например, у титана получаем две константы одну для Ti (IV), другую для Ti (П1), у железа одну для Fe (HI), другую — для Fe (II). Для галогенов, аналогов кислорода, азота, образующих отрицательно заряженные ионы, нужно брать вместо потенциала ионизации сродство электрона к атому. [c.25]

    Электроотрицательность. Электроотрицательностью называют величину, количественно характеризующую способность атома в молекуле присоединять или отдавать электроны при образовании химической связи. Так, например, в молекуле НР атом фтора является более электроотрицательным, чем атом водорода, так как атом фтора смешает к себе связующую электронную пару, т, е. центр тяжести облака двух связующих электронов. Согласно Малликену, мерой электроотрицательности может быть полусумма потенциала ионизации и электронного сродства. В настоящее время предложены и другие методы определения электроотрицательности. [c.92]

    Не следует, однако, считать, что атом тем легче присоединяет электроны, чем прочнее удерживает свои собственные электроны, т. е. что сродство к электрону тем больше, чем больше потенциал ионизации / , Такой зависимости нет, так как на соотношение значений сродства к электрону и потенциалов ионизации сильно влияет структура электронной оболочки атома. Это можно наблюдать у атомов инертных элементов, потенциал ионизации которых велик, так как их энергетические уровни устойчивы, однако по той же причине их сродство к электрону очень мало. [c.117]


    В наружном уровне содержится три электрона, расположенных на 3s- и Зр-подуровнях (3s 3p в невозбужденном состоянии р-электрон неспаренный. Однако соединения алюминия, где он одновалентен, очень неустойчивы. Для алюминия более характерна степень окисления -(-З поскольку для возбуждения атома алюминия, т. е. для перевода одного электрона из 3s- в Зр-сос-тояние, нужно затратить небольшое количество энергии, которое полностью перекрывается энергией образования химических связей. Потенциал ионизации /1 алюминия (свободного атома) равен 5,98 В (небольшой) величины сродства к электрону (0,52 эВ) и электроотрицательность (1,5) также малы. Следовательно, алюминий, являясь активным металлом, будет в реакции проявлять только восстановительные свойства, его атом отдает [c.144]

    Помимо величины потенциала ионизации на способность образования химической связи и на ее характер влияет сродство к электрону данного атома. Если внешний электронный уровень в атоме близок к какой-либо устойчивой системе, то этом может захватывать электроны для приобретения большей, устойчивости в виде отрицательно заряженного иона. Например, атом фтора [c.59]

    Атом, (радикал, молекула) Потенциал ионизации, эВ Сродство к электрону, э  [c.26]

    В отношении электростатической теории это было сделано В. Косселем и М. Борном. В основу было положено представление о стремлении атомов при реакциях принимать электронную структуру ближайшего благородного газа. Атом натрия может выполнить это, отдав один электрон. Возникающий таким образом ион Ма+ имеет все электронные оболочки неона. Атом фтора для того, чтобы превратиться в ион с электронной структурой неона, должен, наоборот, получить электрон, образуя ион Р . Таким образом, при встрече атомов натрия и фтора электрон должен перейти от натрия к фтору, после чего возникшие ионы Ыа+ и притягиваются друг к другу благодаря кулоновскому притяжению. С энергетической точки зрения такой переход электрона объясняется тем, что у атомов щелочных металлов потенциал ионизации мал, а у галогенов имеется сродство к электрону. Эти обстоятельства и выражают указанные тенденции атомов получать электронную оболочку ближайшего благородного газа. Для атомов натрия и хлора сомнений в том, в какие ионы превращаются атомы, нет. Однако в общем случае решение этого вопроса может быть не столь простым. Так, неясно априори, какой из атомов передает свой электрон другому для пары атомов — литий или водород. Решение этого вопроса в общем виде принадлежит Л. Полингу. Его рассуждения сводятся к следующему. [c.322]

    Пусть встретятся два атома и В . Какая ситуация осуществится В В или В] В Потенциал ионизации всегда больше работы сродства к электрону (энергии, выигрываемой при присоединении электрона). Поэтому в обоих указанных случаях потребуется работа для создания ионов. Очевидно, образуется такая пара ионов, которая потребует меньшей затраты работы. Пусть потенциал ионизации атома В равен Уи а работа сродства Л]. Тогда атом В1 станет отрицательным ионом, если [c.322]

    Кремний. Особенности химии кремния. Второй типический элемент IV группы — кремний — является типовым аналогом углерода. Как и у углерода, у атома кремния в невозбужденном состоянии на 5-орбита/[и находят ся два спаренных электрона, а р-орбитали имеют два неспаренных электрона. Разница в том, что атом углерода располагает валентными электронами при главном квантовом числе 2, а атом кремния характеризуется тем же числом валентных электронов (4) при я = 3. В связи с увеличением числа электронных слоев по сравнению с углеродом у кремния наблюдаются рост атомного радиуса, понижение потенциала ионизации, уменьшение сродства к электрону и ОЭО. Возрастание радиуса ведет к увеличению длины и уменьшению прочности межатомных связей, особенно в гомоатомных соединениях, вследствие чего растет электрическая проводимость и сужается ширина запрещенной зоны. Поэтому углерод в виде алмаза представляет собой изолятор, а кремний — полупроводник. В целом переход от первого типического элемента ко второму свидетельствует о нарастании металличности и ослаблении неметаллических свойств. Однако вследствие наличия большого числа валентных электронов этот переход более плавный, чем в III группе от бора к алюминию. [c.369]

    Сродство атома к электрону (Л) есть энергия, выделяющаяся при присоединении электрона (не обладавшего кинетической энергией) к изолированному атому. Сродство атома М к электрону совпадает по величине и знаку с потенциалом ионизации отрицательного иона М . Величины сродства к электрону не известны с такой высокой степенью точности, как потенциал ионизации, потому что обычно они не могут быть найдены спектроскопическим методом и определяются экспериментально по прилипанию электрона. [c.57]

    Определим сродство к электрону как энергию, выделяемую или поглощаемую при присоединении электрона к нейтральному атому в газообразном состоянии. Знак и численное значение этой величины зависят от тех же особенностей электронного строения атома, которые определяют величину потенциала ионизации. Процесс [c.101]


    Когда в двухатомной молекуле электроотрицательности атомов сильно различаются, электрон притягивается к атому с более высокой электроотрицательностью, например в случае газообразного хлорида калия. Наличие дипольного момента указывает на то, что по существу положительный заряд находится на атоме калия, а отрицательный — на атоме хлора. Ионы калия и хлора удерживаются вместе ионной связью. Ионная связь довольно легко может быть рассмотрена количественно. Чтобы построить кривую потенциальной энергии молекулы, рассмотрим изолированный атом калия и изолированный атом хлора. Потенциал ионизации калия равен 4,34 В, поэтому для получения К++,е требуется 4,34 эВ. Сродство к электрону для хлора составляет [c.446]

    Другой важной энергетической характеристикой атома является сродство к электрону - энергия, которая выделяется при присоединении к нему дополнительного электрона. Сродство обычно обозначают буквой А с указанием частицы, например для водорода Ан= 73 кДж/моль. Знак плюс здесь говорит о том, что атом водорода приобретает второй электрон с выделением энергии, образуя ион Н. Напомним, что для потенциала ионизации знак плюс соответствует затрате энергии на ионизацию. Сродство атома водорода к электрону примерно в 20 раз меньше, чем потенциал ионизации, что, очевидно, объясняется межэлектронным отталкиванием в ионе Н . [c.33]

    Сродством к электрону х называется энергия, выделяемая при образовании отрицательного иона из нейтрального атома и электрона, т. е. отвечающая процессу А + е = А". При этом предполагается, что до образования отрицательного иона нейтральный атом находился в состоянии с наименьшей энергией. Сродство к электрону с обратным знаком представляет собой потенциал ионизации, т. е. энергию, необходимую для отрыва электрона от отрицательного иона с образованием нейтрального атома (молекулы). [c.423]

    Ионизационный потенциал характеризует энергию связи электрона в атоме. Периодичность хорошо наблюдается на примере изменения потенциала ионизации первого электрона в зависимости от порядкового номера элемента. Резкие максимумы наблюдаются у атомов инертных газов, обладающих наиболее устойчивой конфигурацией. В минимумах кривой находятся щелочные металлы. В пределах одного периода потенциал ионизации изменяется не монотонно. На кривой наблюдаются вторичные максимумы, менее резко выраженные, соответствующие заполнению -оболочки у элементов II группы — Ве Mg, 2п, Сд и Н . Следующие максимумы наблюдаются у элементов V группы — М, Р, Аз, что соответствует энергетически выгодному половинному заполнению р-оболочки, содержащей три неспаренных электрона. В пределах одной группы с увеличением порядкового номера величина потенциала ионизации в общем убывает, что связано с увеличением расстояния от ядра внешней электронной оболочки. Периодически изменяется и сродство к электрону, выражающее работу присоединения электрона к нейтральному атому. [c.7]

    Для того чтобы вывести такое уравнение, авторы прибегают к понятиям энергии атома в различных состояниях ионизации E N), где N = n — Z равно числу электронов п вокруг ядра минус атомный номер Z. Очевидно, N = О соответствует нейтральному атому, когда и E(N) =0 iV = — 1 соответствует энергия Е (N) первого потенциала ионизации, а iV = -J-1 энергия (с обратным знаком) сродства атома к первому электрону. Чем больше [c.265]

    Здесь приняты следующие обозначения ос — постоянная Маделунга, Гц — минимальное расстояние между анионом и катионом в кристалле, Е — сродство электрона к атому галогена и / — потенциал ионизации атома металла. [c.86]

    Энергия, которую надо затратить для отрыва электрона от нейтрального атома—энергия ионизации,—легко может быть определена, если известно напряжение поля в вольтах, т. е. потенциал ионизации, при котором происходит ионизация атомов. Энергия, выделяющаяся при присоединении электрона к нейтральному атому или иону, оценивается как сродство к электрону и также является для атома, а соответственно, и для иона характерной величиной. [c.60]

    Потенциал ионизации (табл. 1) и сродство к электрону (табл. 1а) выражают в килокалориях на грамм-атом или в. электрон-вольтах (1 электрон-вольт соответствует 23,06 ккал г-атом). [c.60]

    Потенциал ионизации, характеризующий энергию удаления электрона от атома (с образованием положительного иона), и сродство к электрону, характеризующее энергию присоединения электрона к атому (с. образованием атрицательного иона) у углерода и азота отличаются весьма существенно. Г отенциалы ионизации первого порядка (отрыв первого электрона) для атомов углерода и азота равны соответственно И,26 и 14,53 эв, сродство к электрону 2—1,24 и 0,05 эв. Исходя из значений потенциалов ионизации, сродства к электрону и других физико-химических характеристик была рассчитана 3 относительная электроотрицатель НОСТЬ атомов углерода и азота,. равная соответственно 2,6 и 3,0 (т. е. атом азота является более электроотрицательным). [c.9]

    Известно, что в полярной молекуле НС1 заряд сдвигается от Н к С1. Этот сдвиг можно было бы связать с большей электроотрицательностью (т. е. большей способностью притягивать электрон) хлора по сравнению с водородом, В самом деле, если любому атому А можно приписать число ха (назовем его электроотрицательностью), которое не зависит от окружения атома А, то естественной мерой ионного характера связи АВ будет абсолютная величина разности ха — Хв электроотрицательностей атомов А VI В. Наша задача, таким образом, состоит в применении экспериментальных данных, которые можно связать с электроотрицательностью. Наиболее естественную величину такого типа представляет собой энергия (А) ионно-ковалентного резонанса (раздел 5.7), поскольку, по определению, А = 0 для чисто ковалентной связи (когда Хл=Хв) и увеличивается при увеличении полярности связи. Полинг (283] на чисто эмпирической основе предложил считать мерой разности ха — Хв величину V AB- Однако, согласно Малликену [259], а также [243а], более подходящей мерой электроотрицательности Ха является величина М=( /2) (/а+ а), где /д —потенциал ионизации, а Еа — электронное сродство атома Л. Удачно, что величина У Аав почти пропорциональна разности величин М для атомов Л и и удовлетворяет соотношению [c.153]

    Однако энергия разрыва ионной связи определяется не только энергией притяжения ионов, так как не существует молекул (в газовой фазе), для которых продуктами диссоциации основного состояния являлись бы ионы. Наименьший потенциал ионизации имеет атом s (I = 3,86 эв), а наибольшим сродством к электрону обладает С1 (А = = 3,83 эв), так что даже для s l энергетически выгоднее диссоциация на атомы, а не на ионы ). На рис. 5.2 показаны кривые потенциальной энергии Na l, полученные на основе классической электростатической модели. Ионная связь имеет место только в том случае, если энергия кулоновского притяжения ионов превышает энергию /— А, необходимую для образования изолированных ионов. [c.59]

    Самопроизвольная передача электрона от металлического атома к атому неметалла в действительности вряд ли осуществляется.. Дело в том, что потенциал ионизации первого порядка даже для наиболее активных щелочных металлов больше, чем сродство к электрону типических электроотрицательных элементов. С эгой точки зрения оказывается энергетически невыгодным образование молекулы Na l из элементов, так как первый ионизационный потенциал натрия равен 5,14 В, а сродство к электрону атом хлора — [c.85]

    Самопроизвольная передача электрона от металлического атома к атому неметалла в действительности вряд ли осуществляется. Дело в том, что потенциал ионизации первого порядка даже для наиболее активных щелочных металлов больше, чем сродство к электрону типичных электроотрицательных элементов. С этой точки зрения оказывается энергетически невыгодным образование ионной молекулы Na l из элементов, так как первый ионизационный потенциал натрия равен 5,14 В, а сродство к электрону атома хлора — 3,7 эВ (ионизационный потенциал, выраженный в вольтах, численно равен энергии ионизации в электрон-вольтах). Из квантовой механики также следусзт, что полное разделение зарядов с возникновением идеальной ионной связи Ai B никогда не может осуществиться, так как из-за волновых свойств электрона вероятность его нахождения вблизи ядра атома А может быть мала, но отлична от нуля. [c.64]

    ЭЛЕКТРООСМОС, см. Электрокинетические явления. ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ, характеризует способность атома к поляризации ковалентных связей. Если при образовании двухатомной молекулы А—В электроны связи смещаются в сторону атома В, он считается более электроотрицательным, чем атом А. Для количеств, оценки Э. предложен ряд методов. Наиб, ясный физ. смысл имеет метод, предложенный Р. Маллике1юм, к-рый определил Э. атома как полусумму его сродства к электрону и потенциала ионизации. Употребление ЭГ по Малликену ограничено из-за трудностей получения достоверных значений сродства к электрону атомов. Чаще всего применяют термохим. систему, разработанную Л. Полингом, согласно к-рой Э. атомов А и В определяют, исходя из энергий связей А—В, А—А и В—В. Э. атомов используется в физ.-хим. исследованиях благодаря наличию простых эмпирич. ф-л, связывающих ее с длинами и др. характеристиками хим. связей. [c.702]

    Наибольшее число работ посвящено изучению реакций замещения между радикалами (например, атомами галогенов, ал-коксильными или пероксильными радикалами и т. д.) и нейтральными молекулами А—X (см. первую строку в табл. 5.10). В таких реакциях атом А (часто это атом водорода) медленно переносится от А—X к К . В соответствующем этой реакции изо-полярном активированном комплексе нет существенного разделения зарядов. Следовательно, в таких реакциях должны наблюдаться только пренебрежимо малые эффекты растворителей. Однако известны и радикальные реакции, в которых изменение полярности растворителя может играть важную роль. В таких реакциях, скорость которых заметно зависит от характера среды, следует учитывать ту или иную степень разделения зарядов в процессе активации. В свою очередь степень разделения зарядов в активированных комплексах типа [К ---А---Х ] должна зависеть от сродства радикала К к электрону и потенциала ионизации молекулы А—X. [c.259]

    Шкала электроотрицательностей по Малликену. Первый потенциал ионизации /1 показывает, какую энергию нужно затратить, чтобы оторвать от атома один электрон, а величина сродства к электрону Е является мерой легкости присоединения к атому одного электрона. Можно принять, что чем меньше /] и Ей тем меньше и сродство атома к электрону. Среднее арифметическое из этих величин Р. Малликен назвал степенью электровтрицательности (хм). Этот подход отличается ясностью и простотой, однако имеет один недостаток его ограничение обусловлено тем, что не всегда с высокой надежностью можно определить значение 1. При этом нужно помнить следующий принцип Если атом переводится в ион, то энергетические уровни электронных орбиталей изменяются , причем необходимо знать эти новые уровни энергии вновь образовавшегося иона и внести коррективы в значения Л и Е] соответственно. Малликен получил величины электроотрицательностей для многих элементов (табл. 2.11). Эти значения легко сопоставить с электроотрицательностями (д ), полученными другими способами, путем пересчета д м = 0,336 (л м — 0,615). [c.71]

    Щелочным металлом начинается каждый новый период. По сравнению с другими элементами у Щ. м. самые низкие энергии ионизации, а радиусы атомов и ионов наибольшие. С увеличением радиусов атомов от лития к францию уменьшаются ионизационный потенциал и энергия сродства к электрону следовательно, легкость отдачи электрона увеличивается. Таким образом, восстановительная способность Щ. м. увеличивается сверху вниз. От лития к францию число электронных оболочек возрастает от 2 до 7. Атом лития отличается от остальных Щ. м. тем, что его предвнешний уровень заселен двумя элек- [c.356]

    Соединения, содержащие различные валентные формы одного и того же элемента. Различные соединения, содержащие атом одного и того же элемента в разных валентных состояниях, давно обращали на себя внимание. Многие из таких соединений интенсивно окрашены [87, 88]. Это наблюдение было основой одной из теорий, связывающих строение и окраску неорганических соединений. Выше (гл. 4) рассматривались соединения типа берлинской лазури или молибденовой сини или смесь FeO с ЕегОз и т. п. Окраску таких твердых соединений объясняют осцилляцией электрона между двумя атомами эле мента б одной молекуле. В растворе при Смешивании соединений одного элемента в разных валентных формах наблюдается часто образование довольно интенсивно окрашенных комплексов. Так, давно известно, что при смешивании бесцветного раствора Ti U со слабо-фиолетовым раствором Ti la (в среде 2 М раствора НС1) образуется растворимое интенсивно окрашенное красно-фиолетовое соединение. Изучение спектров поглощения подтверждает образование соединения. Интенсивная окраска объясняется тем, что оба атома энергетически равноценны, т. е. потенциал ионизации одного атома титана точно равен сродству к электрону другого атома титана. Поэтому энергия переноса электрона в таком соединении близка к нулю и полоса поглощения смещается к длинным волнам [89]. [c.364]

    Вообще возможно также и присоединение дополнительного электрона к любому атому, иону или молекуле. Энергию, которая выдг-ляхтся при этом процессе, называют сродством к электрону соответствующего атома, иона или молекулы и обозначают обычно через А. Следует отметить, что знак сродства по условию противоположен знаку потенциала ионизации, и это определение сродства к электрону является настолько установившимся, что его следует принять таким, каким оно дано. Отрицательное сродство к электрону все же известно — это наблюдается тогда, когда рассматриваемые частицы (атомы, молекулы и т. д.) не хотят дополнительного электрона, а их вынуждают принять его. Но наиболее интересны те случаи, когда сродство к электрону положительно. [c.48]


Смотреть страницы где упоминается термин Потенциал ионизации и сродство атома к электрону: [c.21]    [c.589]    [c.42]    [c.263]    [c.25]    [c.118]    [c.33]    [c.280]    [c.103]    [c.25]    [c.583]    [c.834]    [c.60]    [c.52]   
Смотреть главы в:

Молекулы и химическая связь -> Потенциал ионизации и сродство атома к электрону




ПОИСК





Смотрите так же термины и статьи:

Атом атом потенциалы

Ионизации потенциал атомов

Потенциал ионизации

Потенциал ионизации и сродство к электрону

Потенциал электронный

Сродство

Сродство к электрону

Электрон в атомах



© 2024 chem21.info Реклама на сайте