Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конденсация на пористых поверхностях

    Адсорбция на пористых адсорбентах — процесс более сложный по сравнению с адсорбцией непористыми телами. В порах твердого тела возможна конденсация паров при давлениях меньших, чем давление насыщенного пара над плоской поверхностью р. . Этот процесс, получивший название капиллярной конденсации, объясняется известной зависимостью упругости насыщенного пара от кривизны поверхности жидкости (Кельвин)  [c.43]


    Заметное влияние на массоперенос в пористых телах оказывает явление капиллярной конденсации. В результате адсорбции на стенках пор образуется пленка конденсированной фазы с искривленной поверхностью. Анализ условий равновесия показывает, что гидростатические давления фаз, разделенных искривленной поверхностью, различны. Эта разность, называемая обычно капиллярным давлением, равна произведению межфаз-ного поверхностного натяжения ожг на кривизну поверхности  [c.52]

    Наличие тонкой и неоднородной пористости поверхности твердого тела приводит к особенностям, которые отражает потенциальная теория Поляни и теория капиллярной конденсации. Теория Поляни основывается на двух свойствах сил молекулярного взаимодействия аддитивности этих сил (присутствие третьей молекулы не изменяет взаимодействия между двумя другими) и независимости их от температуры. Действие молекулярных сил распространяется в некотором объеме над поверхностью твердого тела — в адсорбционном поле. Притяжение молекул пара к адсорбенту не влияет на их взаимодействие между собой адсорбент только увеличивает концентрацию пара вблизи своей поверхности. Это увеличение определяется адсорбционным потенциалом А, т. е. работой, затрачиваемой на удаление молекулы из данной точки адсорбционного объема в бесконечность. Величина А зависит от числа окружающих эту точку молекул адсорбента. Например, в узких щелях она будет больше, чем в широких. Согласно закону Больцмана концентрация в точке с потенциалом А определяется уравнением Сл=< о ехр (Л/ 7 ), где Со — концентрация вне поля адсорбента. Следовательно, в разных точках адсорбционного поля концентрация молекул адсорбента различна. Если она достигает концентрации насыщенного пара Сн, то происходит конденсация. Необходимое для этого наименьшее (критическое) значение потенциала Ащ, выражается формулой С =Со ехр (Лкр/ Г) (Лкр= =ЯТ Сп/Сй). При температурах значительно более низких, чем критическая, плотность пара р намного меньше плотности жидкости, количество которой и определяет адсорбцию. Поэтому при подсчете последней [c.224]

    Влияние свойств пористого слоя на скорость фильтрования нередко выражают посредством параметров, определяющих его структуру, в частности эквивалентного размера пор, пористости слоя, удельной поверхности и щероховатости частиц. С этой целью принимают идеализированные модели пористого слоя, например модель цилиндрических капилляров. Однако в настоящее время принципы построения моделей пористых сред требуют уточнения [24]. Так, следует отметить, что способы определения параметров пористых сред адсорбцией, капиллярной конденсацией, ртутной поро метрией, электронной микроскопией нередко приводят к разным результатам, причем одни параметры модели и объекта могут совпадать, а другие различаться. Использование идеализированных моделей пористых сред не способствует лучшему пониманию процесса фильтрования, а все параметры, характеризующие пористую среду, в конечном счете приходится объединять в один, находимый экспериментально параметр, называемый коэффициентом проницаемости или удельным сопротивлением. К сказанному надлежит добавить, что отмечено шесть типов укладки моно-дисперсных шарообразных частиц в слое, причем форма пор, влияющая на гидродинамику слоя, различна для разных типов укладки [39]. [c.24]


    Адсорбция паров на пористых адсорбентах, удельная поверхность которых достигает сотен тысяч квадратных метров, имеет более сложный характер по сравнению с адсорбцией на непористых телах такой же химической природы. Как правило, она сопровождается капиллярной конденсацией — конденсацией пара в порах прн давлениях (р), меньших, чем давление насыщенного пара адсорбтива над плоской поверхностью (р . [c.32]

    Методы пассивной интенсификации используются и для процессов теплообмена с изменением агрегатного состояния веществ. Здесь, наряду с турбулизацией фаз двухфазных потоков, эффективно применяется целенаправленное воздействие сил поверхностного натяжения на пленку конденсата при конденсации пара и создание специальных видов шероховатости и пористых поверхностей при кипении жидкостей. [c.336]

    Так, в увлажненных данной жидкостью капиллярах, в которых образуется вогнутый мениск, давление тем меньше, чем уже капилляр. Этот факт следует учитывать при сушке пористых тел, например активированного угля, неглазированного фарфора и т. п. Чтобы из таких тел удалить воду путем испарения, необходимо этот процесс проводить при температуре выше нормальной температуры кипения жидкости. Наоборот, конденсация пара на пористых поверхностях начинается раньше, чем будет достигнута величина давления пара, необходимая для конденсации на плоских поверхностях. [c.21]

    Опыт показал, что при увеличении степени заполнения поверхности теплота адсорбции не остается постоянной, как это следует по теории Лэнгмюра, а уменьшается. Последовательный отказ от допущений теории Лэнгмюра, учет неоднородности поверхности адсорбента, взаимодействия адсорбированных молекул и возможности полимолекулярной адсорбции (более, чем в один мономолекулярный слой) привели к замене уравнения Лэнгмюра рядом уточненных уравнений. При адсорбции паров на пористой поверхности адсорбента следует учитывать дополнительные особенности этого явления, как, например, конденсацию паров, которая может происходить в капиллярных порах при меньших давлениях пара, чем на плоской поверхности. [c.274]

    В данном разделе уместно отметить еще одно важное обстоятельство почти во всех рассмотренных методах дегазации растворителя сосуд для подвижной фазы приходится отсоединять от хроматографической системы. При этом нужно вынуть из него трубку, на конце которой надет фильтр, и немедленно опустить фильтр в заранее приготовленный стакан с тем же растворителем. Если оставить фильтр на воздухе, то растворитель будет достаточно интенсивно испаряться с его пористой поверхности, что приведет к охлаждению фильтра и конденсации на нем атмосферной влаги. Кроме того, во внутреннюю полость фильтра при этом попадет воздух, который потом придется удалять из системы. [c.189]

    ЦИНКОВЫЙ ПОРОШОК — мелкие частицы цинка различной формы. В СССР выпускают Ц. п. пяти марок (табл.). Ц. п. получают ректификацией или распылением жидкого металла. Получение порошка ректификацией, т. е. многократным испарением жидкой фазы с последующей конденсацией паров на пористой поверхности, основано на различии парциальных давлений расплавов цинка и металлов-примесей. Форма частиц такого порошка — дендритная (см. Дендриты), Размер частиц порошка не превышает 160 мкм, насыпная масса 2,2—2,5 г см . Для распыления жидкого цинка используют сжатый воздух под давлением 2—6 ат. Форма частиц полученного таким способом порошка — каплеобразная или сферическая, размер частиц 50—300 мкм, насыпная масса 3,2 -i- 3,6 г/см . Ц. п. применяют в хим. и металлургической пром-сти, а также для изготовления хим. источников тока. Хим. состав Ц. п. регламентирует ГОСТ 12601-67. [c.728]

    Адсорбция на пористых адсорбентах - процесс более сложный по сравнению с адсорбцией непористыми телами. В порах твердого тела возможна конденсация паров при давлениях меньших, чем давление насыщенного пара над плоской поверхностью. Этот процесс получил название капиллярной конденсации. [c.18]

    НИЯ растворителя при пленкообразовании. Слишком быстрое улетучивание растворителя может привести к сильному охлаждению пленки и вследствие этого — к ее помутнению за счет конденсации на поверхности влаги из окружающей среды. Кроме того, в этом случае могут образоваться пористые пленки, а также пленки с более высоким внутренним напряжением, поскольку при большой скорости удаления растворителя не успевают пройти релаксационные процессы. Пористые пленки могут образоваться и при слишком медленном улетучивании растворителя, например при формировании пленок из термореактивных пленкообразующих. [c.77]


    Если процесс конденсации вести с незначительной скоростью, то можно получить на выходе из конденсатора газ, практически не содержащий тумана серной кислоты. Однако более экономично вести процесс при больших скоростях, когда одновременно с конденсацией на поверхности пары частично конденсируются в объеме с образованием тумана, осаждаемого затем в пористых, волокнистых, центробежных или электрических фильтрах. При этом процесс будет тем экономичнее, чем меньше капитальные затраты на фильтр, улавливающий туман серной кислоты. Если капли тумана достаточно крупные, они могут быть осаждены в простых и дешевых волокнистых фильтрах [3]. [c.98]

    Другим фактором, влияющим на давление насыщенного пара, является характер поверхности жидкости, обусловленный действием поверхностного натяжения. Это влияние заключается в изменении давления пара над искривленными поверхностями по сравнению с его давлением над плоской поверхностью. Так, в увлажненных данной жидкостью капиллярах, в которых образуется вогнутый мениск, давление тем меньше, чем уже капилляр. Этот факт следует учитывать при сушке пористых тел, например активированного угля, неглазированного фарфора и т. п. Чтобы из таких тел удалить воду путем испарения, необходимо этот процесс проводить при температуре выше нормальной температуры кипения жидкости. Наоборот, конденсация пара на пористых поверхностях начинается раньше, чем будет достигнута величина давления пара, необходимая для конденсации на плоских поверхностях. [c.21]

    Понятие пограничного слоя, рассмотренное в 5.1, применяется также при изучении процессов массообмена. Перенос массы какого-либо компонента смеси осуществляется под действием градиента концентрации этого компонента. В том случае, когда поперечная составляющая градиента концентрации много больше продольной составляющей (иначе, когда продольным переносом массы в продольном направлении можно пренебречь), область процесса переноса вещества называют диффузионным пограничным слоем. Обычно эта область наблюдается вблизи поверхности раздела фаз (случаи испарения, конденсации и др.). О диффузионном пограничном слое говорят также при рассмотрении процессов искусственно организованного вдува—отсоса инородного газа через пористую поверхность, омываемую потоком основного газа. Изучение процесса массообмена при вдувании или отсосе газа имеет самостоятельный интерес, так как таким образом можно, например, защитить поверхность тела от высокотемпературной внешней среды. При вдувании газа растет толщина пограничного слоя и уменьшается коэффициент теплоотдачи. При его отсосе наблюдается обратная картина. В то же время закономерности тепломассообмена, полученные для процессов вдува—отсоса, можно использовать для анализа [c.385]

    Метод использует свойство пористых тел адсорбировать при некоторых условиях пары и газы. Механизм этого явления находит себе различные объяснения его объясняют действием поверхности и конденсацией в капиллярных порах и, наконец, образованием химических соединений. [c.143]

    За последние 15 лет советскими и зарубежными учеными выполнены обширные теоретические и экспериментальные исследования в области трения, тепло- и массообмена при вдуве газа в пограничный слой или при отсасывании его через пористую стенку. Между этими процессами и процессами тепло- и массообмена при конденсации пара из парогазовой смеси существует аналогия, основанная на том, что их интенсивность зависит как от условий обтекания внешним потоком поверхности обмена, так и от плотности поперечного потока вещества. [c.160]

    Избирательность адсорбции определяется природой подлежащих разделению газов и паров. При малых давлениях решающим фактором, определяющим избирательность, является сродство к поверхности адсорбента. Чем больше разница между сродствами адсорбируемых газов к поверхности адсорбента, тем легче разделить газовую смесь. Для микропористых адсорбентов дополнительную роль играет молекулярно-ситовой эффект. При наступлении конденсации в переходных порах с увеличением давления или понижением температуры основное влияние на разделение начинает оказывать природа газов и, конечно, их способность к кон-денсации. Чем при меньшем давлении газ начинает конденсироваться, тем СИ лучше будет адсорбироваться па пористом адсорбенте. Эта закономерность иллюстрируется данными, приведенными в табл. П1. 1. [c.144]

    Различают следующие виды сорбции 1) абсорбция—проникновение газа в массу сорбента (абсорбента), что в результате дает твердый раствор абсорбция характеризуется малой скоростью и длительным временем для завершения 2) адсорбция—поверхностная сорбция или уплотнение газа (пара) на поверхности сорбента (адсорбента) за счет сил притяжения (силы Ван-дер-Ваальса). Скорость адсорбции зависит от характера поверхности на гладких поверхностях она протекает с очень большой скоростью, на пористых—замедляется (диффузия в тонкие поры), но весь процесс в том и другом случаях протекает в несколько секунд или минут 3) капиллярная конденсация—сорбция пара или газа с конденсацией в порах адсорбента, которая протекает очень быстро 4) хемосорбция—адсорбция паров или газов на поверхностях силами остаточных валентностей с образованием химического соединения в виде мономолеку-лярного слоя сюда же относятся, по существу, и процессы активированной адсорбции (стр. 116). [c.93]

    Эпоксидные лаки и эмали. Использование ta-ков и эмалей на основе эпоксидных смол весьма перспективно. Эти смолы являются продуктами конденсации многоатомных фенолов с эпихлоргидрином или дихлоргидрином. Эпоксидные покрытия хорошо сцепляются с поверхностью, быстро отверждаются, устойчивы к действию кислот и щелочей и обладают минимально пористостью. [c.98]

    При обработке пористыми материалами обесцвечивание достигается только в том случае, если окрашенные вещества лучше адсорбируются на поверхности пористого материала, чем основное вещество. Это происходит, например, тогда, когда окрашенные вещества являются сложными высокомолекулярными соединениями, образующимися в результате окисления, полимеризации или конденсации молекул основного вещества или каких-либо сопутствующих ему продуктов. [c.26]

    Повышение давления газов и паров увеличивает адсорбцию. При адсорбции п ов наблюдают так называемую капиллярную конденсацию, протекающую на угле и других пористых адсорбентах. Сконденсировавшаяся в капиллярах жидкость образует вогнутый мениск, над которым пар оказывается насыщенным при более низком давлении, чем над плоской поверхностью. Это повышает конденсацию паров в капиллярах адсорбента. Капиллярная конденсация особенно выражена у легко сжижаемых газов. [c.137]

    Поры тонкопористых адсорбентов заполняются молекулами сильно адсорбирующихся веществ уже в области малых относительных давлении паров, так что адсорбция достигает предела. Это выражено особенно ярко в случае адсорбции пористыми кристаллами цеолитов (см. рис. XIX, 2), В случае же крупнопористых адсорбентов на поверхности пор, за исключением мест их сужений, адсорбция в области малых значений р1р происходит подобно адсорбции на непористых телах той же химической природы. Поэтому на стенках широких пор в области больших. значений р/р образуются, как и на поверхности непористых адсорбентов, полимолекулярные слои. Мы вргдели (см. рис. XVI, 8), что теплота адсорбции при образовании таких полимолекулярпых слоев близка к теплоте конденсации. Поэтому свойства адсорбата в этом случае действительно близки к свойствам жидкости. Чтобы выяснить возможность конденсации пара на поверхности жидкой пленки адсорбата в порах, весьма важно найти зависимость давления пара от кривизны поверхносги жидкости. [c.521]

    При сорбции паров пористыми твердыми телами наблюдается капиллярная конденсация, заключающаяся в том, что адсорб-ционныи слой пара конденсируется в жидкость если жидкость хорошо смачивает поверхность адсорбента, в капиллярах (порах) образуются вогнутые мениски. Затем над этими менисками начинает конденсироваться остальной пар, и все поры адсорбента оказываются заполненными жидкостью. Капиллярная конден сация — это уже вторичное явление. Она происходит не под действием адсорбционных сил, т. е. сил, действующих между твердой поверхностью и молекулами пара, а под действием сил притяжения пара к вогнутому мениску жидкости. Капиллярная конденсация проходит обычно довольно быстро, завершаясь в несколько минут. [c.73]

    В пористых телах поглощение паров происходит как за счет адсорбции на стенках пор, так и за счет капиллярной копденсацин. Оба процесса взаимозависимы. Капиллярная конденсация уменьшает поверхность, доступную адсорбции. Присутствие адсорбционного слоя меняет условия равновесия капиллярного мениска. Общая теория равновесного сосуществования капиллярных менисков и адсорбционных слоев, развитая одним из нас [1], позволила построить теорию капиллярной конденсации, свободную от произвольных допущений, и рассмотреть ряд сопутствующих ей эффектов, а также решить ряд задач [2], связанных с определением структуры пористого тела. Однако ранее развитая теория для упрощения пренебрегала молекулярным притяжением между адсорбционными слоями, покрывающими противоположные поверхности щелевидных пор. [c.182]

    При наличии в газе мельчайших смачивающихся жидкостью частиц пыли с пористой структурой конденсация на поверхности может начаться без пересыщения или при очень небольшом пересыщении. При конденсации на хорошо омачиваемой поверхности (а=0) она покрывается сплошной пленкой конденсата (пленочная конденсация). В отличие от этого при конденсации На несма-чивающейся (а=90°) или на плохо смачивающейся поверхности конденсат покрывает ее отдельными каплями, не сливаюш имися в сплошную жидкую пленку. [c.91]

    При наличии в газе мельчайших смачивающихся жидкостью частиц пыли с пористой структурой конденсация на поверхности и в порах таких частиц может начинаться без пересыщения или при очень небольшом нересыщепии. Это следует также из уравнения (9), поскольку г входит в знаменатель. При конденсации на хорошо смачивающейся поверхности (а = 0) она покрывается сплошной пленкой конденсата (пленочная конденсация). В отличие от этого прп конденсации на несмачивающейся (а = 90°) или на плохо смачивающейся поверхности конденсат покрывает ее отдельными каплями, не сливающимися в сплошную жидкую пленку. [c.111]

    Конденсация па поверхности твердого тола или жидкости происходит при любом состоянии пара — насыщенном или перегретом, — когда темп-ра поверхности ниже темп-ры насыщения при данном давлении. В присутствии пористых тел К. может происходить и при давлении пара, меньшем, чем давление насыщения при данной теив-ро ш. Капиллярная конденсация). К. на поверхности имеет место во многих технологических и теплообменных аппаратах (конденсаторы выпарных, ректификационных, холодильных и энергетич.установок, скрубберы для охлаждения газов, кондиционеры и т. д.). Эти аппараты разделяются на две основные группы поверхностные, в к-рых подлежащий К. пар и болео холодная среда (вода или другая жидкость, пар или газ) разделены между собой твердой стенкой, и контактные (смешивающие), в к-рых пар непосредственно соприкасается с более холодной жидкостью. [c.342]

    Было проведено исследование теплопередачи на пористой поверхности Хай-Флакс в конденсаторе установки разделения воздуха, направленное на уменьшение габаритов и снижение стоимости эксплуатации аппаратов. Для этой цели использовали вертикальные кожухотрубчатые аппараты. Кипение кислорода происходило в трубах, а конденсация азота — в межтрубном пространстве. Коэффициент теплоотдачи при кипении составлял 25—100% от коэффициента теплоотдачи при конденсации, поэтому для повышения общего коэффициента теплопередачи необходимо было интенсифицировать процесс кипения. [c.151]

    Очистка за счет физической адсорбции. Процесс, известный под названием адсорбция , характеризуется конденсацией молекулярных слоев газа на поверхности твердого тела. Механизм этого явления объясняют силами притяжения (силами Ван-дер-Вааль-са), действующими между молекулами газа и молекулами твердого тела. Поэтому молекулы, расположенные в первом слое, притягиваются сильнее, чем молекулы верхних слоев. Адсорбированное количество газа значительно увеличивается по мере понижения температуры и приближения ее к температуре конденсации при нормальном давлении. Теплота адсорбции для молекул первого слоя обычно гораздо больше, чем теплота конденсации. При больнюм числе адсорбированных слоев теплота адсорбции имеет такой же порядок величины, как и теплота конденсации. Вещество с гладкой поверхностью (например, металл или стекло) способно адсорбировать лишь очень небольшое количество газа. Имеется, однако, ряд веществ, например силикагель, алюмогель, активированный уголь, которые обладают чрезвычайно пористой структурой. Поры этих веществ имеют микроскопическую величину, вследствие чего их эффективная поверхность очень велика — несколько сот квадратных метров на грамм. Количество данного газа, которое может быть адсорбировано при определенных температурах и давлениях, зависит как от размера пор, так и от общей величины пористой поверхности. [c.111]

    В контактных аппаратах с неподвижным катализатором Нельзя применять водяные холодильники, так как вследствие весьма низкой теплопроводности пористых гранул ванадиевого катализатора [порядка 0,57 ккал м-град -ч) у теплообменных поверхностей происходит резкое-падение температуры ниже температуры зажигания катализатора. Кроме того, на холодных поверхностях теплообменных труб может конденсироваться серная кислота, что вызывает быструю их коррозию и порчу контактной массы, находящейся в зоне теплообменников. Эффективная теплопроводность кипящего с лоя достигает 15 ООО ккал/(д1 грй 9.ч) [181, а коэффициенты теплоотдачи столь велики [16, 19], что становится возможным применение водяных холодильников (см. главу IV). При этом не происходит конденсации серной кислоты на холодных поверхностях, омываемых кипящим слоем при снижении температуры до 390° С, т. е. ниже рабочих температур катализа [20]. Теплопередача от кипящего слоя к воде, протекающей в трубах водяного холодильника, происходит много интенсивнее, чем в газовых теплообменниках, которые устанавливают между слоями аппаратов с неподвижным катализатором коэффициент теплопередачи возрастает в среднем в 15 раз. Движущая сила процесса теплопередачи Ai (разность температур) также увеличивается примерно в 2 райа. Таким образом, площадь теплообмена Р, вычисляемая по формуле [c.144]

    Y-AI2O3 получают прокаливанием А1(0Н)з при 500—700°С. По прочности он уступает корунду, но является более пористым материалом. Объем его составляет 50—70%, удельная поверхность — 120—150 м /г. Y-AI2O3 выступает не только в роли носителя, но и катализатора в ряде процессов конденсации, дегидратации, гидролиза (см. табл. 1). Известно большое число способов приготовления активной Y-AI2O3 [115—119]. Рассмотрим некоторые из них. [c.138]

    Наиболее теоретически ра работаннон является модель ССЕ с ядром из поры, различные состояния которой приведены на рис. 10. Формирование адсорбционно-сольватного слоя происходит самопроизвольно за счет поверхностных сил ядра с выделением при этом обычно тепла. Поверхностные силы при физической адсорбции имеют ту же природу, что и силы межмолекулярного взаимодействия. В настоящее время, наиболее признанной, позволяющей аналитически описать -образную форму изотермы адсорбции является теория БЭТ (Брунауэр— Зммет — Теллер). По своей сути адсорбция по Ленгмюру соответствует модели ССЕ, когда / /л- О, а по Поляни — когда /г/г оо (рис. 11). Адсорбция при наличии высокодисперсных пор в адсорбенте сопровождается фазовым переходом — капиллярной конденсацией. Воздействуя различными способами на пористость твердых тел в процессе их получения и существенно изменяя условия нх применения путем варьирования давления, температуры и введения различных добавок, удается регулировать высоту межфазного слоя И на поверхности пористого тела (рис. 12). [c.77]

    Переходнопористые тела (или капиллярно-пористые) имеют размеры пор в пределах от 2,0 до 100,0—200,0 нм, их удельная поверхность составляет от 10 до 500 м /г. На стенках этих пор при малых давлениях происходит полимолекулярная адсорбция паров, которая с увеличением давления заканчивается капиллярной конденсацией. Из промышленных адсорбентов и катализаторов к переходнопористым можно отнести силикагели, алюмогели, алюмосиликагели. [c.131]

    Так как процесс десорбции во всех случаях протекает с поверхности uiapoBifAHoro мениска постоянного радиуса кривизны, десорбционную ветвь изотермы капиллярной конденсации используют для расчега пористости адсорбента и распределения пор по радиусам. [c.35]

    Наряду с адсорбцией в пористых телах наблюдается явление капиллярной конденсации — конденсации пара адсорбата при давлениях, меньших давления насыщенного пара. При адсорбции стенки пор оказываются покрытыми тонкой пленкой адсорбированного вещества. Они хорошо смачиваются жидким сор-батом, и поэтому в порах легко образуется вогнутый мениск жидкости. Согласно уравнению Томсона (VII.5.3), давление пара, равновесное вогнутой поверхности, меньше упругости насыщенного пара. Поэтому конденсация пара в порах над вогнутым мениском начинается при давлениях, меньших давления насыщенного пара (р < р,), т. е. при относительном давлении, меньшем единицы (р1р < 1). Капиллярная конденсация, как и полислойная адсорбция, проявляется в том, что изотерма адсорбции в этих случаях принадлежит к одному из типов [c.226]

    Уравнение БЭТ передает адсорбцию пара на плоской поверхности. Наличие тонкой неоднородпой пористости приводит к особенностям, которые описывают потенциальная теория адсорбции Поляни и теория капиллярной конденсации. [c.306]

    В зависимости от природы образующих их веществ различают хрупкие гели (построены из жестких частиц) и эластичные гели (образованы гибкими макромолекулами). Хрупкие гели образуются коллоидными частицами ЗгОз, Т Оз, 5пОг, РегОз, УгОб. Типичным представителем является гель кремневой кислоты. Благодаря жесткости частиц и каркаса, который они образуют, хрупкие гели не набухают. Хрупкие гели имеют сильно пористую структуру с множеством узких жестких капилляров. Такие системы могут поглощать большие количества воды и других смачивающих стенки капилляров жидкостей. При постепенном оводне-нии высушенного хрупкого геля первые порции воды или другой жидкости, смачивая стенки капилляров, образуют на их поверхности тонкие молекулярные слои жидкости с низким давлением пара при дальнейшем оводнении давление пара растет и происходит капиллярная конденсация. [c.371]


Смотреть страницы где упоминается термин Конденсация на пористых поверхностях: [c.149]    [c.16]    [c.153]    [c.164]    [c.135]    [c.65]    [c.210]    [c.450]    [c.443]    [c.261]   
Препаративная органическая химия (1959) -- [ c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Конденсация поверхности

Поверхность пористых тел



© 2025 chem21.info Реклама на сайте