Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиролиз с азотом и аммиаком

    К началу прошлого века аммиачную воду получали из угля уже в значительных количествах в качестве побочного продукта при производстве светильного газа, который использовали для освещения Но откуда в угле взяться аммиаку Его там и нет, но уголь содержит заметные количества сложных органических соединений, в состав которых входят помимо других элементов, азот и водород. При сильном нагреве (пиролизе) образуется аммиак. На коксохимических заводах при нагревании без доступа воздуха 100 кг каменного угля получали до 70 кг кокса и свыше 30 м газообразных продуктов Горячие газы охлаждали, а затем пропускай через воду, при этом получали примерно 5 кг каменноугольной смолы и 4 кг аммиачной воды. Не растворившийся в воде коксовый газ состоял в основном из водорода (45%), метана (35%), оксида углерода (8%) и небольших количеств других углеводородов, азота и диоксида углерода. [c.18]


    При пиролизе азотсодержащих органических соединений довольно часто приходится иметь дело с такими газами, как оксиды азота, аммиак, циан и цианистый водород. Большинство этих газов химически активно, поэтому приходится уделять особое внимание подбору материалов хроматографических насадок, колонок и детекторов. Предосторожности при хро- [c.56]

    Азот для синтеза аммиака получают при разделении воздуха методом глубокого охлаждения. Водород получают различными методами конверсией метана, содержащегося в природном газе, попутных нефтяных газах, газах нефтепереработки и остаточных газах производства ацетилена методом термоокислительного пиролиза конверсией окиси углерода глубоким охлаждением коксового газа электролитическим разложением воды газификацией твердого и жидкого топлива. [c.33]

    Смесь водорода и окиси углерода с установки окислительного пиролиза поступает на установку конверсии окиси углерода с водяным паром. Углекислота отмывается водой и содой. Окончательная очистка водорода осуществляется промывкой его жидким азотом. Азото-водородная смесь поступает на синтез аммиака, который перерабатывается далее в удобрения. [c.163]

    Взрывобезопасность разделения горючих газов методом глубокого охлаждения. Эти процессы широко применяются при переработке коксового газа, продуктов высокотемпературного пиролиза и конверсии насыщенных углеводородов. За последние годы получил значительное распространение высокоэффективный метод промывки жидким азотом технического водорода, используемого для производства аммиака. При этом удаляются остатки окиси углерода — каталитического яда этого процесса. [c.84]

    Одним из таких полупродуктов является водород, который образуется в процессе крекинга и пиролиза нефти и углеводородных газов. Водород в свою очередь служит исходным веществом для производства аммиака, в молекуле которого на один атом азота приходится три атома водорода. Из аммиака получают углекислый аммоний, сульфат аммония, азотную кислоту, аммиачную селитру и ряд других продуктов, широко используемых в качестве удобрений и в химической промышленности для производства ряда веществ. Кроме того, из аммиака получается мочевина, представляющая собой органическое вещество, содержащее азот. В последнее время мочевина стала широко применяться в качестве удобрения, добавок в корм скоту, а также для производства некоторых пластмасс. Водород, который является основой синтеза аммиака, может получаться разными путями — при крекинге и пиролизе нефти и газа, при обработке кокса и угля водой при высокой температуре, при электролизе воды и т. д. Наиболее выгодным оказалось получение водорода из углеводородного газа. [c.356]


    При пиролизе гидрида бора с аммиаком образуется интересная циклическая структура -- боразол (неорганический бензол). У него в шести членном кольце содержится по три перемежающихся атома азота и бора  [c.204]

    Торфы. Общий пиролиз начинается при 160—200° С. Около 200—220° С появляются первые признаки дегтя. Максимальное количество воды выделяется при 250—270° С. При 200—300° С выделяются аммиак, метиловый спирт и муравьиная кислота. Выход аммиака зависит от интенсивности гидролиза и составляет 5—15% от общего содержания азота в торфе. Наибольшее количество СО2 выделяется при 300° С. Выше этой температуры резко увеличивается выделение метана и отгоняется уксусная кислота. [c.93]

    Б. Пиролиз с азотом и аммиаком [c.182]

    Наличие силанольных групп, вероятно, является одной из причин того, что стекло не смачивается некоторыми неподвижными фазами, кроме того, из-за наличия этих групп снижается термическая стойкость неподвижной жидкой фазы, нанесенной на внутреннюю поверх-ность стеклянного капилляра. Чтобы продукты десорбции и пиролиза легче удалялись из прогреваемой трубки в месте наибольшего ее нагрева, в нее вводят сухой аргон [197]. Однако адсорбированный углерод при этом удаляется неполностью, поэтому Райт и сотр. [226] вводили в трубку кислород, образующиеся при этом продукты окисления углерода и другие газообразные продукты удалялись током кислорода. Аналогичная методика очистки внутренней поверхности капилляра при вытягивании описана в работе [49], авторы которой использовали смесь азота и аммиака 1 3. Тем не менее на колонках, приготовленных из полученных таким образом капилляров, наблюдалось размывание заднего-фронта пиков полярных соединений. [c.60]

    При возможности использования в качестве дешевого сырья парафиновых углеводородов большего молекулярного веса, чем метан, и при возможности сочетания установки по производству ацетилена с установкой, производящей аммиак и метанол, можно применять процессы пиролиза типа СБА. Объединение установок, производящих и потребляющих ацетилен, с установками для получения аммиака и метанола, ведет при полном использовании промышленных мопщостей к повышению их экономичности. Для создания таких комбинатов требуются очень большие капитальные затраты в течение довольно короткого времени, а также наличие рынков сбыта для всех продуктов. При наличии дешевых парафиновых углеводородов тяжелее метана возможно применение процессов тина процесса Вульфа для производства одного ацетилена (или ацетилена и этилена), не связанного с производством аммиака или другими процессами. Для процесса Вульфа не требуются установки, разделяющие воздух, и, следовательно, отсутствует побочный продукт такого разделения — азот, а выход остаточного газа в результате использования большей его части для обогрева печи и парообразования снижается до минимума. Возможно проведение процесса в таком режиме, когда весь остаточный газ будет расходоваться в самом процессе для обогрева печи, парообразования и для газогенераторного привода компрессоров. Этим обеспечиваются минимальные энергетические затраты и не остается побочных продуктов для использования за пределами установки. Возможно использование установок типа Вульфа или Копперс-Хаше для совместного производства ацетилена и бытового газа. [c.188]

    Продукты высокотемпературного пиролиза (коксования) каменных углей более богаты азотистыми соединениями, чем нефть и продукты ее переработки. Только в каменноугольной смоле количество азотистых оснований достигает 6—8%. Более 50% азота угля остается в коксе в виде термически устойчивых соединений. Остальной азот является источником образования аммиака, цианистого водорода, многочисленных азотистых гетероциклических соединений, а также некоторого количества ароматических аминов. [c.96]

    Карбонизация окисленного волокна сопровождается отщеплением воды, аммиака и синильной кислоты. Полученный полимер нерастворим во всех растворителях, что еще более затрудняет исследование его структуры. Полагают, что на этой стадии происходит агрегация колец с образованием прочных низкомодульных волокон, в которых углеродный скелет имеет почти плоскую форму. Даже при температуре 1000 °С волокно сохраняет небольшое количество азота и водорода однако при более высоких температурах они полностью отщепляются. Графитация карбонизованного полимера вызывает его дальнейшую перегруппировку, в результате которой получается кристаллит, имеющий сетчатую структуру, подобную структуре графита. Углеродные волокна, близкие по свойствам к описанным выше, можно также получить путем регулируемого пиролиза целлюлозных волокон. Наиболее прочное сцепление со связующим при изготовлении армированных пластиков достигается в случае, когда поверхность углеродного волокна подвергают предварительной химической активации, т. е. регулируемому окислению воздухом или концентрированной азотной кислотой для образования карбонильных или карбоксильных групп. [c.353]


    Метод окислительного пиролиза может быть рентабельным там, где кислород является отходом производства при получении водорода электролизом воды, при получении азота из воздуха в производстве аммиака и т. д. [c.67]

    При пиролизе азотсодержащих соединении угля образуются аммиак (NH3), цианистый водород (B N) я окислы азота (N0, NO2), а также азотистые основания (пиридин, хинолин и др.). [c.84]

    Образование аммиака начинается при температурах около 400° С, затем растет до температуры 700° С, стабилизируется при 900° С, а при дальнейшем повышении температуры аммиак частично разлагается на водород и азот. Водяной пар, выделяющийся вместе с газом, замедляет реакции пиролиза аммиака. Выход аммиака зависит также от содержания азота в угле, В аммиак переходит примерно 10—15% азота угля. [c.84]

    При сожжении азотсодержащих органических соединений происходят два процесса термическое разложение вещества и окисление как самого вещества, так и продуктов его распада. В том случае, когда сожжение прошло количественно, в газах горения в конечном итоге не должно присутствовать соединений, не окислившихся полностью. Поэтому, хотя при термическом разложении азотсодержащих веществ и могут, в зависимости от их свойств, образоваться такие продукты пиролиза, как аммиак, дициан, цианистый водород, закись, окись и двуокись азота, свободный азот, закись углерода и метан или другие летучие углеводороды, в действительности в газах горения присутствуют лишь азот, окись или двуокись азота. Значительно реже и лишь при сожжении некоторых азотсодержащих веществ появляется реальная возможность недоокисления углеводородов или нитрильной группы. Многие исследователи указывают также на возможность недогорания угля, содержащего азот В последнем случае получатся, конечно, пониженные результаты, так же как и при образовании N-гpyппы, которая [c.73]

    Конденсация пара из парогазовой смеси имеет широкое распространение в промышленности. В химической технологии эти процессы используются, ндпример, для конденсации аммиака из азотоводородной смеси после синтеза, для фракционированной конденсации углеводородных смесей из газов пиролиза нефтяного сырья в производствах низших олефинов (этилена, пропилена), для конденсации органических продуктов в присутствии неконденсирующихся газов, для конденсации азота из азотогелиевой смеси в установках очистки гелия от примеси азота и во многих других производствах. В холодильной технике конденсация паров хладагентов часто происходит в присутствии небольших количеств не-конденсирующегося воздуха. То же имеет место и при конденсации отработанного водяного пара в паросиловых установках, когда водяной пар содержит примесь воздуха. [c.148]

    В настоящее время сырьем для синтеза аммиака чаще служат азот, выделяемый из воздуха при его сжижении, и метан, пиролизом которого получают водород.-Лрыл(. ред. [c.335]

    Ряд растворителей обладает большей растворяющей способностью по отношению к ацетилену, чем ацетон. Некоторые из них перечисляются ниже. Поскольку концентрация ацетилена в газах пиролиза невелика, обычно перед контактированием растворителя с газом последний сжимают для повышения парциального давления ацетилена. Правда, в пат. США 2029120 ( СБА — Сосьете Бельж де л азот ) указывается [17], что вследствие высокой растворяющей способности жидкого аммиака по отношению [c.248]

    В книге описаны основные методы очистки технологических газов, применяемых для синтеза аммиака и некоторых других продуктов. Детально изложен широко распространенный метод моноэтаноламиновой очистки от двуокиси углерода и сероводорода абсорбция двуокиси углерода и сернистых соединений водой, щелочными растворами и органическими растворителями способы сухой очистки от сероводорода и каталитической тонкой очистки от кислородсодержащих примесей. Значительное внимание уделено новым процессам очистки, в частности очистке природного газа от высших углеводородов, газов пиролиза — от окислов азота и ацетилена. Подробно изложены физико-химические основы процессов, а также их аппаратурно-технологическое оформление. [c.2]

    Самую многочисленную группу составляют химические процессы, из которых наиболее важными в технологии являются следующие процессы горение (сжигание жидкого, твердого и газообразного топлива с целью получения энергии, серы — для получения серной кислоты) пирогенные (коксование углей, пиролиз и крекинг нефтепродуктов) окислительно-восстановительные процессы (газификация твердых и жидких топлив, конверсия углеводородов) электрохимические (электролиз воды, растворов и расплавов солей, электрометаллургия, химические источники тока) электротермические (электровозгонка фосфора, получение карбида и цианамида кальция) плазмохимические (реакции в низкотемпературной плазме, включая окисление азота и пиролиз метана, получение ультрадисперсных порошкообразных продуктов) термическая диссоциация (получение извести, кальцинированной соды, глинозема и пигментов) обжиг и спекание (высокотемпературный синтез силикатов, получение цементного клинкера и керамических кислородсодержащих и бескислородных материалов со специальными функциями) гидрирование (синтез аммиака, метанола, гидрокрекинг и гидрогенизация жиров) комплексообразова-ние (разделение и рафинирование платиновых и драгоценных металлов, химическое обогащение руд, например путем хлорирующего или сульфатизирующего обжига для перевода металлов в летучие или способные к выщелачиванию водой соединения) химическое разложение сложных органических веществ (варка древесных отходов с растворами щелочей или бисульфита кальция с целью делигнизацми древесины в производстве целлюлозы) гидролиз (разложение целлюлозы из отходов сельскохозяйственного производства или деревообрабатывающей промышленности с по- [c.211]

    В большинстве газов коксонания или пиролиза, например газах коксования углей или пиролиза нефти или сланцевой слтолы, содержатся азотистые соединения среди них преобладает аммиак, удалять который необходимо практически во всех случаях. Помимо аммиака присутствуют также пирид1ш и его гомологи (обычно называемые пиридиновыми основаниями) и некоторые кислотные азотистые соединения. В данной главе рассматривается очистка газовых потоков от азотистых оснований водной абсорбцией или взаимодействием с сильными кислотами или сочетанием обоих процессов. Процессы удаления азотистых соединений кислого характера, нанример цианистого водорода и окислов азота, рассмотрены в других главах книги. Хотя описанные в данной главе процессы предназначены главным образом для удаления оснований, при п])именении воды в качестве абсорбента неизбежно одновременно удаляются (по крайне11 мере, частично) и некоторые кислотные соединения, содержащиеся в газе. [c.227]

    Пиролиз амидоксимов и их сложных эфиров. Бензамидоксим при 170 теряет аммиак, азот и закись азота и при этом образуются бензамид, бензо-иитрил, 3,5-дифенил-1,2,4-триазол, 2,4,6-трифенил-1,3,5-триазин и 3,5-дифе-нил-1,2,4-оксадиазол (I) [202]. Нагревание бензамидоксима в низкомолеку-лярных жирных кислотах [203], а также обработка азотистой кислотой [204] или хлором [205] в этаноле также служат методами получения соединения I. [c.388]

    Метан в настоящее время чаще всего выделяют из природного газа. Метановые фракции получают также при низкотемпературном разделении газов пиролиза и крекинга нефтепродуктов, продувочных газов синтеза аммиака. Метан получают либо каталитическим гидрированием оксида углерода, либо из метилиодида, метилбромида по реакции Гриньяра через магнийиодметил или соответственно магнийбромметил. Дополнительная очистка метана может быть проведена низкотемпературной ректификацией с использованием жидкого азота в качестве хладоагента, а также низкотемпературной адсорбцией. Наиболее чистый метан содержит (мол. %) основного вещества — 99,9995, примесей азота — 210 кислорода —0,5-10 водорода — 0,110 СОг — 1-10 мол. %. [c.912]

    Третьим важным источником исходных продуктов для получения смол является синтез под высоким давлением аммиака и метилового спирта из водорода, который в первом случае реагирует с атмосферным азотом, а во втором — с окисью углерода аммиак применяется для получения, путем реакции с двуокисью углерода, мочевины, а метиловый спирт—для окисления его в формальдегид. Еще почти неиспользованными, но многообещающими в этой области материалами являются побочные продукты, получаемые при крекинге нефти. При соответствующем подборе сырья и условий крекинга можно получить хорошие выходы таких важных продуктов, как этилен, изобутилен, бутадиен и даже ацетилен. Хотя эти последние получаются в виде компонентов сложных систем и выделение их из смесей и очистка сопряжены сисп гхьзо-ванием сложной аппаратуры, но то обстоятельство, что эти ценные продукты пиролиза могут сильно удешевить производство смол, делает этот синтез весьма многообещающим. И действительно, уже-достигнуты большие успехи в области пиролиза нефти, при произ-. водстве светильного газа, в направлении получения значительных количеств таких ценных ненасыщенных углеводородов, как стирол. [c.479]

    МТА дигидрата комплекса четырехвалентного германия с ЭДТА позволил установить, что в интервалах 70—100 °С и 160 — 190 °С теряются примерно одинаковые количества воды, а в интервале 270—320 °С комплекс теряет СО и Н2О. Наконец, при температуре выше 380 °С остаток быстро разлагается на этилен, моноксид углерода, аммиак, азот и другие продукты пиролиза. [c.505]

    Основное количество аммиака при коксовании углей образуется за счет прямого выделения МНд при пиролизе азотсодер-жащихся соединений угля Количество связываемого в аммиак азота достигает 11 —15 % от общего его содержания в угле Выход аммиака при коксовании углей донецкого бассейна составляет [c.201]

    Проходя через слой разработанного фирмой Импириал кемикл индастриз катализатора, загруженного в печные трубы, водяной пар и сырье превращаются в окись и двуокись углерода, водород и метан. Смесь газа пиролиза и водяного пара выходит из печи при температуре около 700—850°С и охлаждается либо теплообменом с технологическими потоками, либо в котле-утилизаторе, после чего поступает в конвертор окиси углерода, в котором протекает реакция водяного газа СО. превращается в дополнительное количество Нг плюс СОг. Если синтез-газ предназначен для синтеза аммиака, то в систему включается второй реактор, куда вводят азот, необходимый для синтеза аммиака, тем самым уменьшая содержание метана в конвертированном газе. [c.165]

    К числу аппаратов и механизмов с повышенной взрывоопас-ностью относятся абсорберы и адсорберы для взрывоопасных и токсичных сред автоклавы, работающие со взрывоопасными средами агрегаты для конверсии природного газа, оксида углерода, метана и оксида углерода, для моноэтаноламиновой очистки, промывки газа от оксида углерода жидким азотом, окисления аммиака, пиролиза природного газа, а также агрегаты, использующие тепло нейтрализации в производстве аммиачной селитры, синтеза мочевины, синтеза метанола выпарные аппараты для взрывоопасных и токсичных продуктов, контактные аппараты с перемешивающими устройствами для взрывоопасных и токсичных продуктов ацетиляторы блоки. раздедещя воздуха и коксового газа варочные кот- лы периодического действия выдувные резервуары газо-дувки, турбогазодувки и вакуум-насосы для взрывоопасных и токсичных газов газогенераторы газгольдеры для взрывоопасных газов и кислорода детандеры всех типов и назначений газгольдеры для взрывоопасных газов и кислорода дробилки и мельницы всех типов и назначений гидроразбиватели вертикального и горизонтального типов испарители сжиженных газов клеемешалки ксантогенераторы и турборастворители в производстве вискозных волокон компрессоры всех типов и [c.24]

    СБА (Келлог) (Сосьете бельж де л азот) Процесс неполного сгорания или пиролиза углеводородов в пламени, полученном от сжигания различных топлив в кислороде. Для отделения ацетилена в качестве растворителя применяется аммиак 34, 35 [c.168]

    Уже давно было известно, что при пиролизе каменного угля и нефтяных масел образуется стир10л. Оказалось, что как сам стирол, так и его гомологи являются весьма подходящим материалом для получения других веществ, особенно смол, в которые стирол и его гомологи превращаются в результате полимеризации. Исходным сырьем для получения стиролов посредством пиролиза обыкновенно является этилбензол и его гомологи. Так например в способе, который описали Mark и Wulff гомологи бензола, содержащие хотя бы один этильный радикал, претерпевают каталитическую дегидрогенизацию в паровой фазе при температуре от 500 до 800° в присутствии такого инертного разбавителя, как например во дяной пар, азот или углекислый газ. Катализаторами этой реакции являются соединения таких металлов (особенно их окислы и сульфиды), которые не восстанавливаются или восстанавливаются толькО частично в условиях пиролиза. Сюда относятся окислы кальция, лития, стронция, магния, бериллия, циркония, вольфрама, молибдена или урана, фосфат хрома, алюминат кальция, хромат магния и фосфат кальция, антрацит, активированный уголь, силикагель и глина, а также смеси этих веществ друг с другом. Прибавление 1—3% легко восстанавливаемых соединений металлов, например окислов меди или железа, часто способствует увеличению каталитической активности. Указывается также, что на повышение продолжительности работы катализатора и на увеличение его активности благоприятно влияет предварительная обработка катализато ра при 300—600° газами, не содержащими углерода, как-то водородом, водяным паром, азотом или аммиаком. При таком способе работы из этилбензола образуется стирол, а из этилтолуола — метилстирол. [c.165]

    Если водород получается чисто термическим разложением углеводородов, то единственными обычно присутствующими в продукте примесями являются небольшие количества углевддородов (обычно -метана) и, возможно, небольшое количество азота. Необычайно трудно добиться полного разложения углеводородов, даже при высоких температурах, так как в таких пиролитических процессах приближение к равновесию происходит очень медленно. Подвергая пиролизу польский естественный газ, ManteP получил водород, содержавший еще 0,7% метана. Во многих уже кратко описанных процессах получающийся водород загрязнен окислами азота и небольшими количествами газообразных углеводородов. Эти загрязнения присутствуют также в газах, получаемых при взаимодействии углеводо родов с водяным гаром при высоких температурах (см. гл. 10). В настоящем разделе мы должны по необходимости ограничиться кратким перечислением методов удаления только этих примесей. Чистота водорода должна быть различной в зависимости от того, для какой цели она предназначается. Для некоторых процессов гидрогенизации (например сжижение угля) может с успехом применяться сравнительно загрязненный водород. С другой стороны, водород, применяющийся для каталитического синтеза аммиака, должен быть свободен от следов кислорода, окиси углерода и водяного пара i . [c.254]


Смотреть страницы где упоминается термин Пиролиз с азотом и аммиаком: [c.308]    [c.54]    [c.100]    [c.676]    [c.390]    [c.388]    [c.390]    [c.100]    [c.185]    [c.188]    [c.161]    [c.129]   
Смотреть главы в:

Синтезы неорганических соединений -> Пиролиз с азотом и аммиаком

Синтезы неорганических соединений Том 2 -> Пиролиз с азотом и аммиаком




ПОИСК





Смотрите так же термины и статьи:

Азот аммиак



© 2025 chem21.info Реклама на сайте