Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производство и применение смазочных масел

    Применение сульфокислот в народном хозяйстве разнообразно. Техническая смесь нефтяных сульфокислот получила название контакта Петрова. Контакт Петрова используется для расщепления жиров, прп обработке кож, в текстильной промышленности в качестве моющего средства, в производстве пластмасс, присадок к смазочным маслам. [c.390]


    Каталитическое окисление нафталина воздухом или воздухом, обогащенным кислородом, широко используют для производства фталевого ангидрида. Фталевый ангидрид является важным полупродуктом в производстве алкидных и полиэфирных смол, пластификаторов для поливинилхлорида и других полимеров, в синтезе красителей. Кроме того, с применением фталевого ангидрида можно получать лекарственные вещества, инсектициды, ускорители вулканизации каучуков, присадки к смазочным маслам, добавки к реактивным топливам и т. д. [c.176]

    На первый взгляд кажется, что вопрос создания производства присадок к смазочным маслам не слишком сложен, однако это не так. Синтез и применение присадок должны осуществляться на научной оснОве. При этом мастерство исследователей должно заключаться в умелом сочетании отдельных элементов и функциональных групп в молекуле органических соединений, установлении их соотношения и взаимного расположения, а также создании на базе этих соединений эффективных композиций. [c.10]

    Определение редких щелочных металлов пламенно-фотометрическим методом нашло широкое применение. Основное преимущество метода — как и вообще при спектральном анализе, то, что он может быть применен без предварительного отделения щелочных металлов. Описаны методы определения Li в водах [203, 204], минералах и силикатных породах ]9, 194, 205—217], стеклах [209, 218—220], портланд-цементе [221, технических растворах солей лития [41, 222—224, 265], отходах и полупродуктах производства ]225], смазочных маслах [226], магниевых сплавах [193, 227, 228], солях бериллия [229], урана [230], чугуне [231] и других [232, 266]. Степень превращения в Li под действием нейтронов в сплавах бора с цирконием и в бор-содержащих сталях, в атомных реакторах, также определяется этим методом [233]. [c.50]

    Свыше производства смазочных масел в капиталистическом мире приходится на США. За последнее время спрос на смазочные масла ввиду применения синтетических смазочных материалов оставался на прея<нем уровне, т. е. 10 млн. т в год. [c.52]

    Наряду с хорошей подготовкой базовых масел большое распространение получило производство и применение присадок к смазочным маслам, что обусловило снижете удельного расхода их по отношению к моторным топливам. Об этом свидетельствует, например, такой факт в США в 1950 году стоимость присадок, расходуемых на тонну масла, составляла 4 доллара, а в 1961 г.—25 долларов. Таким образом, в 1961 году стоимость присадок, добавляемых в масло, составляла примерно 43% стоимости товарного масла [76]. [c.181]


    На основе опыта эксплуатации масляного хозяйства, изучение природы нефтей Азербайджана и проведенных исследований по качествам масел, получаемых из бакинского сырья при применении различных технологических процессов, а также синтезу и применению присадок к смазочным маслам, разработана и рекомендуется принципиальная схема масляного производства, обеспечивающая значительное улучшение качеств вырабатываемых моторных масел (рис. 7) [77]. [c.181]

    Развитие и совершенствование техники, рост быстроходности машин, повышение рабочих температур, контактных нагрузок и продолжительности эксплуатации оборудования существенно изменили роль и повысили требования к смазочным маслам. Заметно увеличился ассортимент масел, появились автомобильные, энергетические, индустриальные и другие масла. Необходимость увеличения объемов производства и улучшения качества масел привела к внедрению более прогрессивных методов очистки масляных дистиллятов н остатков, в частности применению избирательных растворителей, обеспечивающих значительно более полное извлечение из сырья ценных компонентов. [c.41]

    Работающий по этому методу завод в г. Ниагара-Фолс (шт. Нью-Йорк) перерабатывает ежегодно 9 тыс. т жидких углеводородов и производит приблизительно такое же по весу количество продуктов окисления. Из них около 30—40% составляют органические кислоты, остальное — спирты и кетоны. Полученные вещества находят разнообразное применение во всех случаях, когда этому не препятствует их сложный состав (производство консистентных смазок, смачивающих веществ, пластификаторов, добавок к смазочным маслам, ингибиторов коррозии и т. п.). По-видимому, этот процесс после войны не получил дальнейшего распространения. [c.74]

    Точно так же повышение качественных требований автотранспорта, авиации, тракторного парка к смазочным маслам (вязкостно-температурные свойства, температура застывания, стабильность и др.) обусловило создание новых процессов производства масел — очистку избирательными растворителями, депарафинизацию, применение присадок. [c.423]

    Кристаллизация уже давно применяется в нефтеперерабатывающей промышленности. Она, вероятно, явилась вторым процессом разделения, нашедшим применение в промышленности, вслед за перегонкой. Необходимость производства смазочных масел, сохраняющих текучесть даже в зимних условиях, потребовала разработки процессов депарафинизации. В начальный период кристаллизацию проводили простым охлаждением масла с последующим отжиманием его Е мешках из ткани для разделения на масло с низкой температурой застывания и твердый парафин. Примерно в 1880 г. [54] процесс был несколько усовершенствован дистиллятные смазочные масла начали вырабатывать с применением охлаждения для выделения кристаллов твердого парафина, которые затем удаляли в рамных фильтрпрессах. Такое разделение было весьма нечетким. Твердый парафин все еще содержал до 50—60% масла. [c.52]

    Свойство углеводородов нефти по-разному изменять свою вязкость при повышении температуры имеет большое значение при производстве и применении смазочных масел. Для смазочных масел вязкость является одной из важнейших характеристик. Кривые зависимости вязкости масел от температуры имеют вид, аналогичный виду кривых, представленных на рис. 3. Чем более полога температурная кривая, тем выше качество масла в эксплуатации (тем меньше его вязкость изменяется при изменении температуры). [c.32]

    В настоящей главе рассматриваются то химические свойства парафинов и циклопарафинов, которые пс вошли в предыдущие главы. В фи-зиологич( ском отношении парафины и циклопарафины, как правило, инертны и не оказывают раздражающего действия. Циклопропан применялся как анестезирующее вещество, концентрация же пропана, необходимая для оказания анестезирующего действия, слишком велика, чтобы его можно было использовать [9]. У рабочих, имеющих дело с парафином в процессе его получения, иногда развивается определенная форма рака, которая рассматривалась как профессиональное заболевание, одпако в настоящее время известно, что прямогонные и особенно крекинговые смазочные масла содержат небольшие количества веществ, которые раздражают кожу и являются канцерогенными [3]. Это справедливо также и в отношении высококипящих масел, получающихся в качестве побочного, продукта при каталитическом крекинге. Канцерогенное действие приписывается некоторым ароматическим углеводородам, содержащимся в этих маслах [23а]. Мягкий парафин, плавящийся приблизительно около 45°, широко применяется как защитное покрытие при лечении тяжелых ожогов [81]. На отсутствие токсического и раздражающего действия тщательно очищенного американского белого медицинского масла указывает широкое применение его в качестве механического слабительного средства. При производстве белого медицинского масла содержащие ароматические кольца углеводороды удаляются путем сульфирования крепкой дымящей серной кислотой. Непредельность таких масел также практически равна нулю (йодные числа, определенные по методу Хэнаса, меньше 1,0). [c.88]


    Постоянные усилия автомобильной промышленности по созданию более эффективных и экономичных двигателей вызвали дополнительные требования к качеству смазочных материалов. Очевидно, если улучшаются конструкция и надежность двигателей и увеличивается мощность на единицу веса и на единицу израсходованного топлива, то требования к смазочному маслу становятся особенно высокими. Нефтяная промышленность ответила на этот вызов широким развитием исследовательской работы и большим объемом испытаний с целью получения более высококачественных масел. За последние 60 лет значительно изменились и улучшились методы очистки и производства моторных масел. Применение присадок для улучшения некоторых свойств этих масел также привело к значительным успехам. Синтетические смазочные материалы вышли из стадии лабораторных опытов и стали товарными продуктами. Применение их в качестве смазки для двигателей заслуживает большого внимания. [c.7]

    Хотя многое, касающееся производственных характеристик моторных масел, еще недостаточно выяснено и остается противоречивым, опыт практического использования моторных масел позволяет в значительной степени преодолеть имеющиеся противоречия. Искусство пли наука производства и применения моторного масла достигли такого уровня, при котором обзор и систематизация достигнутого не только возможны, но и необходимы. В книге делается попытка осветить всю сумму сложных вопросов, касающихся очистки масел, работы двигателей и применения смазочных материалов в свете современных взглядов и современной практики. [c.8]

    Производство и применение присадок к смазочным маслам является молодой областью техники, появившейся около 35 лет тому назад в связи с необходимостью разработки новых масел для автомобильных гипоидных передач, которые при работе на маслах без присадок быстро разрушались [1—3]. [c.120]

    Не меньший интерес представляет процесс изомеризации и-бутана в изобутан—ценное исходное соединение для производства изобутилена, получившего широкое применение для синтеза некоторых типов каучуков, в качестве добавки к смазочным маслам, для изготовления моющих средств, пластмасс (стр. 418). [c.149]

    Соли нафтеновых кислот также пашли широкое применение. Медные и алюминиевые соли нафтеновых кислот можно применять как инсектисиды. Нафтенаты свинца, хрома, кобальта и марганца применяют в качестве составных частей для лаков, в качестве катализаторов при окислении углеводородов и в качестве присадок к смазочным маслам. Нафтенаты олова и ртути обладают антиокислительными свойствами, в частности, они уменьшают осадкообразование в трансформаторных маслах. Бариевые и кальциевые соли нафтеновых кислот употребляют при изготовлении цветных лаков и консистентных смазок. При производство мыла применяются натриевые соли смешанных нафтеновых кислот, причем эмульгирующая и пенообразующая способность натриевых мыл очень высока. Натриевые соли нафтеновых кислот мазеобразны, гигроскопичны. Их с успехом можно применять в качестве загустителя при производстве консистентных смазок. Для этой же цели применяются литиевые мыла полученные на их основе смазки имеют весьма высокие эксплуатационные свойства. Медные, цинковые и свинцовые соли нафтеновых кислот могут применяться в качество предохраняющих средств д.ля дерева например, для пропитки шпал). [c.57]

    Тримеры пропена (нонены) находят применение в качестве сырья для оксосинтеза изодециловых спиртов, фталевые эфиры которых являются пластификаторами пластмасс. Кроме того, нонены и октены (димеры бутенов) широко используются при алкилировании фенола в производстве ПАВ бытового назначения и для повышения нефтеотдачи пластов, в качестве присадок к смазочным маслам. [c.319]

    Промышленные процессы производства смазочных масел из низкомолекулярных олефиновых углеводородов. Все перечисленные выше процессы нашли большое промышленное применение в Германии [78, 174], где в годы второй мировой войны значительная доля потребности в смазочных маслах удовлетворялась синтетической продукцией. [c.374]

    В данной книге уделено большое внимание присадкам к смазочным маслам, применению пенного и эмульсионного фракционирования, гидрированию сырья для каталитического крекинга, использованию ионизирующего излучения в нефтехимических производствах, влиянию радиоактивных излучений на смазочные материалы, высокотемпературным тех- [c.272]

    Исследованием фосфорорганических соединений занимаются многие научные и заводские химические лаборатории, поскольку они находят широкое применение в народном хозяйстве при флотации руд, в производстве негорючих пластмасс, инсектицидов, используются как растворители и пластификаторы, а также идут в качестве добавок к смазочным маслам и т. д. [c.65]

    Смазочно-охлаждающие нефтепродукты используют для технологических целей — масляные в натуральном виде, эмульсолы и пасты в виде эмульсии преимущественно типа масло в воде . Наибольшее применение смазочно-охлаждающие жидкости (СОЖ) находят при обработке металлов и их сплавов резанием и давлением, эмульсии применяют также для обезжиривания деталей и изделий металлообработки, при замасливании шерсти, жировании кож, иногда в качестве рабочей жидкости, для смазывания металлических форм, в производстве железобетонных изделий и др. [c.346]

    Организация производства изобутилксантогената калия необходима также для выработки на его основе присадок к смазочным маслам. При этом получают особенно ценные кристаллические присадки, хорошо растворимые в различных смазочных маслах, в том числе и в синтетических. В то же время на базе м-бутилксан-тогената получают менее качественные некристаллические присадки, обладающие неприятным запахом. Это затрудняет их применение в индустриальных маслах. [c.77]

    Так как затраты на производство моторных топлив дифференцированы для соответствующих плановых и перспективных периодов, предусматривается построение динамической модели ресурсных и экономических оценок производства и применения сравниваемых альтернативных видов сырья и моторных топлив, получаемых из них. Технико-экономическим расчетам должны предшествовать балансовые расчеты по добыче и направлениям использования различного сырья, производства и потребления моторных топлив с учетом обеспечения потребности народного хозяйства и экспорта в котельно-печном топливе, жидком углеводородном сырье для нефтехимического синтеза и других нефтепродуктах (коксе, битуме, смазочных маслах и др.). На основе балансовых расчетов определяется срок или расчетный период возникновения дефицита в нефтяных моторных топливах и необходимый объем производства альтернативных топлив. При этом понятие дефицит следует рассматривать как балансово-экономическую категорию. В одном случае— это несведение баланса по нефтяным топливам в силу запаздывания ввода мощностей по их производству в нефтеперерабатывающей промышленности к планируемому периоду при наличии достаточных ресурсов нефти или мазута для глубокой переработки. Следовательно, дефицит моторных топлив обусловлен просчетами в планировании инвестиционной политики — недостаточным выделением капитальных вложений, недостатком мощностей строительно-монтажных организаций или предприятий по изготовлению нефтезаводской аппаратуры и оборудования. В то же время производство нефтяных топлив может быть предпочтительнее получения альтернативных моторных топлив из других сырьевых ресурсов. [c.196]

    Получение парафина или депарафинизация нефти составляет со-йершенно особенный раздел нефтепереработки. Она особенно близгл касается области приготовления смазочных масел. В самом деле депарафинизация проводится не только потому, что парафин находит себе на рынке самое широкое и разнообразное применение, но также и потому, что депарафинизация улучшает качество смазочных масел. В самом деле, присутствие твердого парафина повышает точку затвердевания фракций, отвечающих смазочным маслам. Поэтому все стремятся к удалению сырого парафина и максимальному форсированию производства парафина, ограниченному лишь емкостью рынка для этого продукта. [c.124]

    Производство сульфокислот из нефтепродуктов впёрвые возникло в Баку на основе работ Г. С. Петрова. Еще в 1911 г. он разработал и запатентовал метод производства поверхностно-ак-тивных веществ (ПАВ) алкиларилсульфонатного типа (контакт Петрова). Высокая поверхностная активность и дешевизна нефтяных сульфонатов обеспечивают их широкое применение в качестве моющих средств и эмульсионных растворов при обогащении руд, деэмульгаторов, диспергаторов, пептизаторов, пенообразователей, пластификаторов, моющих присадок к смазочным маслам и т. д. [c.66]

    Метод избирательного растворения начали применять на заводах, вырабатывающих смазочные масла, для разделения нефтепродуктов на химически однородные или близкие группы веществ лишь последние 20—25 лет. Между тем Харичков [26] 60 лет назад применил метод избирательного действия растворителей в лаборатории (назвав его методом холодной фракционировки ) в Грозном для разделения высокомолекулярных углеводородов, содержащихся в мазуте грозненской парафинистой нефти. Еще в 1915 г. был применен фенол как избирательно действующий растворитель для извлечения из угля органических веществ [27]. В 1947 г. Черножуков и Лужецкий [281 применили фенол также для разделения нефтяных смол. Использование избирательного действия растворителей в настоящее время играет значительную роль в процессах разделения нефти и, в особенности, высокомолекулярной ее части при изучении химического состава ее и в процессах переработки, особенно в производстве нефтяных смазочных масел. [c.117]

    Решение экологических проблем в области производства и применения смазочных материалов ведется сейчас и очевидно будет вестись в обозримом будущем по двум основным направлениям, подробно рассматриваемым в главах 4 и 5 первое — создание относительно экологобезопасных продуктов на базе нефтяного (масла гидрогенизационных процессов), синтетического (ПАО, сложные эфиры) и растительного сырья второе — квалифицированная утилизация отработанных смазочных материалов. [c.116]

    Одно из наиболее перспективных направлений применения процесса карбамидной депарафинизации — получение товарных нефтяных парафинов различных сортов, дальнейшее использование и переработка которых могут осуществляться по нескольким направлениям. В начале промышленного внедрения процесса карбамидной депарафинизации выделяемый мягкий парафин использовали в качестве сырья для термического крекинга. Несколько более квалифицированным можно считать использование его в качестве компонентов топлив для реактивных двигателей — когда после компаундирования выдерживаются требования по температурам застывания, помутнения и т. д. Наиболее правильно использовать мягкие парафины в нефтехимических производствах. Например, мягкие парафины после соответствующей очистки можно окислять до жирных кислот или жирных спиртов, крекировать или дегидрировать с получением непредельных соединений, сульфохлорировать с получением моющих веществ типа алкилсульфонатов, хлорировать с получением присадок к смазочным маслам, пластификаторов, средств пожаротушения и т. д. На основе мягких парафинов можно производить различные растворители без запаха, применяемые при приготовлении некоторых лаков, красок и защитных покрытий, а также в фармацевтической и парфюмерной промышленности. Можно также использовать мягкие парафины при производстве инсектицидов, не имеющих запаха, для сельского хозяйства и особенно для бытовых нужд, при изготовлении некоторых типографских красок горячей сушки и т. д. Однако шире всего парафины будут применяться при производстве синтетических жирных кислот и синтетических жирных спиртов, а также при производстве белково-витаминных концентратов. Целесообразность производства парафина различных сортов (в том числе мягкого) на базе существующих нефтеперерабатывающих заводов с последующей переработкой этих парафинов освещается в ряде работ [204, 205 и др.]. [c.131]

    По назначению (областям применения) выделяют следующие группы масел (рис. 2) смазочные, консервационные, электроизоляционные, гидравлические, технологические,. вакуумные, медицинские и парфкзмерные (белые). Наиболее представительны как по ассортименту, так и по объему производства, смазочные масла. Классификация масел по назначению в значительной степени соответствует их функциональному действию. Она наиболее обширна многие из приведенных групп масел делятся еще на несколько подгрупп ло более узким областям применения. Среди смазочных масел, основным назначением которых является уменьшение трения и износа металлических поверхностей, наиболее значительной группой являются моторные масла, которые, в свою очередь, делятся на масла для карбюраторных, дизельных и поршневых авиационных двигателей. Электроизоляционные масла подразделяют на трансформаторные, кабельные и конденсаторные (более подробное описание каждой группы масел по назначению и пх классификации (Приведены в гл. X). [c.25]

    Технические нефтяные кислоты (асидол), выделяемые из керосиновых и легких масляных дистиллятов, имеют разнообразное применение в качестве растворителей смол, каучука и анилиновых красителей для пропитки шпал для смачивания шерсти при валянии при изготовлении цветных лаков в качестве антисептика в текстильном производстве и т. п. Не меньшее значение имеют и различные соли нафтеновых кислот. Кальциевые, бариевые, свинцовые и алюминиевые соли используюрся в качестве загустителей при изготовлении консистентных смазок. Бариевые, цинковые, оловянные, алюминиевые, кобальтовые и никелевые соли являются присадками к смазочным маслам. Нафтенат хрома — хорошее клеящее вещество. Нафтенат марганца — известный катализатор в процессах окисления парафина. [c.35]

    Без соединений фтора трудно представить современную технику, освоение космических скоростей и сверхнизких температур. Такими соедт1епиями являются смазочные масла, не окисляющиеся в дымящей азотной кислоте и выдерживающие 50-градусные морозы, пластические массы (тефлон, фторопласт-3 и др.), фторокаучуки, высокотермосто1Гкие стекла, ракетное топливо и т. д. Фтор зарекомендовал себя при получении ценных фторпроизводных углеводородов, которые нашли применение в медицине (в качестве материала для заменителей кровеносных сосудов и сердечных клаианов). Широко используется фтор для получения тефлона. Тефлон очень устойчив к химическим реагентам — кислотам, щелочам, царской водке. Он незаменим в производстве веществ особой чистоты, для изготовления аппаратуры и химической посуды. [c.348]

    Если каждая макромолекула П. состоит из 50—70 молекул этилена, связанных в одну цепочку, то полимер представляет собой жидкость, которую используют как смазочное масло если макромолекула состоит из 100—120 молекул этилена, то полимер представляет собой твердое белое вещество при связывании тысячи и более молекул этилена получается твердая полупрозрачная, эластичная и прочная пластическая масса с плотностью 0,92, называемая полиэтиленом (или поли-теном). П. морозостоек, проявляет пластичность при нагревании, обладает хорошим сопротивлением на разрыв. П. горит голубоватым, слабо светящимся пламенем, стоек при обычных условиях к действию щелочей, кислот и окислителей. Используют как электроизоляционный материал, для производства водопроводных труб, предметов домашнего обихода, посуды для хранения и перевозки щелочей и концентрированных кислот, как упаковочный материал для продуктов питания. Полиэфиры — высокомолекулярные соединения, получаемые поликонденсацией многоосновных кислот или их альдегидов с многоатомными спиртами. Известны природные (янтарь и др.) и искусственные П. Практическое применение получили глифталевые смолы, полиэтилентерефталат, полиэфирмалеинаты и полиэфирак-рилаты. [c.106]

    Диоксоланы (циклические ацетали) в последнее время приобретают все возрастающее значение. Обладая широким спектром биологической и физиологической активности, они находят применение в производстве лекарств, фунгицидов, флотореагентов для медных руд в парфюмерии, кроме улучшения запаха, способствуют его стабилизации. Они также стабилизируют яатексы и другие коллоидные системы, используются в качестве смазок и присадок к смазочным маслам, в текстильной промышленности для отделки тканей и улучшения их свойств, входят в композиции для лаков в полиграфической и бумажной промышленности и т. д. [1]. В связи с широкой сферой их применения, расширение круга получаемых 1,3-диоксоланов и освоение альтернативных способов их получения весьма актуально для мато-тоннажной химии. [c.21]

    Основная область применения дурола - производство пирофюл-литового диангидрида,, используемого для получения термостойких волокон, присадок к смазочным маслам, а также красителей. [c.349]

    Берут для этого автоклав с механической мешалкой, испытанный на 40 ат с эмалированным вкладыш ем емкостью 100 л. Относительно конструкции и применения автоклавов Фирц в своей книге о химии красок дал такие исчерпывающие указания, что подробное апи-I сание установки и пуска в производство было бы бесполезным повторением, тем балее, что применение высоких давлений в пpoизвoд tвe алкалоидов встречается как исключение. Нужно только указать на то, что необходимо следить за тем, чтобы смазочное масло из сальника не загрязнило товар в автоклаве. Загружают в автоклав  [c.387]

    В промышленности вакуумная перегонка была открыта независимо и случайно. В 1867 г., когда Джошуа Меррилл перегонял 3,4 пенсильванской нефти, забило конденсатор. Перегоняемая загрузка была слишком тяжелой для использования в целях освещения и слишком легкой—для смазочного масла [30] закупорка конденсатора была вызвана, повидимому, отложением парафина в конденсаторе. Давление стало настолько большим, что пришлось погасить огонь и дать охладиться кубу, из-за чего и образовался вакуум. Когда аппарат вскрыли, в конденсаторе был найден прозрачный нейтральный дестиллят. Меррилл позже отметил, что подобный дестиллят может быть получен с помощью перегонки с перегретым водяным паром, который действует, кроме того, как добавка при азеотропной перегонке. Вскоре последовало применение вакуумной перегонки нефтяных масел в заводском масштабе, а с 1870 г. в Рочестере (штат Нью-Йорк) было начато промышленное производство вакуумных масел из нефти. Вакуумная перегонка масел в заводском масштабе в других областях промышленности получила распространение лишь в XX в. Наиболее ранними примерами из этой области является перегонка фенола и крезолов [31], а также вакуумная перегонка с паром глицерина [32—35]. Румфорд [36] в 1802 г. подробно описал процесс разгонки с применением острого пара и дал превосходное теоретическое объяснение механизма перегонки с паром, который он назвал выгоняющим паром . Этот процесс, который можно рассматривать как предтечу азеотропной вакуумной разгонки с добавкой [27, 37, 38], требует некоторой примеси инертного газа для того, чтобы ускорить перегонку и избежать толчков . Вполне возможно осуществить перегонку в вакууме с водяным паром [39—45], перегретым водяным даром [46] или парами других подходящих веществ. [c.392]

    Полимеризующее и конденсирующее действие хлористого алюминия ис-[ользуют при производстве синтетических смазочных масел. Ипатьев и Рутала 38] показали, что полимеризация этилена с хлористым алюминием при 0° под давлением ведет к образованию углеводородов с очень высоким молекулярным весом. Были изучены также другие катализаторы, например безводное хлорное железо и хлористый цинк, и найдено, что они действуют аналогичным образом, но требуют применения более высоких температур. Вязкие масла, получаемые полимеризацией этилена с хлористым алюминием как катализатором, пригодные в качестве смазочных материалов, описаны Стенли, Нэш и Бове-ном [77]. [c.657]

    Интенсивное развитие производства поверхностно-активных веществ онределяется их большой ролью и широким применением в различных отраслях народного хозяйства. ПАВ — это моющие средства, деэмульгаторы при обезвоживании и обессоливании нефтей, фяотореагенты при обогащении руд и углей, эмульгаторы в процессах эмульсионной полимеризации текстильно-вспомогательные вещестйа в процессах отделки тканей, составляющие композиций присадок к смазочным маслам, пластичных смазок, смазочно-охлаждающих жидкостей и т. д. [c.12]

    По данным компании SRI onsulting мировой объем потребления малеинового ангидрида в 1998 г. составил 941 тыс. т. Основные области применения, % производство ненасыщенных полиэфирных смол - 65 бутандиола - 10 фумаровой кислоты -7 добавок к смазочным маслам - 5 ядохимикатов - 2 малеино-вой кислоты - 2 тетрагидрофурана - 2. [c.433]

    Присадка ВНИИ НП-354, ТУ 38 101680—77,представляет собой раствор диалкилфенилдитиофосфата цинка в масле. Для производства присадки используют промышленный алкилфенол. Присадка обладает антиокислительными и антикоррозионными свойствами и рекомендуется для применения в смазочных маслах для дизельных двигателей. [c.268]


Смотреть страницы где упоминается термин Производство и применение смазочных масел: [c.266]    [c.582]    [c.586]    [c.348]    [c.252]    [c.343]    [c.22]    [c.5]   
Смотреть главы в:

Современное состояние и перспективы технического прогресса нефтеперерабатывающей и нефтехимической промышленности -> Производство и применение смазочных масел




ПОИСК





Смотрите так же термины и статьи:

Масло масла смазочные

Смазочные масла



© 2025 chem21.info Реклама на сайте