Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение газов на фракции

    Для разделения газов пиролиза, содержащих углеводороды до Сз включительно, предлагается использовать в колоннах различные давления в нижних секциях высокое давление, а в верхних — низкое. Технологическая схема такой установки с получением 99%-го этилена приведена на рпс. У-21 [24]. Сырой газ проходит последовательно пропан-пропиленовую, этан-этиленовую и метановую колонны с выделением на каждой ступени пропан-пропиленовой, этановой, этиленовой и метановой фракций. Использование многопоточных теплообменников и сложных ректификационных колонн позволяет создать простую установку, содержащую минимальное число единиц оборудования. [c.298]


    Методом низкотемпературного фракционирования смесь разделяют на этан, этилен, пропан, пропилен и топливный газ. Этан и пропан подвергают дальнейшему крекингу в трубчатых печах в присутствии водяного пара для получения этилена и пропилена. После компрессии и охлаждения газы снова направляют на установку для разделения газов. Ацетилен удаляется путем каталитического гидрирования либо из общего количества нефтезаводского газа, либо только из этиленовой фракции. Разделение пропана и пропилена осуществляется дистилляцией или, если это целесообразно, проведением со смесью ряда реакций. Стоимость установки для производства 90 ООО т этилена и 43 ООО т пропилена из нефтезаводских газов составляет 9,9 млн. долларов, цена 1 фунта этилена и пропилена 0,0241 доллара. [c.9]

    В практике переработки газа и газоконденсата гораздо чаще встречается задача разделения многокомпонентных смесей. Сюда относится стабилизация газового конденсата, разделение широких фракций легких углеводородов, производство сжиженных газов п т. д. [c.116]

    Адсорбционный способ применяется для онределения состава газов, углеводородного состава различных жидких нефтепродуктов, потенциального содержания масел в нефти. В промышленности он используется для отбензинивания природных и попутных углеводородных газов, выделения из нях пропана и бутанов, разделения газов нефтепереработки с целью нолучения водорода, этилена и других компонентов, для осушки газов и жидкости, выделения низко-молекулярных ароматических углеводородов (бензола, толуола, ксилолов) из соответствующих бензиновых фракций, для очистки масла и парафина и т. д. [c.246]

    Рассмотрим идеальный процесс разделения исходной смеси на фракции. На рис. 7.2 показана схема идеального устройства для разделения смеси на фракции, включающие соответственно А/ компонентов (А,-ей). В отличие от схемы полного разделения, полупроницаемые мембраны установлены на входе в приемные камеры и обеспечивают обратимое смешение компонентов фракции. Температура во всех элементах системы одинакова. Давления в камерах также одинаковы и равны давлению исходной смеси. Мембранные парциальные давления р, и Ра соответствуют условиям мембранного равновесия чистого вещества и смесей в соответствующих камерах, затраченная извне минимальная работа разделения п молей исходной смеси на фракции с числом молей п,- определится как сумма затраченных работ обратимого изотермического сжатия чистых газов от их мембранных парциальных давлений р,, соответствующих равновесию с исходной смесью, до аналогичных характеристик Ра, равновесных газовым фазам фракций. Для одного моля исходной смеси минимальная работа разделения на фракции определится суммой [c.233]


    Состав газа пиролиза и получаемых продуктов приведен в табл. У.20. Отбор фракций при низкотемпературном разделении газов пиролиза таков (в % масс.)  [c.297]

    Искусственные газы на нефтеперерабатывающих заводах подвергают очистке от серы и вредных газообразных неуглеводородных примесей, влияющих на качество получаемых продуктов, разделению на фракции и индивидуальные углеводороды методами абсорбции, адсорбции, ректификации, хемосорбции, полимеризации, а также алкилированию. [c.89]

    На одном из предприятий в цехе разделения пиролизной фракции произошел взрыв в кубовой части ректификационной колонны с последующим загоранием углеводородных газов, выброшенных из системы через поврежденные трубопроводы. [c.344]

    Для первой нефти опыт /), разделявшейся с помощью СОг (см. табл. 59), не даны выходы полученных фракций из-за больших потерь легких углеводородов, не конденсировавшихся при 60 кгс/см в последнем сосуде установки. Следующий опыт (2) относится к той же нефти, но из нее предварительно были отогнаны углеводороды, кипящее до 125°С. Однако и в этом опыте удовлетворительный баланс не был получен из-за неполной конденсации легких УВ в последнем сосуде установки. Судя по количеству не растворившейся в газе фракции нефти (22,9%) суммарный выход разделенных фракций должен быть около 77%. Не растворившаяся в газе фракция представляла собой твердый битум плотностью 1,016 г/см . Разделение той же нефти на фракции с помощью этилена было проведено при более низких давлениях. Несмотря на это в газе не растворились 18,3% исходного продукта (плотность остатка 1,024 г/см ). [c.100]

    Интересны также результаты разделения на фракции с тем же газовым растворителем крекинг-остатка. В этом случае в остатке не растворившемся в газе лри 125°С, сконцентрировалось основное количество соединений, дающих при нагреве кокс. Коксуемость остатка равнялась 55,3%. [c.102]

    На установках фракционирования газов каталитического и термического крекинга целевыми продуктами являются пропан-пропиленовая и бутан-бутиленовая фракции, а на установке по разделению газов термического крекинга, кроме того, этан-этиленовая. [c.206]

    Очистка фракции С4 от а це т и л е н и ст ы х соединений и выделение изобутилена. Согласно заводским данным, во фракции 1 при разделении газов пиролиза содержится в среднем 28—29% (вес.) изобутилена, 19—20% (вес.) дивинила и 0,11% (вес.) ацетиленовых соединений в пересчете на винилацетилен. [c.253]

    Концентрирование и разделение фракций олефинов. Этиленовая фракция, полученная прн разделении газов пиролиза, часто содержит до 2—3% метана и этана, а без очистки от ацетилена до 1—27о этого углеводорода. На современных установках качество этилена значительно выще, поскольку для его полимеризации в полиэтилен требуется чистота 99,9% и более. [c.51]

    На каждом ГПЗ существуют свои особенности очистки и разделения газа в зависимости от его состава и входных параметров, но стадии переработки газа для всех ГПЗ общие. На первом этапе осуществляется механическая сепарация газа, затем очистка его от кислых компонентов (от сероводорода, диоксида углерода, серооксида углерода, сероуглерода и меркаптанов) и разделение углеводородов, входящих в состав природного газа, обычно на сухой газ (С, - С2) и ШФЛУ с последующей реализацией этих продуктов как товарных, либо с выделением из ШФЛУ пропановой и бутановой фракции (или ПБФ) и легкого стабильного конденсата. [c.177]

    А. Технологические нагреватели. Нагреватели используются в нефтеперерабатывающей промышленности для подогрева нефтепродуктов и разделения на фракции термического крекинга и в высокотемпературных технологических процессах. Теплоноситель протекает по трубам внутри нагревателя, рабочие температуры в трубах могут достигать 900 С, рабочие давления при температурах 450 °С — до 20 МПа. Мощность аппаратов находится в пределах от Здо 100 МВт, хотя мощность очень больших преобразователей паров углеводородов может быть до 300 МВт. В этих нагревателях в качестве топлива используются исключительно нефть или газ. [c.110]

    На рис. 243 показан воздушно-замкнутый сепаратор. В отличие от ранее описанных воздушно-проходных рассматриваемый сепаратор имеет собственный вентилятор, создающий внутри сепаратора циркуляцию воздуха. Сыпучий материал, подлежащий разделению па фракции, подается через воронку 6 и попадает на разбрасыватель 11, который через ось 9 приводится во вращательное движение. Частицы материала под действием центробежных сил разбрасываются внутри конуса 2. На оси 9 укреплен вентилятор 10, создающий внутри сепаратора циркуляцию газа. Поднимаясь внутри конуса 2, газ подхватывает мелкие частицы и выносит их в кольцевое пространство между корпусом 1 и конусом 2. Здесь скорость частиц снижается, они опускаются на дно корпуса 1 и выводятся через штуцер 13. [c.316]

    В нефтегазоперерабатывающей и нефтехимической промышленности адсорбция применяется для отбензинивания природных и попутных углеводородных газов, при разделении газов нефтепереработки с целью получения водорода и этилена, для осушки газов и жидкостей, выделения низкомолекулярных ароматических углеводородов (бензола, толуола, ксилолов) из бензиновых фракций, для очистки масел, при очистке сточных вод с применением пылевидного активированного угля и т.п. [c.274]


    Для обеспечения эффективного разделения нефтяных фракций необходимым условием является подготовка адсорбента. Адсорбент с частицами размером 1—2 мм прокаливают в муфельной печи при 450—500 в течение 5 ч и после охлаждения в эксикаторе быстро переносят в адсорбер. Разделяемый продукт заливают в мерник, откуда с объемной скоростью 2 см /(см -ч) он подается дозировочным насосом в смеситель, где смешивается с газом-разбавителем — азотом, подаваемым со скоростью, близкой к скорости подачи сырья. Полученная смесь поступает в испаритель 2, где нагревается на 40—60 °С выше температуры конца [c.240]

    В качестве метода разделения и исследования нефтей и нефтяных фракций применяют метод термической диффузии. Процесс термодиффузии идет в кольцевом пространстве между стенками двух коаксиальных цилиндров, куда помещается исследуемая жидкость или газ. Температура стенок поддерживается различная. В результате конвекции жидкость или газ начинают циркулировать, при этом более тяжелые компоненты двигаются по направлению к более холодной стенке и концентрируются на дне, а более легкие — по направлению к теплой стенке и собираются в верхней части колонки. Метод применяется для разделения углеводородов смазочных масел, причем разделение происходит в соответствии с числом колец. В нижней части колонки концентрируются компоненты с наибольшим числом колец. В некоторых случаях термическую диффузию используют для разделения газов и паров. [c.231]

    В результате работы гиперсорбера из исходной газовой смеси / можно выделить несколько фракций. Легкая фракция II— это метан с примесью азота и других плохо сорбируемых газов. Она направляется в газопровод для дальнейшего использования. Тяжелая фракция IV представляет собой бензин. Что же касается промежуточной фракции III, то в зависимости от состава газа и режима работы гиперсорбера в ней могут находиться этан, пропан, бутан. Возможно выделение только пропан-бутановой фракции. Известны конструкции гиперсорберов, позволяющие получать отдельно пропан и бутан. Гиперсорбция применяется также для разделения газов крекинга с целью получения этилена. [c.301]

    Описанные выше процессы разделения газов крекинга и пиролиза, а также природных газов служат для выделения отдельных углеводородных фракций или компонентов. В зависимости от характера [c.302]

    Б. СОВМЕСТНОЕ РАЗДЕЛЕНИЕ ГАЗОВ ПИРОЛИЗА И ГАЗОВ НЕФТЕПЕРЕРАБАТЫВАЮЩИХ ЗАВОДОВ ПРИ ПОМОЩИ КОМПРЕССИОННО-АБСОРБЦИОННОГО МЕТОДА (АБСОРБИРОВАННЫЕ УГЛЕВОДОРОДЫ РАЗДЕЛЯЮТ НА ФРАКЦИИ ПО ЧИСЛУ АТОМОВ УГЛЕРОДА В ПРИСУТСТВИИ ПОГЛОЩАЮЩЕГО МАСЛА) [c.172]

    Полученные разделением попутного газа фракции используются  [c.199]

    Сепарация олефиновых продуктов после закалки потока, выходящего из пиролизной установки, осуществляется по схеме, описанной в разделе Фракционное разделение газов . Тяжелые олефины сепарируются из легких газов (водорода, метана, этана, этилена) при фракционной дистилляции под давлением. Чтобы изолировать фракцию Сг и затем сепарировать чистый этилен (табл. 52), необходимо осуществлять глубокое охлаждение при высоком давлении. [c.238]

    Однако разделение газа на отдельные индивидуальные углеводороды и узкие углеводородные фракции осуществляется на специально сооружаемых газофракционирующих установках (ГФУ). На нефтеперерабатывающем заводе обычно имеется не менее двух ГФУ, одна из которых предназначена для переработки предельных углеводородов, другая — непредельных. [c.285]

    Разделение газа на отдельные углеводородные фракции привело бы к выделению фракции С , содержащей примерно 14,5% этилена. Получение же этилена из этой фракции нецелесообразно, поскольку оно связано с большими расходами, тем более, что во многих случаях можно работать и с разбавленным этиленом. [c.23]

    Заводы Сасол П и Сасол П1 в г. Секунда. Эти два завода фактически идентичны друг другу. Поэтому нет необходимости описывать их раздельно. На рис. 12 представлена схема одного из них. Для осуществления процесса Фишера — Тропша используются только новые крупные высокопроизводительные реакторы Синтол (подразд. IV. А. 3). По сравнению со старым заводом Сасол I на заводах Сасол II п Сасол III имеются существенные различия в разделении и переработке продуктов. Как и раньше, на этих заводах из катализа-та выделяют конденсацией воду и жидкие нефтепродукты. Если на Сасол I отходящий газ пропускают через абсорбционную колонну для выделения жидких углеводородов, тона Сасол II его сначала пропускают через скруббер для отмывки СО2, а затем через криогенную установку, в которой происходит разделение газа на фракции обогащенную водородом, метановую, этан-этиленовую и иропан-бутановую. Такая технология разделения дороже, но она позволяет выделять дорогостоящие этан и этилен. Углеводороды С2 направляют в проточную установку крекинга с водяным паром этана до этилена. (На Сасол I этилен вместе с СН4 продают как отопительный газ.) Метановую фракцию из криогенной установки направляют на риформинг с целью получения синтез-газа, как и на Сасол I , и возвращают в реактор Синтол . Поскольку сырье для риформип-га на Сасол И содержит намного больше метана, чем на Сасол I , процесс на Сасол II более эффективен. Фракцию, обогащенную водородом, из криогенной установки возвращают в реакторы Синтол . Чистый водород, необходимый для процессов гидрирования, выделяют пз обогащенной водородом фракции в детандерах. [c.194]

    Один из первых непрерьшных процессов был предложен группой американских инженеров во главе с Бергом для разделения-фракционирования нефтяного газа. Свой метод авторы без ложной скромности назвали сверхадсорбцией —гиперсорбцией. Схема гиперсорбера приведена на рис. 26. Как видно их схемы, адсорбент движется сверху вниз навстречу потоку газа. Насыщение адсорбента происходит в адсорбере, в который поступает сырой газ. Насыщенный извлеченными углеводородами поглотитель поступает в ректификатор, а затем в десорбер. В десорбере, вследствие нагрева через стенку и подачи небольшого количества пара, происходит десорбция поглощенных углеводородов. Пары углеводородов поднимаются в ректификатор. В этом аппарате происходит разделение смеси хорошо адсорбирующийся бутан вытесняет из угля пропан. Бутан, в, свою очередь, вытесняется пентаном и высо-кокипяшими углеводородами. Углеводороды в соответствии со своей молекулярной массой распределяются по высоте ректификатора и могут быть отобраны в виде товарных партий. После десор-бера основную массу угля с помощью пневмотранспорта поднимают наверх колонны, пропускают через холодильник, вводят в адсорбер и далее в остальные аппараты петли циркуляции адсорбента. Некоторую часть угля направляют в реактиватор, где из него в результате обработки горячими топочными газами удаляют высшие углеводороды. Таким образом, в одном гиперсорбере осуществляется процесс непрерывной сорбции в движущемся слое, десорбции и разделения газа. Фракции имеют высокую степень чистоты. Процесс полностью автоматизирован. Адсорбент — высококачественный и очень прочный активный уголь, полученный из скорлупы кокосового ореха. [c.71]

    Разделение газа производится примерно следующим образом (рис. 40). После компримирования и отделения водорода абсорбционным способом фракция С4 стабилизируется. При этом отгоняются кипящие при —23° метилацетилен и пропан, образующие азеотропную смесь. Смесь углеводородов С4 затем ректифицируется в колонне, имеющей 100 тарелок. Здесь отделяется смесь из бутена-1 и бутадиена с некоторым количеством изобутана, изобутена и к-бутана (бутадиеновый концентрат), причем к-бутан частично уходит с дистиллятом, а частью остается в остатке. В остатке остаются оба бутена-2, часть к-бутана и гомологи ацетилена (С4). В этой связи интересно сопоставить температуры кипения отдельных изомеров в нормальных условиях (см. стр. 11 и 36) с летучестью в условиях экстрактивной перегонки (см. стр. 78). Остаток поступает в депента-низатор, где от него отделяются высшие углеводороды, а головной продукт, состоящий из бутена-2, [c.81]

    Для большинства технологических схем установок разделения газов пиролиза характерно двухстадийное извлечение метана — первичная деметанизация фракции Сг— Сз и вторичная деметаниза->ция этилен-этановой франции непосредственно перед колонной выделения этилена-концентрата в специальной отгонной колонне [31]. В работе [32] вторичную деметанизацию этилен-этановой фракции рекомендуется проводить одновременно с ее разделением в сложной ректификационной колонне с боковым отводам концентрированного этилена. [c.301]

    При абсорбционном методе можно использовать более низкое давление и более высокие температуры. Газовая смесь под давлением в противотоке контактирует с поглотительным маслом, в котором растворяются все углеводороды, имеющие 2 и более атомов углерода. Метан и водород при этом не абсорбируются и выводятся с установки. Затем газообразные углеводороды выделяются из поглотительного масла и разделяются ректификацией, что после удаления водорода и метана не представляет значительных трудностей. Освобожденное от газообразных углеводородов поглотительное масло возвращается на установку. Выделение газов из поглотительного масла можно провести таким образом, что при этом уже будет иметь место разделение на фракции с определенным числом атомов углерода. Дальнейшее разделение на отдельные компоненты путем перегонки не представляет труда. Часто получаемая при фракционировании чистота уже достаточна для последующей переработки. Абсорбционный метод обладает большими достоинствами для концентрпрования газов с небольшим содержанием олефиновых углеводородов. [c.45]

    Разделение газа пиролиза. Существуют многочисленные схемы разделения газов пиролиза методом низкотемпературной ректификации. Они отличаются, во-первых, получаемыми фракциями и их чистотой обычно выделяют метано-водородную, этиленовую, эта-повую, пропиленовую и С4-фракции нередко получают чистый метан, а пропиленовую фракцию отделяют от содержащегося в ней пропана. Во-вторых, может различаться порядок выделения фрак-ц й, например первоначально отделяют углеводороды Сз—С4 или, наоборот, метано-водородную фракцию. И, наконец, используют резное давление (0,15—7 МПа), определяющее, в свою очередь, градиент холода, необходимый для создания флегмы прн ректифн-к ции. [c.48]

    Число тарелок в абсорбере, достаточное для обеспечения принятой степени излечения, обычно не превышает 12—16. Число тарелок в ректификационных колоннах для разделения газов достигает 40—50 и более, так как разность температур кипения разделяемых фракций или компонентов невелика и для их четкого разделения тре буется значительное число тарелок (контактов). Скорость газового потока в абсорбере и газофракционирующих колоннах, работающих под давлением, колеблется в пределах 0,1—0,5 м1сек. [c.271]

    В 1938 г. М. Годлевич (М. Godlewitz) описала применение такого метода для разделения минеральных масел. В 19i54 г. Т. П. Жузе и М. А. Капелюшников опубликовали метод разделения на фракции нефтей и тяжелых нефтяных остатков с помощью надкритической углекислоты, этилена и природных газов. [c.98]

    При адсорбционно-ректификационном способе разделения попутного газа используют непрерывно действующие адсорберы с движущимся сверху вниз слоем активированного угля гиперсорбция). Для десорбции углеводородов обрабатывают уголь водяным паром и затем осушают горячим газом. Высшие парафины поглощаются углем в первую очередь, что позволяет выделить фракции углеводородов 5, С.ь Сз и даже С2. Из-за больших капитало-вло> сний и трудностей при транспортировании адсорбента п обслуживании этот метод широко не распространился, но он считается наиболее эффективным для разделения газов с низким содержанием углеводородов Сз—С5. [c.25]

    Газы крекинга (первая группа) разделяют чаще всего абсорбционно-ректификационным методом, рассмотренным ранее для ио- путных газов (стр. 26). Этот же метод иногда используют п для разделения газов пиролиза, но на современных крупных установках ирнменяют низкотемпературную ректификацию, так как она дает Голее чистые фракции олефииов и требует меньше энергии. [c.47]

    После разделения газ содержит еще значительное количество бензиновых фракций, а в крекинг-бензине остается в растворенном виде часть газа. Чтобы удалить газ из крекинг-бензина, последний стабилизируют. Для этого крекинг-бензин из газоотделителя 11 подают в щелочную колонну 14, смешивая по пути в смесителе 15 с щелочным раствором, который при помощи насоса 41 циркулирует между смесителем и щелочной колонной 14. Выщелоченный и отстоявшийся от раствора щелочи бензин через верх колонны поступает в емкость 16, откуда насосом 42 подается через теплообменник 20 в стабилизатор 17. Жидкий крекинг-бензин поступает с нижних тарелок стабилизатора в подогреватель 19, получает тепло от циркулирующей горячей флегмы и возвращается обратно в стабилизатор под нижнюю его тарелку. Нестабильная головка уходит в виде наров с верха стабилизатора через конденсатор 18 в емкость для орошения 22, из которой насос 43 подает жидкий продукт на орошение стабилизатора. Неконденсирующаяся часть газа из емкости 22 через регулятор давления сбрасывается в газовую магистраль. [c.244]

    Развитие техники современных физико-химических методов разделения и анализа сложных смессш позволило перейти от определения элементного состава нефтей и выделения отдельных фракций к исследованиям группового, а в последнее время и индивидуального состава нефтяных фракц1Й. Стало возможным изучение индивидуального состава газа и бензиновых фракций (до Сю), проведено групповое разделение и частичная идентификация компонентов керосиновых и газойлевых фракций (до jo)- В высокомолекулярных фракциях (от С21 и выще) пока удалось определить лишь отдельные индивидуальные соэдинения групповое разделение этих фракций, включающих различные гибридные структуры, является также достаточно сложной и не вполне решенной задачей. [c.64]

    Процесс абсорбции широко применяется при разделении газов. Для отбензиниваиия нефтяного попутного и природного газов применяют абсорбцию неполярными раствзрителями — углеводородными фракциями. Процесс проводят либо ири температуре окружающей среды, либо с использованием хладагентов ири л —40°С. Последний способ более экономичен, так как позволяет использовать в качестве абсорбента более иизкомолекулярные беизииовые фракции с меньшей вязкостью, что повышает эффективность процесса разделения и снижает расход абсорбента. [c.71]

    Выделение фракций С2, Сз, С4 и юлучение концентрированных алкенов. Разделение газов пиролиза на узкие углеводородные фракции и выделение из них концентрированных алкенов проводится ректификацией. Примерные условия газоразделения и средние коэффициенты относительной летучести ср ключевых пар компонентов приведены в табл. 9.4. [c.171]

    В нефтяной и газовой промышлепности процесс абсорбции применяется при разделении, очистке и суп ке углеводородных газов. При помощи абсорбции извлекают из естественных п попутных газов содержащийся в них бензин, а также пронап-бутановую фракцию. Процесс абсорбции обычно используют и при разделении газов термического и каталитического крекинга, при извлечении ароматических углеводородов нз ] азоп пиролиза или фенола из его смеси с водяным паром иа установках селективной очистки масел фенолом и т. п. [c.222]

    Опыт эксплуатации газофракционирующих абсорберов показал их значительную эффективность в отношении извлечения из газовой фазы пропан-пропиленовой фракции и полной деэтанизации остатка. Целевым назиач( нием схемы рассмотренного тина является максимально полное извлечение ценных фракций Сд и С4. Извлечение этих фракций от потенциала достигает 90—95%. Установки разделения газов, работаювще по схеме типа рассмотренной, могут работать в сочетании с установками каталитического крекинга, коксования и других ироцессов нефтеперерабатывающего завода, а также служить для разделения смесей газов, полученных с этих установок. [c.312]

    Предлагаемый вариа1гг потребует, естественно, переоборудования установок сухого тушения, связан с некоторым сокращением выхода кокса (из-за частичного его сгорания в камере прокалки), но открывает путь к очень значительному — на 100—150 кг/т чугуна — сокращению расхода кокса и уменьшению его активности. Утилизация этилена наилучшим образом осуществляется при разделении газа и приготовлении водорода. Повышение концентрации этилена в этиленовой фракции не является обязательным, так как алкилирование Ьензола возможно и при использовании низкоконцентрированного сырья. Современная технология фракционирования газов позволяет приготовлять этилен любой необходимой концентрации при небольших затратах. В этом случае, в принципе, его можно использовать для приготовления самых разнообразных химикатов. [c.152]


Смотреть страницы где упоминается термин Разделение газов на фракции: [c.295]    [c.219]    [c.271]    [c.48]    [c.50]    [c.238]    [c.297]   
Смотреть главы в:

Основы технологии нефтехимического синтеза -> Разделение газов на фракции




ПОИСК





Смотрите так же термины и статьи:

Бутан-бутеновая фракция газов разделение

Выделение углеводородов из газов, сильно разбавленных неорганическими компонентами, и разделение их па фракции по числу атомов углерода непрерывным абсорбционным методом

Получение этил- и изо-пропилбензола из этиленовой фракции, выделенной из коксового газа методом низкотемпературного разделения

Разделение газов

Разделение газов на фракции (фракционирование)

Разделение газов составы углеводородных фракци

Разделение газов фракции С перегонкой с фурфуралом

Разделение газов фракция легкая

Разделение газов фракция тяжелая

Разделение углеводородных газов на фракции

Разделение фракции

Совместное разделение газов пиролиза и газов нефтеперерабатывающих заводов при помощи компрессионно-абсорбционного метода (абсорбированные углеводороды разделяют на фракции по числу атомов углерода в присутствии поглощающего масла)

Фракции разделения коксового газа

Фракции разделения нефтяного газа

Химическая переработка газообразных углеводородов, полученных при термокаталитической переработке нефтяных фракций Состав и разделение заводских газов



© 2025 chem21.info Реклама на сайте