Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропилен гидрирование

    Гидрирование полибутадиенов приводит к получению полиэтилена. В связи с большей доступностью и меньшей стоимостью олефинов (этилен, пропилен) гидрированные полидиены имеют ограниченное практическое применение. [c.284]

    Методом низкотемпературного фракционирования смесь разделяют на этан, этилен, пропан, пропилен и топливный газ. Этан и пропан подвергают дальнейшему крекингу в трубчатых печах в присутствии водяного пара для получения этилена и пропилена. После компрессии и охлаждения газы снова направляют на установку для разделения газов. Ацетилен удаляется путем каталитического гидрирования либо из общего количества нефтезаводского газа, либо только из этиленовой фракции. Разделение пропана и пропилена осуществляется дистилляцией или, если это целесообразно, проведением со смесью ряда реакций. Стоимость установки для производства 90 ООО т этилена и 43 ООО т пропилена из нефтезаводских газов составляет 9,9 млн. долларов, цена 1 фунта этилена и пропилена 0,0241 доллара. [c.9]


    Низкомолекулярные полимеры и сополимеры пропиленов и бутиленов вплоть до С12 используются в качестве компонентов автомобильного бензина. В годы второй мировой войны их подвергали гидрированию, в результате чего получался высококачественный компонент авиационного бензина. Эти полимеры обычно получаются над фосфорнокислотным катализатором. [c.581]

    Скорость гидрирования низших алкенов в присутствии никеля снижается в следующем ряду этилен > пропилен > бутен-2 > изобутилен. Вообще она уменьшается с увеличением количества и степени разветвления алкильных заместителей  [c.240]

    ППП для расчета реакторных процессов позволяет вести расчет реакторов гидрирования ацетилена во фракцию этан—этилен, пропадиена во фракцию пропан—пропилен реакторов гидрирования поликонденсата реакторов мета-нирования окиси углерода в водороде материального и теплового балансов процессов каталитического крекинга, пиролиза бензинов, этана, газового конденсата, рафинированного бензина, вакуумного газойля, смесей различных видов сырья. [c.570]

    Одной из важных реакций в процессе фтористоводородного алкилирования изобутана смесью пропилена и бутиленов является образование изобутилена из изобутана, вызываемое переносом гидрид-иона к пропилену. Этот перенос превращает 22% пропилена в пропан. Изобутилен представляет собой один из олефинов С4, дающих в присутствии НР алкилат с существенно более высоким октановым числом. Из бутиленов образуется некоторое количество н-бутана (4—6%). Следует оценить эффективность получения больших выходов высокооктановых алкилатов на основе изобутана, получаемых гидрированием олефинов и изомеризацией н-парафинов. Для получения высокооктанового алкилата в присутствии любого кислотного катализатора можно приготовить смешанное олефиновое сырье из пропилена и бутилена. Алкилаты с самым высоким октановым числом получают в присутствии серной кислоты из бутиленового сырья с установки каталитического крекинга. [c.253]

    В пропилене, полученном пиролизом, обычно присутствуют примеси пропадиена и метилацетилена. Селективное гидрирование этих соединений протекает в присутствии таких катализаторов, как Pd на окиси алюминия и Pd - окись хрома. Рабочие параметры процесса (Н2 СзН =3 1 температура 150-200°С давление 1-20 атм среднечасовая скорость подачи газа 1300-4500 ) зависят от степени загряз- [c.191]


    Основные работы по химическому использованию различных продуктов каталитического гидрирования окиси углерода, проведенные в Германии, были обусловлены нехваткой определенных видов сырья в военное время. Например, вследствие дефицита натуральных жиров три фракции продуктов каталитического гидрирования окиси углерода перерабатывали в различного рода заменители. Фракцию дизельного топлива (насыщенные Сю—С а-углеводороды) использовали для получения синтетических моющих веществ с помощью сульфохлорирования (гл. 6, стр. 98) или хлорирования, за которым следовали конденсация с бензолом и сульфирование (гл. 5, стр. 87). Твердый синтетический парафин окисляли в высшие жирные кислоты, необходимые для производства различных сортов мыла (гл. 4, стр. 74). Из синтетического парафина можно получить жирные кислоты с большим молекулярным весом, чем у кислот, производимых окислением нефтяного парафина. Олефины с 10—18 атомами углерода превращали с помощью каталитической гидроконденсации с окисью углерода и водородом (оксо-синтез) в альдегиды и первичные спирты (гл. 11,стр. 195). Последние затем переводили обработкой серной кислотой в первичные алкилсуль-фаты с длинной цепью углеродных атомов. Пропилен и бутилены гидратировали в соответствующие спирты, которые затем дегидрировали в кетоны (гл. 8, стр. 149, и гл. 17, стр. 314 и 329). Из других областей применения продуктов каталитического гидрирования окиси углерода в Германии следует назвать производство синтетических смазочных масел, описание которого выходит за пределы данной книги. [c.63]

    Присоединение хлористого водорода к другим олефинам происходит легче, чем к этилену. В случае несимметричных олефинов действует правило Марковникова, согласно которому хлор присоединяется к наименее гидрированному атому углерода. Так, например, в результате присоединения хлористого водорода к пропилену получается 2-хлорпропан  [c.184]

    В патентной литературе чаще всего упоминаются два катализатора, применяемые для дегидрирования изопропилового спирта металлическая медь и окись цинка. Медь страдает тем недостатком, что ее активность уменьшается в процессе работы, а окись цинка вызывает в некоторой степени дегидратацию изопропилового спирта в пропилен. В промышленности сейчас, по-видимому, предпочитают производить ацетон дегидрированием, используя в качестве катализатора окись цинка, чистую или промотирован-ную. Одним из преимуществ этого метода по сравнению с методом окисления изопропилового спирта, о котором сообщается ниже, является то, что при дегидрировании в качестве побочного продукта получается чистый водород. В Германии производство ацетона осуществлялось дегидрированием изопропилового спирта, полученного из Сд—С4-олефинов, образующихся в процессе каталитического гидрирования окиси углерода при атмосферном давлении в жидкое топливо (гл. 3, стр. 62 и гл. 8, стр. 149). [c.315]

    Вопросу кинетики гидрирования непредельных органических соединений посвящена обширная литература. Большие трудности были преодолены при установлении кинетики гидрирования таких простых соединений, как этилен и пропилен. [c.433]

    С учетом значений величин гидрирования (в ккал/моль) этилен—32,8 пропилен — 30,1 бутен-1 —30,3 цис-бутен-2 — 28,6 транс-бутен-2 — 27,6 изобутилен — 28,4 тетраметилэтилен — 26,6 — расположите эти соединения в ряд сравнительной устойчивости и объясните этот ряд. Сравните и объясните сравнительную устойчивость цис- и траяс-изомеров. [c.185]

    Кубовые остатки деэтанизатора, содержащие углеводороды С., и более тяжелые продукты, направляются в депропанизатор здесь происходит отделение пропан-пропиленовой фракции. Температура в кубе депропанизатора 104 °С, температура верха 25—30 С, давление около 1,1 МПа. Кубовые остатки из депропанизатора самотеком поступают на питание дебутанизатора, а верхний продукт— пропан-пропиленовая фракция — после осушки подается в колонну фракционирования пропилена. Выделение чистого пропилена достигается при температуре в кубе пропиленовой колонны 46—48 °С и давлении 1,6—1,8 МПа. Пропилен отбирается из верха колонны, а кубовая жидкость направляется на извлечение из нее аллена и метилацетилена. Колонна дебутанизации предназначена для выделения бутан-бутиленовой фракции. Температура в кубе дебутанизатора 114—119 °С, температура верха 40—42 °С, давление около 5 МПа. Из верха дебутанизатора отбирается богатая бутадиеном и бутиленами фракции С4. Кубовые остатки дебутанизатора — пиролизный бензин — направляются на гидрирование, а затем на выделение бензола. Основные продукты установки пиролиза — этилен и пропилен — получаются полимеризационной чистоты. Содержание основного продукта в товарном этилене 99,9 % (об.), в пропилене 99,8 % (об.). [c.47]

    При гидрировании смеси этилена с пропиленом массой 9,8 г получена смесь этана с пропаном массой [c.176]


    Этилен и пропилен могут быть также определены и методом гидрирования по методике, описанной выше. [c.170]

    С повышением давления в реакционном объеме снижаются выход газа и содержание в нем непредельных углеводородов за счет протекания полимеризации и гидрирования. Сочетание высокой температуры и малой продолжительности процесса направлено на максимальный выход непредельных компонентов газа (этилен, пропилен и др.)- [c.72]

    До промышленного осуществления процесса алкилирования парафиновых углеводородов изостроения равноценные высокооктановые компоненты получали избирательной полимеризацией бутиленов с последующим гидрированием димера (производство изооктана). Вследствие неполного превращения бутиленов выход при этом процессе был меньше теоретического. Преимущество алкилирования по сравнению с сочетанием полимеризации и гидрирования полимера заключается в том, что при помощи одноступенчатого процесса удается провести до завершения реакцию не только со всеми бутилепами, содержащимися в сырье, но также с пропиленами и амиленами, причем превращение изобутана в высококачественные компоненты авиационного пли автомобильного бензинов происходит в соотношении около 1 мол. на 1 мол. олефинового сырья. [c.174]

    С целью выяснения природы активных центров MgO, aO, 8Ю и ВаО в гидрировании этилена, пропилена и бутена-1 изучено [310] влияние температуры прокаливания этих катализаторов и их отравления аммиаком, пиридином, нитробензолом и диоксидом углерода. Найдено, что указанные оксиды становятся активными в реакции гидрирования после предварительного прокаливания их при температурах выше 600 °С. При этом максимальную активность ВаО, MgO и SrO проявляют в результате прокаливания при 1100°С, а СаО - при 800 °С. По своей максимальной активности в реакции гидрирования изученные катализаторы располагаются в ряд MgO < aO < ВаО < 5Ю. А скорости гидрирования различных олефинов на MgO и СаО возрастают следующим образом бутен-1 < < пропилен < этилен. Результаты опытов по отравлению указывали на то, что гидрирование олефинов и реакции изомеризации, этерификации полимеризации или дейтерообмена протекают на разных центрах поверхности. Так, адсорбция аммиака, пиридина, нитробензола и Oj полностью подавляет реакцию гидрирования бутена-1, в то время как в изомеризации этого углеводорода активность катализатора после адсорбции, например, ЫНз снижается лишь наполовину. [c.118]

    Циклобутан реагирует с водородом в присутствии катализатора с образованием н-бутана, однако для этого требуется более высокая температура (200 °С), чем для гидрирования циклопропана (80 °С). Циклобутан не вступает в реакцию с остальными реагентами, под действием которых раскрывается циклопропановое кольцо. Таким образом, циклобутан вступает в реакции присоединения труднее, чем циклопропан, а последний — труднее, чем пропилен. Однако примечательнее всего сам факт, что циклоалканы вообще вступают в реакции присоединения. [c.269]

    Рассмотрение теплот гидрирования показывает (разд. 6.4), что алкены стабилизуются не только вследствие сопряжения, но также за счет наличия алкильных групп чем больше чш ло алкильных групп, находящихся у двойной связи, тем более стабильным будет алкен. Например, теплота гидрирования пропилена на 2,7 ккал (11.30-10 Дж) меньше, чем теплота гидрирования этилена. Это указывает на то, что пропилен на 2,7 ккал <11,30-10 Дж) устойчивее этилена (по отношению к соответствующему алкану). [c.320]

    В отличие от США, где этилен для окиси этилена и этиленгликоля производили из газов нефтепереработки, попутного и природного газа, в Германии этилен получали гидрированием ацетилена, дегидратацией этилового спирта и прп низкотемпературном фракционировании коксового газа. В настоящее время в ФРГ и в других странах Западной Европы этилен и пропилен в основном являются продуктами пиролиза нефтяного сырья. [c.10]

    Реакции гидрирования применяют при доочистке отходящих газов с установки производства серы. В процессе Скот все сероорганические и кислородсодержащие соединения гидрируются с образованием сероводорода и воды. Затем сероводород извлекается из отходящего газа. Обратная реакция дегидрирования получила широкое применение в производстве непредельных углеводородов. Этилен, пропилен, бутилен, дивинил, бутадиен в природе не существуют. Эти углеводороды получают дегидрированием, за счет воздействия высоких температур происходит отделение водорода из предельных углеводородов. Эти процессы называются -гидроочистка, каталитический и термический крекинг. [c.47]

    В связи с непрерывным расширением масштабов нефтепереработки постоянно возрастает количество газов, получающихся на технологических установках заводов. Частично эти газы используются в нефтепереработке при процессах алкилирования (изобутан, пропилен и бутилены), полимеризации и последующего гидрирования (бутилены) для получения высокооктановых топлив. [c.20]

    Рафинированный китовый жир (1), На Пропилен Гидрированный китовый жир (И) Двуокись и за> П 0 л и р Непредельные димеры пропилена Медно-хром-марганцевый, полученный прокалкой смешанного комплексного аммиаката 1 бар, 200° С. Йодное число 1 — 115,7, II — 69,8 [83] сись-окись марганца леризация МпОз в петролейном эфире 40—80° С, конверсия 30—80% [84] [c.887]

    О до 40° при перемешивании в автоклаве, охлаждаемом водой. Однако при добавлении таких более реакционноснособных олефинов, как изобутилен и изопентены, пропилен легко реагировал с олефинами изостроения с большим выходом гептеновой и октеновой фракций. Диоксифторборная кислота, таким образом, использовалась в качестве катализатора для сополимеризации пропилена с изопентеном, пропена с изобутиленом, бутена-1 с изобутиленом, бутена-2 с изобутиленом и смеси -бутиленов с изобутиленом при температурах от О до 40° и давлении от 3,4 до 8,5 ат. Полимеры гидрировались, подвергались фракционированной перегонке, а полученные фракции анализировались методом инфракрасной спектроскопии. Гидрирование сополимера пропилена и изобутилена давало продукт, содержавший 67 % гептановой фракции, состоявшей на 95 % из 2,3-диметилпентана. [c.201]

    Очевидно, что протеканию реакции благоприятствует низкое давление, поскольку она идет с увеличением объема. Поэтому давление поддерживают на таком низком уровне, который лишь обеспечивает достаточную скорость потока газов. Как отмечалось ранее, давление желательно понижать, но в большинстве случаев этого не делают и реакцию проводят при 5—25 фунт/ /дюйм . Как и во всех процессах, в которых имеется возможность протекания обратной реакции, газы, выходящие из реактора, быстро охлаждают и стараются не допускать их контакта с катализаторами гидрирования. Эта реакция не является селективной, так как наряду с метаном и этиленом образуются пропилен, ацетилен, водород, бутадиен, бутан и жидкий продукт, называемый дриполеном. [c.145]

    Установлено, что октановое число бензина, полученного пз смесп пропилена с бутиленами, при его гидрировании падает до 70 и ниже, в зависимости от пропорции пропилена в исходном сырье. Относительно невысока также его приемистость к тетраэтилсвинцу (15—18 единиц при 2 мл тетраэтилсвинца). Если же исходным сырьем сл жит чистый пропилен, то октановое число бензина, полученного над фосфорной кислотой в указани1,тх выше условтшх, после исчерпывающего гпдрпро- [c.126]

    В Германии существовал только один завод (в Мерзе), где осуществлялась гидратация пропилена и н-бутиленов. Сырьем служила смесь Сз- и С4-углеводородов, получавшаяся в качестве побочного продукта при синтезе жидкого топлива каталитическим гидрированием окиси углерода под атмосферным давлением. Смесь углеводородов, содержащую 25—45% олефинов, обрабатывали при температуре 60° и давлении 20 ат 75%-иой серной кислотой углеводороды при этом находились в жидком состоянии. На каждый моль серной кислоты поглощалось 0,66 моля олефинов диалкилсульфаты и простые эфиры получались лишь в небольших количествах. Алкилсерные кислоты гидролизовали в спирть[, разбавляя кислую смесь до 30%, и затем производили отгонку спиртов с водяным паром. Спирты обезвоживали азеотропной перегонкой и разделяли ректификацией. Выход изопропилового спирта составлял больше 90%, считая на пропилен. Выход втор-бутилового спирта из бутиленов был меньше, так как в процессе поглощения серной кислотой образовывались значительные количества димера бутилена [10]. [c.149]

    Алифатические а-олефнны такие, как пропилен, бу-тен-1 и т. д., ие полнмеризуются свободными радикалами с образованием высокомолекулярных соединении. Для этой цели требуются либо катализаторы на основе 1 Осстановлеиных гялогенидов переходных металлов, например Ti ig (и.х называют иногда координационными катализаторами), либо катализаторы гидрирования, такие, как восстановленная окись хрома на окиси алюминия. [c.198]

    В 30-х годах процесс селективной каталитической полимеризации бутиленов широко использовали с целью последующего гидрирования димера (изочС8Н1б) и получения таким образом технического изооктана — компонента авиационного бензина. Процесс этот впоследствии потерял свое значение, так как был вытеснен каталитическим алкилированием бутиленами изобутана, содержащегося в больших количествах в газах каталитического крекинга. Позднее был внедрен процесс получения полимер-бензина на основе пропилена, который был менее дефицитен. В качестве катализатора используют фосфорную кислоту, нанесенную на кварц. Полимеризацию проводят при 220—230 °С, 6,5—7,0 МПа и объемной скорости подачи сырья от 1,7 до 2, 9 ч . Применяется и совместная полимеризация пропиленов и бутиленов или бутиленов и амиленов. [c.285]

    Адиподинитрил N ( H2)4 N является одним из промежуточных продуктов в производстве синтетического волокна найлон-6,6 или анид. Последний представляет собой полимер соли АГ, получаемой взаимодействием адипиновой кислоты с гек-саметилендиамином — продуктом гидрирования адиподинитрила. Адиподинитрил является наиболее дефицитным сырьем в производстве соли АГ. Классический метод его получения основан на переработке ароматического сырья— бензола или фе нола. Электрохимический метод позволяет использовать алифатическое сырье — пропилен. Пропилен при окислении в присутствии аммиака (окислительный аммонолиз) образует акрило-нитрил  [c.209]

    В пром-сти пиролиз П. в составе легких низкооктановых прямогонных бензинов приводит к этилену и пропилену. н-П. используют для получения изопентана, пентенов, амиловых спиртов и их эфиров, амилфенола н др., а также в качестве р-рителя. Изопентан широко применяют как компонент высокооктановых бензинов. Техн. изопентан (т-ра выкипания 24-34 С, dl° 0,620, октановое число 90 по моторному методу) добавляют к бензинам (до 15%) для повышения их испаряемости и октанового числа, а также исключения применения тетраэтилсвинца в качестве антидетонатора (см. также Алкилат). Каталитич. гидрированием изопентана на СЮ3-А12О3 получают изопрен. [c.461]

    К недостаткам пиролиза с добавкой водорода относятся значительный расход водорода, стоимость производства которого достаточно высока, и значительно увеличенный объем газообразных продуктов пиролиза, что отрицательно сказывается на работе аппаратов разделения пирогаза. С целью улучшения технологических и экономических показателей процесса было предложено [400] вести пиролиз в присутствии водорода под давлением 2,0—2,5 МПа (гидропиролиз). Во избежание при этом значительного гидрирования низших олефинов гидропиролиз следует вести при высоких (800—900°С) температурах и малых временах пребывания — около 0,1 с. В процессе получается высокий выход этана. С целью увеличения выхода этилена его следует направлять на рециркуляцию (илн подвергать отдельно термическому пиролизу). Гидропиролиз прямогониого бензина при условии рециркуляции этана и фракции Сз, включая пропилен, позволяет получить до 40— 45% этилена выход метана достигает 34%, пиробензина — до 20%, тяжелой фракции пироконденсата — не превышает [c.189]

    Этан, пропан, ацетон, хлористый этил, диэтиламин, тризтиламин, бензол, толуол, ксилол, этилбен-зол, хлорбензол, изопропилбензол, стирол, диизопропиловый эфир, доменный газ, бензин Б-100, нафталин, пиридин, хлористый винил, циклопентадиен Бутан, пентан, пропилен, нитро-циклогексан, метиловый спирт, этиловый спирт, бутиловый спирт (нормальный), бутилацетат, дивинил, диоксан, изопентан, нитри-лакриловая кислота, диметилди-хлорсилан, диэтилдихлорсилан, фурфурол, метилакрилат, метиламин, диметиламин, метилвинил-дихлорсилан,этилацетат Гексан, топливо Т-1, ацетальде-гид, этилцеллозольв, гептил , самин , этилмеркаптан, бутил-метакрилат, бензин А-66, бензин Б-70, триметиламин, гидрированный керосин с трибутилфос-фатом, тетрагидрофуран, бензин калоша , бензин А-72, бензин А-76  [c.425]

    Смесь бутиленов (в отдельных случаях — с пропиленом) может подвергаться олшомеризации в процессе Полинафта Францлаского института нефти ( IFP ) с получением предпочтительно керосиновой фракции (рис. 12.141). Алюмосиликатный катализатор 1Р-501 загружают в три последовательных полочных реактора или в четыре реактора (при паралельной работе). Катализатор прочен и относительно дешев. Диолефины рекомендуется удалять из сырья в установке селективного гидрирования, а кислородсодержащие — водной отмывкой с последующей отгонкой воды. Отравление катализатора кислородсодержащими соединениями может быть скомпенсировано подъемом температуры или продувкой горячим водородом. Катализатор может подвергаться окислительной регенерации (вне установки). Конверсия олефинов (92-97 %) и селективность регулируются теплообменниками между реакторами. [c.926]


Смотреть страницы где упоминается термин Пропилен гидрирование: [c.330]    [c.190]    [c.34]    [c.195]    [c.551]    [c.44]    [c.373]    [c.104]    [c.76]    [c.9]    [c.267]    [c.171]    [c.926]    [c.892]   
Органическая химия (1974) -- [ c.177 ]

Инфракрасные спектры адсорбированных молекул (1969) -- [ c.164 ]




ПОИСК





Смотрите так же термины и статьи:

Получение бутиловых спиртов гидрированием продуктов гидроформилирования пропилена на никель-хромовом катализаторе — С. 3. Левин, Гуревич, И. Г. Седова

Пропилен водорода гидрирование

Топчиева, А. Ю. Логинов, С. В. Костиков О механизмах каталитического окисления водорода и гидрирования пропилена на основных оксидах



© 2025 chem21.info Реклама на сайте