Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром, окись восстановление

    По отношению к хрому окись углерода и водород ведут себя одинаково (кривые 3 м. 4, рис. 32). Восстановление окиси хрома водородом и окисью углерода происходит согласно реакциям  [c.115]

    При алюмотермическом получении хрома к исходной СггОз обычно добавляют немного СгОз (чтобы процесс протекал энергичнее). В результате реакции образуются два слоя, из которых верхний содержит красную (от следов окиси хрома) окись алюминия, а нижний — примерно 99,5%-ный хром. Восстановление М0О3 и WO3 водородом до металлов легко идет выше 500 °С. [c.369]


    Каталитическое восстановление углеводов впервые было осуществлено в 1912 г. В. Н. Ипатьевым. Вначале для этой цели применялись металлы платиновой группы, но их высокая стоимость заставила исследователей начать поиски новых, более дешевых катализаторов. В этой связи учеными разных стран были изучены никелевые и медные катализаторы, полученные восстановлением их солей и нанесенные на различные носители (кизельгур, окись хрома, окись алюминия и др.). В связи с тем, что указанные катализаторы имели сравнительно невысокую активность, предпринимались попытки улучшить их качество за-счет введения различных промоторов, а также испытывались новые формы катализаторов, в частности сплавные катализаторы. Последние отличаются простотой приготовления и повышенной стабильностью. Разви- [c.22]

    Отработанная окись хрома, полученная восстановлением хромпика серой, с добавкой жиров и керосина [c.207]

    Бар и Петрик [31] изучали различные способы приготовления катализаторов из трехокиси молибдена, взятой в чистом виде и на носителе, а также и в смеси со щелочами или металлами — цинком, алюминием или хромом. Окись молибдена с окисью цинка оказалась наиболее активной, а кизельгур наи--лучшим носителем. Можно получить стабильный катализатор, смешивая трехокись молибдена, окись хрома и окись бария в пропорции 1 1 10, этот катализатор пригоден для восстановления фенолов смолы в циклические углеводороды. Указывалось, что трехокись молибдена может потерять активность не в результате отравления серой или образования высоко кипящих соединений продуктах реакции, а вследствие образования менее активной двуокиси молибдена. [c.289]

    Поведение хромовой кислоты по отношению к перекиси водорода в присутствии кислот также несовместимо с гипотезой Траубе. Хотя при этом и происходит восстановление хромовой кислоты в окись хрома, ио восстановленное количество меньше, чем должно было бы соответствовать окислению вступившей в реакцию перекиси водорода. Согласно указанной гипотезе, реакция должна была бы протекать по уравнению  [c.288]

    Фазовые модификаторы — это такие добавки, которые способствуют образованию или сохранению в катализаторе фазы, обладающей наибольшей активностью. Согласно Жермену [17], так действует СгОд в медно-хромовых катализаторах Адкинса, где окись хрома препятствует полному восстановлению окиси меди в неактивную медь. [c.45]

    Влияние температуры на степень восстановления чистой N 0 показано на рис. 2.1. Анализ степени восстановления промотиро-ванных образцов показал, что при введении добавок восстановление затрудняется. При введении окиси алюминия степень восста--новления составляет всего 33%, при введении окиси хрома —42%. Окись циркония практически не оказывает влияния. Размер частиц никеля, рассчитанный из данных по величине поверхности и степени восстановления, увеличивается при введении добавок оки- [c.27]


    В восстанавливаемых системах могут существовать только не-восстанавливающиеся окислы и сульфиды, т. е. окислы всех метал- лов (за исключением уже обсуждавшихся металлических катализаторов) и большинство сульфидов (за исключением сульфидов благородных металлов). Кроме того, нестехиометрический избыток кислорода (или серы), необходимый для создания проводимости р-типа, не может быть сохранен при условиях восстановления. Поэтому окись хрома и окись марганца становятся изоляторами или полупроводниками м-типа. В окислительных условиях полупроводники п-типа имеют тенденцию становиться стехиометрическими, но р-тип проводимости появляется при избытке кислорода и серы. [c.28]

    Когда удаление ацетилена проводится на ранних стадиях процесса и в газе содержится водород, в качестве катализатора применяют восстановленную окись железа, а также окисные кобальт-молибденовые и хром-никель-кобальтовые катализаторы. На этих катализаторах не образуются значительные количества полимеров и достигается снижение содержания ацетилена до 10-10 % и менее. Потери этилена при этом составляют около 1%, и происходит гидрирование значительной части содержащегося в газе бутадиена. Если бутадиен является одним из целевых продуктов, то он должен быть извлечен при указанном способе уда.тения ацетилена до гидрирования. [c.308]

    При этой реакции идет восстановление бихромат-иона ионом аммония. Окись хрома (III) получают также нагреванием бихромата натрия с серой и последующим выщелачиванием сульфата натрия водой [c.577]

    Приводились [177, 178] и более низкие величины энергии активации, близкие к 10—12 ккал/моль. Обычно считают, что углекислота, образующаяся одновременно с окисью этилена, частично получается в результате окисления последней, а частично независимым путем из этилена [177]. Это подтверждается при использовании в этилене [179]. Имеется сообщение [180], что углекислота может уменьшать скорость образования окиси этилена, тогда как ацетальдегид или хлорированные этилены [174, 181] увеличивают ее выход. На окисях меди и хрома окись этилена окисляется очень быстро подобные же результаты получены [182] для смеси окись магния — окись хрома. Куммер нашел [183], что на различных гранях монокристаллов серебра реакция протекает с различными начальными скоростями, однако спустя некоторое время эти скорости на различных гранях снова уравниваются, так как наблюдается некоторый процесс спекания (синтеринг). Кроме того, оказывается, что скорость реакции одинакова и на пленках, на поверхности которых первоначально находились различные грани [184]. Твигг [177] исследовал хемосорбцию реагентов на серебре и нашел, что этилен едва ли хемосорбируется, а хемосорбция кислорода — медленная и активированная. Он изучил также скорость реакции между этиленом и хемосорбированным кислородом и показал, что скорость образования окиси этилена пропорциональна доле 0о поверхности, покрытой кислородом, а скорость образования углекислоты пропорциональна 0 он считает, что скорость реакции определяется взаимодействием между хемосорбированным кислородом и молекулой этилена из физически адсорбированного слоя. Как и другие, Твигг полагает, что при нормальном окислении смеси этилена с кислородом скорость реакции лимитируется скоростью хемосорбцин кислорода. Любарский [185] измерил электропроводность пленок серебра на стеклянных нитях и показал, что хемосорбция кислорода вызывает переход электронов от серебра к хемосорбированным частицам, так что электропроводность пленки уменьшается. Однако в условиях реакции, приводящей к образованию окиси этилена, электропроводность близка к наблюдаемой для восстановленной пленки это подтверждает, что хемосорбция кислорода является медленной стадией. Наконец, некоторые изме- [c.334]

    Можно получить низкокипящие углеводороды из масел, гудрона и фенолов гидрогенизацией в паровой фазе под давлением на железном катализаторе, наприм ер закиси—окиси железа, содержащей небольшое количество олова или металлоз V или VI групп, например молибдена, ванадия, вольфрама или хрома, и восстановленной водородом. Кислород вводится в расплавленное железо, к которому добавлен молибденовокислый аммоний или окись хрома, масса охлаждается и восстанавливается [218, 219, 220]. [c.283]

    Парафиновые и олефиновые углеводороды, содержащие шесть и более углеродных атомов в прямой цепи, могут быть подвергнуты дегидрированию и циклизации до ароматических углеводородов с тем же числом углеродных атомов. Для осуществления этой реакции можно использовать два типа катализаторов 1) окислы металлов и 2) восстановленные металлы. В качестве окисных катализаторов применяют главным образом окись хрома, окись молибдена и окись ванадия в чистом виде или еще лучше на носителе, например на окиси алюминия. В качестве металлических катализаторов применяют металлы vni группы периодической системы, главным образом никель или платину на носителе типа окиси алюминия. При дегидроциклизации на поверхности окисных катализаторов наряду с образованием ароматических соединений происходит образование олефинов. Образование олефинов представляет собой, по-видимому, промежуточную стадию процесса их выход, как правило, не превышает 10%. Исходный углеводород можно полностью превратить в ароматический, применив соответствующий катализатор. Наиболее эффективным катализатором в случае проведения реакции при атмосферном давлении является окись хрома (СГдОд), которую обычно наносят на окись алюминия либо путем пропитки, либо совместным осаждением обоих окислов. [c.141]


    Окись хрома получают восстановлением калиевого хромп ка с помощью древесного угля при нагревании. Обычно бер на б кг хромпика 1 кг молотого угля. Смесь тонко измел чают, прокаливают в печи, а затем тщательно промывав водой. Если окись недостаточно прокалена, то она часто прив дит к образованию на эмалевом слое налета соли Ма2Сг04. [c.30]

    Каталитическое гидрирование в паровой фазе при атмосферном давлении над восстановленным никелем было открыто Сабатье Вскоре В. Н. Ипатьев впервые применил гидрирование в жидкой фазе под давлением водорода. За почти семидесятилетний период развития и изучеааия реакций гидрирования было открыто много весьма активных катализаторов позволявших работать при очень мягких условиях никелевые катализаторы на носителях, хромит-медные катализаторы, окись платины, платиновая чернь и др. Большое значение, в том числе и промышленное, получили так называемые скелетные никелевые катализаторы ( никель Ренея ) . К настоящему времени ряд катализаторов значительно пополнен, а известные катализаторы усовершенствованы. Так, например, очень активными катализаторами являются сплавы никеля и родия, платины и рутения, модифицированные катионами палладиевые катализаторы и др. Скелетные катализаторы значительно улучшены промотированием , а приготовление катализаторов усовершенствовано так, что платиновая чернь, например, может быть получена с хГоверхностью до 200 м /г, в то время как в прошлом лучшие образцы имели поверхность не более 50—60 м г. [c.130]

    Зеленая окись хрома получается восстановлением бихромата натрия и представляет собой смесь окиси хрома СггОз и гидратированной окиси хрома Сг20з-2Н20. Она придает покрытию тусклый зеленый цвет и высокую прочность. Этот пигмент иногда называют [c.371]

    Важным этапом в развитии синтеза спиртов из СО и На была разработка Ъп—Си- и Ъп—Сг-катализаторов, в присутствии которых селективно образуется метанол [200—221]. До недавнего времени синтез метанола в промышленности в основном осуществляли на гп-Сг-катализаторах при 350—400° С, давлении 250— 320 атм и объемной скорости 10 ООО—60 ООО час циркулирующего газа, содержащего 10—20% СО (СО На от 1 5 до 1 10). Часто синтез метанола совмещают с процессами деструктивной гидрогенизации и синтезом аммиака, что улучшает его технико-экономические показатели [203, 211—213]. Активность Zn—Сг-катализатора зависит от способа приготовления [214, 215], атомного отношения г/Zn [214], а также от способа предварительной обработки, в процессе которой происходит формирование активной структуры. Свежеприготовленный гп—Сг-катализатор содержит в основном фазу цинкгидроксихромата lpZn2(0H)2 r04 [214, 216, 217]. В начале восстановления синтез-газом, водородом или азот-водородной смесью при низкой температуре кристаллическая решетка хромата цинка разрушается и образуются окись хрома, окись цинка и хромит цинка частично в виде аморфной, а частично в виде высоко дисперсной кристаллической фазы [218— [c.23]

    Гетерогенные катализаторы сравнительно редко применяются в виде индивидуальных веществ и часто содержат различные добавки, получившие название модификаторов. Цели их введения очень разнообразны повышение активности катализатора (промоторы), избирательности и стабильности работы, улучшение механических или структурных свойств. Фазовые и структурные модификаторы стабилизируют соответственно активную фазу твердого катализатора или пористую структуру его поверхности. Так, в медь-хромитных катализаторах гидрирования окись хрома препятствует восстановлению окиси меди с превращением ее в неактивную форму. Добавление уже 1% AI2O3 к железному катализатору сильно увеличивает его поверхность, препятствуя спеканию и закрытию пор, и т. д. Некоторые модификаторы существенно повышают стабильность работы катализатора или сильно изменяют характер его каталитической активности. Например, добавка щелочей к цинк-окисному катализатору для синтеза метанола ведет к образованию высших спиртов, от этого же существенно зависит работа кобальтового катализатора при получении синтина и т. д.  [c.163]

    Наибольшие количества металлического хрома получают из хромита. Для этого предварительной обработкой получают окись хрома СггОз, а затем алюмотерми-ческим способом восстанавливают металлический хром (см. 3, гл. XVni). Отметим, что металлический хром можно получить не только алюмотермией, но также восстанавливая СггОз при нагревании с кремнием, кальцием, водородом, а также электролитическим восстановлением расплавов солей хрома. [c.339]

    Реакция каталитического восстановления и гидрирования находит широкое применение в промышленности для получения полупродуктов органического синтеза, нанример ароматических аминов из нитросоединений, циклогексанола и циклогексанона из фенола, углеводородов этиленового ряда из ацетиленовых производных. В качестве катализаторов в этих реакциях применяют платину, палладий, никель или в виде высокодисперсных порошков, или нанесенных на различные носители казельгур, окись хрома, окись алюминия, уголь. Реакции жидкофазного гидрирования обычно проводят в среде гидрируемого вещества, продукта реакции или в растворителях при температурах О—200 °С и давлениях водорода (1—200) бар. Каталитический процесс осуществляют в аппаратах, позволяющих интенсивно перемешивать гетерогенную систему в целом. [c.233]

    Никелевые катализаторы на носителях — кизельгуре, окиси алюминия, окиси хрома широко применяют для жид о-парофазного процесса гидрирования. Содержание никеля в этих катализаторах достигает 30—50 вес.%. Никель на кизельгуре получают пропиткой кизельгура солями никеля с последующим превращением их в окись никеля. Затем проводят ее восстановление водородом при 300—400° С до металлического никеля (1, 188]. Для гидрирования бензола, фенола, крезолов эффективным является никельокисноалюминиевый катализатор, содержащий около 50 вес. % металлического никеля. Катализаторы подобного состава готовят соосаждением компонентов, например, из растворов алюмината натрия и азотнокислого никеля из смеси азотнокислого Никеля и азотнокислого алюминия раствором углекислого натрия и т. д. После отмывки от продуктов реакции, формовки и сушки катализаторы восстанавливают водородом при 350—400° С. Катализатор № 6523, вырабатываемый в ГДР, содержит около 50 вес. % никеля на окиси алюминия [213]. [c.85]

    В состав катализатора низкотемпературной конверсии входят окислы меди, цинка и алюминия. В невосстановленной форме ката- ппзатор неактивен. В процессе восстановления СиО переходит в металлическую медь, которая является собственно катализатором. Окись цинка выполняет роль стабилизатора, препятствующего увеличению размеров кристаллов меди, что может привести к сокращению активной поверхности катализатора. Этой же цели служит и окись алюминия [54], а такл>е окись хрома. В настоящее время-предложено много композиций катализаторов на основе окиси меди, и окисп цинка основные характеристики двух образцов приведены ниже  [c.91]

    Как уже отмечалось, из производных низших валентностей рассматриваемых элементов существенное практическое значение имеют лишь соединения трехвалентного хрома. Дихромтриоксид (окись хрома) СггОо образуется при энергично протекающем сгорании хрома в кислороде и представляет собой очень тугоплавкое темно-зеленое вещество, нерастворимое не только в воде, но и в кислотах. Как СГ2О3, так и отвечающие ей соли обычно получают, исходя не нз металла, а путем восстановления производных шестивалентного хрома, например по уравнению [c.245]

    Б противоположность этой точке зрения Рабес и Шенк [150] полагают, что активными компонентами восстановленного катализатора являются металлическая медь п активирующая окись хрома. [c.39]

    Алифатические а-олефнны такие, как пропилен, бу-тен-1 и т. д., ие полнмеризуются свободными радикалами с образованием высокомолекулярных соединении. Для этой цели требуются либо катализаторы на основе 1 Осстановлеиных гялогенидов переходных металлов, например Ti ig (и.х называют иногда координационными катализаторами), либо катализаторы гидрирования, такие, как восстановленная окись хрома на окиси алюминия. [c.198]

    Важнейшие новые твердые катализаторы, ведущие к образованию стереорегулярных полимеров, можно классифицировать на четыре группы предварительно формованные окислы металллов перемеппой валентности на носителях с большой удельной поверхностью промотированные окиснометаллические катализаторы твердые катализаторы, приготовленные осаждением непосредственно в реакционной зоне из солей металлов переменной валентности и ме-таллорганических соединений предварительно обработанные осажденные катализаторы. Предварительно приготовляемые окиснометаллические катализаторы включают никель на угле [79], окись молибдена на окиси алюминия [79], молибдат кобальта на окиси алюминия [108] и окись хрома на алюмосиликате И8]. Активность этих катализаторов можно изменять в широких пределах введением различных промоторов, в частности, металлов I, II и III групп периодической таблицы, их гидридов и металлорганических производных [35]. Из осажденных важнейшими являются катализаторы, приготовляемые взаимодействием четыреххлористого титана с алкильными производными алюминия, бериллия, магния илп цинка [107]. Предварительно обработанные осажденные катализаторы включают соли металлов переменной валентности, восстановленные до низшей валентности, например, треххлористый титан, в сочетании с металлорганическими соединениями. [c.285]

    Медь и железб, как установили Мюллер и Барк, имеют наибольшую активность из всех изученных катализаторов. В присутствии медной и железной спиралей в опытах авторов окись азота разлагалась уже при температуре порядка 300 " С. Такие катализаторы, как цинк, марганец, магний, заметно разлагали N0 при температуре / = 500—600 °С. Наименее активными оказались хром, латунь и алюминий. Эти катализаторы практически не ускоряют реакцию в области температур <600 °С. При i = 300° , как установлено в работе [268], в результате инактивации катализатора, вызванной адсорбцией кислорода, окись азота разлагалась на железной спирали, восстановленной в атмосфере метилового спирта или водорода, только на 45,7%. При этой температуре N0 на медной спирали разлагалась на 637о, однако уже при / = 400 °С в случае восстановленного железа разложение окиси азота было полным. Для меди разложение N0 на 1007о имело место при температуре = 500 °С. [c.105]

    Перед использованием катализатор восстанавливают. Восстановителями служат водород и окись углерода. Восстановление обычно проводят рабочим газом непосредственно в контактном аппарате при температуре 350—450 °С. Восстановленный катализатор является пирофорным, поэтому перед выгрузкой его окисляют, так же как и низкотемпературный катализатор. Активной фазой катализатора является закись-окись железа (Гез04), образующаяся в процессе восстановления. Показано [13], что активность железохромовых катализаторов связана с образованием твердого раствора Гвз04—СгаОз шпинельного типа (происходит замещение трехва-.иентных ионов железа в кристаллической решетке FegO трехвалентными ионами хрома). Избыток окиси хрома, присутствующий в катализаторе в виде свободной фазы, снижает активность катализатора. [c.370]

    Как видно из табл. 5, в окалине обнаруживаются три окисла закись никеля, шпинель и окись хрома. Результаты послойного анализа дают важную информащ4ю о механизме окисления. Они показывают, что состав окалины неоднороден по толщине. В этой неоднородности обнаруживается закономерность, заключающаяся в том, что по мере углубления в окалину возрастает концентрация термодинамически более устойчивых окислов, в данном случае окиси хрома. Эта закономерность указывает на селективное окисление хрома, так же, по-вйдимому,, на протекание вторичных реакций окисления - восстановления во внутренних слоях окалины, причем чем ниже давление кислорода, тем более вероятно протекание этих процессов. Таким образом, термодинамические факторы оказывают существенное влияние на формирование внутренних слоев окалины. [c.42]

    Катализатор теряет свою активность, если в результате чрезмерного повышения температуры при его приготовлении или применении окись меди вступает в реакцию с хромитом меди, образуя хромит закиси меди СигСг204 и кислород. Однако наиболее частой причиной потери катализатором своей активности является восстановление окиси меди до металлической меди, что можно заметить по изменению цвета катализатора, который из черного превращается в медно-красный. Такой дезактивации катализатора благоприятствует наличие в реакционной смеси воды, кислот или аммиака. Можно свести к минимуму восстановление и инактивацию катализатора, если в начальной стадии получения катализатора вместе с основным хроматом меди и аммония осадить хромат бария (ил1и стронция или кальция)..  [c.14]

    Прокаливание. Трехокись хрома при прокаливании распадается на окись хрома и кислород 4СгОз = 2СггОз + ЗОг. Вполне аналогично относятся к прокаливанию хромовокислые соли ам.мония и ртути. Так, например, хромовокислый аммоний дает окись хрома, аммиак, азот и воду. Восстановлению хроматов благоприятствует восстанавливающее действие находящегося в избытке аммиака  [c.228]

    Заметным успехом пользовалось также каталитическое восстановление о-нитрофеноксиацетонов. Для этой цели применялись следующие катализаторы никель, медь—окись хрома, цинк—медь—окись хрома, молибден, железо—кобальт, платина и титан [68]. [c.479]


Смотреть страницы где упоминается термин Хром, окись восстановление: [c.243]    [c.64]    [c.694]    [c.39]    [c.312]    [c.231]    [c.286]    [c.69]    [c.66]   
Гетерогенный катализ в органической химии (1962) -- [ c.108 , c.152 ]




ПОИСК





Смотрите так же термины и статьи:

Окись хрома



© 2025 chem21.info Реклама на сайте