Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические превращения кислот

    Наиболее характерные и важные свойства карбоновых кислот связаны с превращением их в функциональные производные. Соответствующие реакции будут рассмотрены в разделе Функциональные производные карбоновых кислот (стр. 158). Здесь же мы остановимся на остальных химических превращениях кислот. [c.157]

    В отличие от алифатических Сульфохлоридов, которые легко вступают в различные реакции, свободные сульфокислоты не способны к дальнейшим химическим превращениям, поскольку их нельзя нагреть до высокой температуры без разложения, тогда как карбоновые кислоты устойчивы в этих условиях. Если алифатические карбоновые кислоты при нагревании с аммиаком или анилином могут быть переведены с отщеплением воды в соответствующие амиды или анилиды, то в случае сульфокислот это не осуществимо. [c.482]


    В атмосфере происходит большое число разнообразных химических превращений метана и его гомологов, алкенов, изопрена и монотерпеновых углеводородов, бензола и его гомологов, а также производных углеводородов альдегидов и кетонов, карбоновых кислот и спиртов, аминов и серосодержащих соединений. [c.32]

    Поэтому к высшим спиртам оксосинтеза предъявляются высокие требования. В них не допускается наличие примесей (кислот, альдегидов, эфиров), которые легко подвергаются химическим превращениям и обусловливают нестабильность пластификатора и пластиката. [c.115]

    Важным свойством кислот и оснований является их способность образовывать в растворе ионы Н и ОН , которые могут атаковать другие имеющиеся там молекулы и вызывать химические превращения, с трудом или медленно протекающие в их отсутствие. Когда кислоты и основания реагируют друг с другом, ионы Н и ОН соединяются, образуя молекулы воды. Этот процесс называется нейтрализацией. [c.82]

    Что происходит с органическими соединениями в пластовых водах Какова их дальнейшая судьба Во-первых, идут химические превращения. Самые обычные органические соединения в водах — жирные кислоты, наиример муравьиная кислота, уксусная кислота и др. Некоторые из этих кислот под действием повышенных температур и других условий могут частично превращаться в нефтяные углеводороды. Таким путем запас вещества, который пригоден для образования нефти, может пополняться уже в водной среде коллекторских пород. Опять мы наблюдаем благотворное влияние водной среды и самой воды на возникновение нефти. [c.41]

    Как правило, один элемент ХТС может быть описан совокупностью нескольких модулей. Так, многослойный контактный реактор при моделировании ХТС производства серной кислоты представляется математической моделью в виде совокупности нескольких модулей химического превращения, нагрева и смешения — разделения. [c.327]

    Физико-химические особенности сульфирования сополимеров с предварительным набуханием в дихлорэтане. В случае набухания сополимера в дихлорэтане процесс сульфирования состоит из следующих стадий 1) диффузия серной кислоты в гранулу сополимера 2) реакция химического превращения сополимера в сульфокатионит [c.346]

    Согласно изложенному скорость брутто-процесса должна зависеть от интенсивности перемешивания, исходной концентрации серной кислоты, взятой для проведения реакции сульфирования, и от количества выделившейся в результате химического превращения воды. Эти факты экспериментально подтверждены в работе [34]. [c.347]


    Ввиду невысокой активности серной кислоты как сульфирующего агента обычно проводят процесс при повышенной температуре (80—100°С и более). Реакционная масса состоит из двух фаз, причем сама химическая реакция протекает в кислотной фазе и уже при небольшом перемешивании лимитируется скоростью химического превращения без существенного влияния диффузионных факторов. [c.330]

    Перегонкой можно разделить углеводороды нефти на фракции с большим или меньшим содержанием водорода. На первом этапе развития переработки пефти ограничивались перегонкой ее [3, с. 11] с последующей очисткой светлых нефтепродуктов щелочью и кислотой. Дальнейшее развитие технологии переработки нефти шло от физического процесса перегонки к использованию более сложных химических превращений углеводородов с целью повышения выхода необходимых народному хозяйству нефтепродуктов и придания им требуемых свойств. Применение процессов крекинга [4, с. 9] (термического и каталитического крекинга, коксования) привело к перераспределению водорода сырья с образованием бодее легких жидких и газообразных углеводородов при одновременном [c.11]

    Аналитическая реакционная газовая хроматография — метод, в котором в аналитических целях используют совместно химические и хроматографические методы, причем химические превращения могут быть проведены или в хроматографической схеме или вне ее [124]. Использование направленных химических превращений нелетучих или неустойчивых соединений в -летучие и стабильные позволяет расширить область анализируемых веществ в газовой хроматографии. Так, смесь жирных кислот анализируют газовой хроматографией, предварительно осуществив их превращение в метиловые эфиры. Методы получения производных кислот и их хроматографический анализ рассмотрены в обзорах [125, 126]. [c.125]

    Первый гальванический элемент был построен А. Вольта. Элемент состоял из медных и цинковых пластинок, между которыми помещались смоченные в уксусной кислоте прокладки из сукна. Возникновение электрического тока в нем сопровождается химическими превращениями на электродах. Так как электродный потенциал цинка [c.81]

    Главный акцент сделан на характеристику структуры белков и нуклеиновых кислот — прежде всего в плане описания их химических свойств и методов химического синтеза. Хотелось бы подчеркнуть, что рассмотрение проводится главным образом на уровне первичной структуры, когда детально, шаг за шагом, ана-лизируется множественная реакционноспособность этих биополимеров, объясняются их свойства на основе химических превращений функциональных группировок и их ансамблей. Что же касается проблемы химического синтеза, то она изложена весьма полно и отражает сложившиеся сейчас подходы к искусственному получению как олигомеров, так и достаточно крупных биополимеров этого типа. [c.6]

    Строго говоря, к гетероциклическим относятся такие соединения, как циклические окиси, лактоны, лактамы, циклические ангидриды, имиды и эфиры кислот и т.д. Однако чаще к типичным гетероциклическим соединениям относят соединения с достаточно стойким циклом, которьш сохраняется во многих химических превращениях. [c.246]

    Число возможных побочных процессов, возникающих внутри макромолекул или между ними одновременно с основным процессом химического превращения, возрастает по мере увеличения количества разнотипных функциональных групп в отдельных звеньях макромолекул. Так, проводя гидролиз сополимера малеинового ангидрида и винилацетата спиртовым раствором щелочи, получают сополимер соли малеиновой кислоты и винилового спирта  [c.175]

    При нагревании поливинилового спирта выше ЮО" его молекулярный вес увеличивается, уменьшается эластичность и растворимость. В присутствии щелочей или кислот (особенно серной или соляной) этот процесс развивается быстрее. Процессы химического превращения поливинилового спирта при нагревании очень сложны и являются в большинстве случаев результатом внутри- и межмолекулярной реакции дегидратации  [c.287]

    Химические превращения полимерных кислот [c.327]

    В 1845 г. Адольф Вильгельм Герман Кольбе (1818—1884), ученик Вёлера, успешно синтезировал уксусную кислоту, считавшуюся в его время несомненно органическим веществом. Более того, он синтезировал ее таким методом, который позволил проследить всю цепь химических превращений — от исходных элементов (углерода, водорода и кислорода) до конечного продукта — уксусной кислоты. Именно такой синтез из элементов, или полный синтез, и был необходим. Если синтез мочевины Вёлера породил сомнения относительно существования жизненной силы , то синтез уксусной кислоты Кольбе позволил решить этот вопрос. [c.71]

    Регенерация реагентов. Часто в систему необходимо вводить вспомогательные исходные вещества, например, когда новый ход процесса будет более выгодным, чем при непосредственном взаимодействии основных исходных веществ, или даже единственно возможным. В этом случае нужно так организовать производственный цикл, чтобы вспомогательное исходное вещество можно было регенерировать. После регенерации это вещество возвращается в цикл, и его расход ограничивается только потерями. Такой метод широко используется в химической технологии. Отметим, что он отличается от рециркуляции реагента, олисанной на стр. 356. Обычно возвращаемое в цикл вспомогательное йсходное вещество регенерируется в результате химического превращения, а не выделяется из смеси физическими методами. Примером может служить использование концентрированной гидроокиси натрия для разложения боксита в производстве окиси алюминия методом Байера, сохранение в цикле окислов азота при башенном способе получения серной кислоты или введение в цикл аммиака при производстве соды методом Сольвея. В последнем случае процесс не может проводиться при, непосредственном взаимодействии основных исходных веществ по уравнению [c.377]


    Темные нефтепродукты. Сернокислотная очистка тяжелых дистиллятов и остатков сопряжена с проблемами другого рода. Эти продукты, как правило, содержат в растворенном или во взвешенном состоянии большее или меньшее количество асфальтенов. Механизм очистного действия кислоты на асфальтенсодержа-щее сырье изучался многими исследователями [58—61]. Практически вся кислота превращается в так называемый кислый гудрон или кислый шлам. Сепарации последнего благоприятствует добавление небольшого количества воды или слабого раствора щелочи, в результате чего, по-видимому, происходит осаждение коллоидной суспензии. С другой стороны, при очистке несомненно имеют место и химические превращения. Об этом свидетельствует хотя бы выделение сернистого газа или то обстоятельство, что промытый водой (т. е. не содержащий свободной кислоты) кислый гудрон от очистки практически бессернистого сырья содержит до 8—9% связанной серы. Источником последней может быть только кислота. [c.234]

    Выбор аппаратурного оформления процесса коагуляции определяется его скоростью и необходимым временем контакта электролитов с латексом. При коагуляции латексов, стабилизованных алкил (арил)сульфонатами, время коагуляции составляет секунды (или доли секунды) и может быть осуществлено в системе трубопроводов [45] при коагуляции латексов бутадиен-стирольных каучуков, полученных с применением мыл карбоновых кислот, под действием электролитов (Na I + H2SO4) происходит разделение фаз — коагуляция и химическое превращение эмульгатора в свободные карбоновые кислоты, скорость которого зависит от кислотности среды и составляет несколько минут. Одновременно с этим процессом отмечено дегидратирующее действие электролитов на крошку каучука, причем скорость этого процесса также зависит от кислотности среды (pH). Технологические параметры процесса определяются выбранной технологической схемой. При выделении каучука в виде ленты крошка каучука размером 1—3 мм должна иметь определенную когезию, что сохраняется при недостаточной ее дегидратации (в ленте крошка удерживает четырехкратное количество воды) при выделении каучука в виде крошки размером 5—30 мм желательно более полное обезвоживание, чему способствует большая кислотность серума и большая длительность контакта с кислотой. [c.260]

    Решение проблемы 2 обычно достигается путем использования различных способов химического превращения изоалкенов (изобутилена, изоамиленов) с помощью кислот или ионообменных смол (см. гл. 36). Может оказаться эффективным разделение с помощью растворов солей меди (и серебра). [c.665]

    Вещества, прохождение через которые электрического тока вызывает передвижение вещества в виде ионов ионная проводимость) и химические превращения в местах входа и выхода тока (электрохимические реакции), называются проводниками второго рода. Типичными проводниками второго рода являются растворы солей, кислот и оснований в воде и некоторых других растворителях, расплавленные соли и некоторые твердые соли. Как правило, в проводниках второго рода электричество переносится положительными (катионы) и отрицательными (анионы) ионами, однако некоторые твердые соли характеризуются униполярной проводимостью, т. е. переносчиками тока в них являются ионы только одного знака — катионы (например, в Ag l) или анионы (ВаСЬ, ZrOa + aO, растворы щелочных металлов в жидком аммиаке). [c.384]

    Технологическая (или рабочая) машина представляет собой комплекс механизмов, предназначенных для выполнения технологического процесса в соответствии с заданной программой. В ходе техно-логиче кого процесса под воздействием рабочих органов машины изменяются качественные показатели предмета труда (физические свойства, форма, положение) при этом затрачивается полезная работа В машинах химических производств технологический процесс обычно носит сложный характер на предмет труда помимо M xaim ческого воздействия может накладываться какой-либо (или совокупность) типовой процесс химической технологии — химическое превращение, межфазный массообмен, нагрев, изменение агрегапного (фазового) состояния вещества и др. Например, в аммо-низаторах-грануляторах происходит не только процесс гранулирования окатыванием, т. е. получение сферических гранул из мелкодисперсного материала перемещением его частиц во вращающемся барабане, но и химическая реакция — нейтрализация жидким аммиаком фосфорной кислоты, содержащейся в пульпе, которая подается в гранулятор, а также сушка материала (тепломассообменный процесс). [c.7]

    Сферический слой кислоты с радиусом Н, окружающий гранулу сополимера, является источником сульфоионов, проникающих сквозь пленку тормозящего агента в норы гранулы. Однако в отличие от процесса фосфорилирования этот источник не является постоянным он изменяет свою интенсивность но мере протекания химического превращения сополимера, т. е. жидкая сфера вокруг гранулы служит емкостью, из которой непрерывно поставляется для реакции сульфирования необходимый реагент. Это обусловливает следующую диаграммную структуру жидкой фазы-. [c.348]

    Повышение концентрации серной кислоты ускоряет процесс химического превращения сополил1ера в ионит (чем выше концентрация серной кислоты, тем больше концентрация активных (негидратированпых) сульфогрупн (рис. 5.21). [c.360]

    Результаты алкилирования в значительной мере определяются физическими факторами, так как лимитирующей стадией процесса является скорость транспортирования реагирующих веществ к поверхностн раздела фаз, где протекают основные химические реакции. Скорость транспортирования реагирующих веществ зависит от интенсивности перемешивания эмульсии кислота—углеводороды, соотношения изобутан олефины на входе в реактор и времени их пребывания в реакционной зоне, концентрации химически инертных соединений в углеводородной фазе, объемного соотношения кислотной и углеводородной фаз. Качество применяемого сырья, состав кислоты и температура реакции оказывают существенное влияние как на скорость транспортирования, так и на скорость химических превращений. [c.168]

    В качестве трассирующего элемента можно использовать любое вещество, которое не испытывает химического превращения в условиях выполняемого эксперимента и может быть легко и быстро обнаружено путем химического или физического анализа. Трассирующим веществом могут быть красители, кислоты, основания, радиоактивные изотопы и т. д. Измеряться при этом могут световая абсорбция — колориметрически, концентрация ионов водорода — потенцпометрически, интенсивность радиации — через число импульсов, показываемое счетчиком Гейгера, и т. д. [c.39]

    Небольшая часть серной кислоты, поступающей на установку, расходуется таким же образом. Вначале серная кислота не подвергается химическим превращениям, а просто разбавляется. Обычно свежая серная кислота имеет титруемую кислотность 98,0—99,5% Н2804. Постепенно она разбавляется водой, полимерами и эфирами, а когда ее концентрация снизится до 90%, ее откачивают с установки. Хотя реакции алкилирования могут протекать и при более низкой концентрации НгЗО , коррозионная активность катализатора в отношении углеродистой стали резко возрастает. На одном из собраний Национальной ассоциации нефтепереработчиков приводили данные [2] лабораторных исследований, когда концентрация кислоты была 82% и она была разбавлена (в меньшей степени водой, а в большей — полимерами). Некоторое количество воды необходимо, но не более нескольких процентов. Это подтверждает данные, полученные ранее [3]. Экономические расчеты позволяют дать окончательный ответ при определении оптимальной концентрации откачиваемой кислоты для данной установки. Более подробно это обсуждается ниже. [c.250]

    Еще совсем недавно парафиновые углеводороды считались химическими мертвецами, т. е. веществами, пе способными к реакциям химических превращений даже при действии па них таких энергичных реагентов, как крепкие серная и азотная кислоты при обычной температуре. Была известна лишь способность парафинов сгорать с образованием углекислоты и воды при действии на них кислорода или крепкой азотной кислоты при высоких температурах. Химическую инертность этого класса углеводородов подчеркивало и само название парафины (parum aifinis, т., е. лишенный сродства или -малореакционпый). Пассивность парафинов была одной из основных причин медленного накопления знаний о их свойствах, а также недостаточного использования их как химического сырья вплоть до 30-х годов нашего столетия. [c.54]

    Изучение состава, строения химических реакций и свойств гетероорганических соединений нефти особенно важно для решения такой принципиальной научной проблемы, как генезис нефти. Именно среди гетероорганических компонентов нефти встречаются соединения, в разной степени приближающиеся к соединениям чисто углеводородного характера, которые, вероятно, являются отдельными звеньями длинной цепи химических превращений, соединяющей нефть с органическим веществом растительного и животного происхождения, из которого эта нефть образовалась. Чем больше звеньев в этой цепи удастся расшифровать при помощи современных экспериментальных методов, тем ближе мы подойдем к раскрытию и правильному пониманию геохимической истории многообразных химических превращений в недрах земных от органического вещества растительного и животного происхождения до нефти. Наиболее простые по химическому составу кислород- и серусодержащие соединения являются, но-видимому, одной из последних (если не самой последней) ступенью в ряду этих превращений. Так, содержащиеся в нефтях карбоновые кислоты и сернистые соединения, как показали многочисленные экспериментальные исследования, имеют такую же или очень близкую структуру углеводородной части молекулы, как и углеводороды соответствующих фракций тех же нефтей. [c.303]

    После осаждения из осмола не растворимых в петролейном эфире веществ компоненты, растворимые в петролейном эфире, были разделены хроматографическим методом иа смоляные кислоты и углеводороды (фихтелит и ретен). Автор предлагает следующую схему химических превращений (декарбоксплирования и нерераспределения водорода), ведущую к образованию фихтелита и ретена из смоляных кислот  [c.473]

    Схема производства капролактама из бензойной кислоты по методу фирмы Snia Vis osa (Италия) базируется на трех основных химических превращениях — окислении толуола, гидрировании бензойной кислоты и нитрозированйи циклогексанкарбоновой кислоты в капролактам  [c.70]

    Из данных, приведенных в табл. 18, следует, что остаточное содержанпе серы и степень обессеривания дизельного топлива в зависимости от количества добавки проходит через экстремум, хотя и маловыраженный. Повышение температуры и количества добавки (до 3%мас.) увеличивает степень обессеривания дизельного топлива, в результате чего снижается остаточное содержание серы в нем, или при сохранении остаточного содержания серы в дизельном топливе можно повыснть производительность установки. Стимулирование химических превращений на стадии физических превращений может быть реализовано и при осу" ществлении каталитических процессов. Сырьем каталитических процессов являются бензиновые и дизельные фракции, вакуумные дистилляты и мазуты, существенно различающиеся по содержанию ПАВ естественного происхождения, а следовательно, и по склонности к образованию НДС в условиях процесса. Естественными ПАВ в сырье каталитического крекинга являются карбоновые кислоты, содержание которых в керосиновой фракции может достигать десятых долей процента и увеличиваться (до 1,0%) по. мере перехода к более тяжелым фракциям. Поверхностно-активными свойствами обладают полициклические ароматические углеводороды, смолы и асфальтены, которые могут содержаться в сырье каталитического крекинга. [c.157]

    Для химических превращений могут быть использованы стабильные радикалы [242]. Найдено, что в процессе облучения асфальтиты подвергаются деалкилированию [335] с образованием активных радикалов, которые могут быть использованы в качестве инициаторов радикальной полимеризации. Облучение, по-видимому, может активировать первоначальные стабильные радикалы. При наличии ненасыщенного мономера в системе происходит привитая сополимеризация на асфальтит. Так, нами были получены сополимеры с акрилонитрилом, акриловой кислотой, дивинилбен-золом, метилметакрилатом, стиролом [242, 336, 337]- [c.296]

    Одной ИЗ важкейших областей применения химической кинетики является изучение кинетических закономерностей образования и деструкции полимеров. Это связано в первую очередь с тем исключительным значением, которое приобретают полимеры в практической жизни. Кроме того, в связи с проникновением физической химии в биологию становится весьма важным изучение кинетики процессов образования и разрушения биологических полимеров — белков, нуклеиновых кислот, полисахаридов, поскольку эти процессы являются одними из основных химических превращений в клетках. [c.351]

    Химические превращения поливинилиденхлорида изучены очень мало. Имеются сообщения, что при действии цинковой пыли на раствор поливинилиденхлорида отщепляется лишь половина содержащегося в нем хлора. Поливинилиденхлорид полностью восстанавливается в полиуглеводород при нагревании с иодистово-дородной кислотой и фосфором. Одновременно происходит деструкция полимера, вследствие чего молекулярный вес образующегося полиуглеводорода не превышает 4000. [c.275]

    Метод получения сложных виниловых эфиров химическим превращением поливинилового спирта представляет практический интерес лишь при синтезе эфиров высших жирных кислот. Получение же таких эфиров, как поливинплформиат или поливинилацетат. из поливинилового спирта может иметь значение только для исследований, поскольку сам поливиниловый спирт получают омылением этих эфиров. Е> [c.302]


Смотреть страницы где упоминается термин Химические превращения кислот: [c.483]    [c.341]    [c.184]    [c.15]    [c.319]    [c.372]    [c.38]    [c.399]   
Смотреть главы в:

Химия диацетилена  -> Химические превращения кислот




ПОИСК





Смотрите так же термины и статьи:

Превращения химические



© 2025 chem21.info Реклама на сайте