Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Использование метода изотопного обмена

    В связи с развитием атомной энергетики интерес к получению тяжелой воды значительно вырос и в ряде стран было организовано ее производство. Сначала на стадии начального концентрирования до 3—5% ОгО использовали методы ректификации воды и электролитический метод в сочетании с каталитическим и фазовым изотопным обменом, на стадии конечного концентрирования до содержания 99,0—99,8% D2O применяли электролитический метод [197, 198]. Затем были разработаны для промышленного использования и другие более экономичные методы [199, 200]. [c.137]


    Во втором случае при использовании метода изотопного разбавления для количественного определения доли элемента, существующего в виде данной химической формы, необходимо применять радиоактивный изотоп в форме, идентичной определяемой или вступающей с ней в быстрый изотопный обмен и не способной к такому обмену с другими формами. [c.110]

    Существует несколько способов получения меченых органических соединений. Прежде всего, радиоактивный изотоп может быть введен в молекулу исследуемого соединения в процессе прямого химического синтеза этого соединения из исходных продуктов, один из которых содержит радиоактивный изотоп. Прямой химический синтез является основным методом, с помощью которого можно обеспечить введение радиоактивной метки в строго определенное положение в молекуле. Для получения меченых соединений используют также специфические радиохимические методы (изотопный обмен, метод атомов отдачи) и биосинтез. С помощью изотопного обмена в ряде случаев удается получать соединения, меченные радиоактивным изотопом в определенном положении использование других методов синтеза приводит, как правило, к получению соединений, в молекулах которых радиоактивную метку может нести любой из атомов данного элемента. [c.296]

    Бойер [7] и Дженкс [8] высказали ряд заслуживающих внимания критических замечаний относительно слишком широкого использования метода изотопного обмена. Действительно, обмен какой-то части молекулы субстрата может служить доказательством двухтактного механизма лишь при определенных условиях. Применительно к обмену неорганического фосфата в глюкозо-1-фосфате в случае реакции фосфорилазы сахарозы [c.123]

    Конечно, обмен молекул между гидратными оболочками ионов и соседними агрегатами молекул воды, безусловно, существует. Использование метода меченых атомов показало, что изотопный обмен происходит со многими, даже самыми прочными соединениями. Об этом говорит и Самойлов, ссылаясь на опыты А. А. Гринберга. Систематические исследования [c.152]

    Если изотопный обмен можно с уверенностью применять для синтеза многих меченых соединений, то другие специальные методы, основанные на использовании энергии ядерных реакций, нахо- [c.12]

    Малоновую-Н кислоту-Н получали из недокиси углерода и воды-Н в соответствии с описанным методом [3—5] без использования растворителя [6], а также с применением в качестве растворителя четыреххлористого углерода [7]. Ее получали также изотопным обменом с водой-Н [6, 8, 12, 13]. [c.50]


    Комплекс химических и физических методов исследования адсорбентов включает использование структурных и различных порометрических методов, электронно-микроскопических методов, включая декорирование, изотопный обмен, газовую хроматографию, разные спектроскопические и электрофизические методы, модельные каталитические реакции, калориметрию. Только подробно изучив геометрию и химию поверхности, можно судить о ее способности к тому или иному взаимодействию с молекулами. [c.104]

    Конечно, обмен молекул между гидратными оболочками ионов соседними агрегатами молекул воды, безусловно, существует. Использование метода меченых атомов показало, что изотопный обмен происходит со многими, даже самыми прочными соединениями. Об этом говорит и Самойлов, ссылаясь на опыты А. А. Гринберга. Систематические исследования А. И. Бродского скорости изотопного обмена кислорода и других атомов, а также работы А. И. Шатенштейна по скорости изотопного обмена водорода показали, что скорость обмена зависит не от прочности образованных соединений, а от подвижности атомов в соединении, которая определяется не устойчивостью соединения, а характером связи атомов в соединении.Чем более полярна связь, чем она менее ковалентна, тем больше скорость обмена. Вполне возможно, что и скорость обмена молекул воды зависит от различия в связях молекул воды с ионами больших и малых радиусов. [c.181]

    В 30-х годах XX в. в связи с открытием дейтерия и тяжелой воды электролиз воды нашел еще одно важное применение, так как тяжелая вода может получаться в качестве побочного продукта на крупных электролизных установках. Получение тяжелой воды чисто электрохимическим методом или комбинированием электролиза воды с изотопным обменом дейтерия между водородом и парами воды на катализаторе применялось и продолжает применяться в ряде стран. Опубликованы данные о работе в США, Норвегии, Индии крупных установок для получения тяжелой воды с использованием электрохимического метода, хотя к настоящему времени разработаны и другие методы производства тяжелой воды, более экономичные в определенных условиях. [c.12]

    Если анализируемая смесь состоит из нескольких соединений одного и того же элемента, то определение количества какого-либо соединения методом изотопного разбавления возможно лишь при отсутствии изотопного обмена меченого элемента между различными соединениями. Так, например, в смеси пара-бромтолуола и пара-бромксилола при комнатных температурах изотопный обмен бромом полностью отсутствует и возможно раздельное определение каждого компонента с использованием меченных по брому соединений. Наоборот, быстрый изотопный обмен между КВг и Вгг делает невозможным определение количества одной из форм. [c.212]

    Если имеет место изотопный обмен между компонентами системы, изучаемой методом радиоактивных индикаторов, и его скорость выше или соизмерима со скоростью изучаемого процесса, то метод радиоактивных индикаторов не может быть использован. С другой стороны, выделение радиоактивных изотопов без носителя методом ядер отдачи (см. гл. 7) или обогащение невозможно при наличии изотопного обмена между облученным и отделяемым соединениями. [c.184]

    Изотопный обмен может быть использован для изучения структуры молекулы только в тех случаях, когда он протекает с измеримой скоростью, и если скорости обмена неравноценных атомов достаточно отличаются друг от друга. Вследствие отчетливо выраженной склонности большинства неорганических соединений к диссоциации (результатом чего является очень быстрый изотопный обмен), исследование подвижности атомов в молекулах методом изотопного обмена проводилось главным образом в комплексных соединениях. При этом большая часть исследований относится к комплексным соединениям, которые во внутренней сфере содержат галоиды, цианид, тиоцианат и некоторые другие одновалентные анионы. Меньшее число работ относится к комплексным соединениям, включающим во внутреннюю сферу многовалентные анионы. [c.639]

    Электролитический метод концентрирования Д. состоит в многократном повторении процесса обогащения при электролизе воды. Поскольку ВаО подвергается электролитич. разложению медленнее, чем Н2О (в 5 раз на обычных железных катодах), то Д. концентрируется в электролите, а выделяющийся водород обеднен Д. Из электролита отбирают часть обогащенной воды и направляют на следующую ступень электролиза, где в дальнейшем процессе обогащения концентрация Д. в воде еще больше повышается. Такой каскад обогащения обычно состоит из нескольких (15—20) ступеней. Однако такое использование электролитич. метода для промышленного получения Д. неэкономично, поскольку при этом имеют место большие потери Д., уносимого с водородом высоких и средних ступеней каскада, в к-рых электролизу подвергается вода с повышенным содержанием Д. Поэтому электролитич. метод применяют в сочетании с изотопным обменом между водой и водородом. Избыток д., содержащийся в водороде, извлекается водой путем каталитич. изотопного обмена с водородом. Обедненный Д. водород удаляется из обогатительного каскада и используется для различных химич. целей (гл. обр. для синтеза аммиака), а обогащенная вода направляется на электролиз. Каскад изотопного обмена служит не только для извлечения избытка Д. из водорода, но и для дополнительного концентрирования. Концентрирование Д. в воде при ее изотопном об.мене с водородом основано на термодинамич. изотопном эффекте, т. е. на неравномерном равновесном распределении Д. между водой н водородом. Метод электролиза в сочетании с изотопным обменом применяется на заводах, получающих электролитич. водород количество производимого Д. ограничено мощностью этих заводов, рассчитанной исходя из потребности в электролитич. водороде. Крупный недостаток метода — высокая стоимость Д. [c.526]


    Работы по реакциям электрофильного замещения, рассмотренные в этом обзоре, являются логическим продолжением исследований по изотопному обмену. Они выгодно отличаются от последних оригинальными методами подхода к расшифровке сложных многостадийных процессов (метод графов, метод обоснования структуры интермедиата). Можно надеяться, что широкое использование этих методов сможет способствовать успешному изучению механизмов многостадийных процессов. [c.83]

    Примером использования метода изотопного обмена для определения равноценности атомных групп может служить исследование структуры зеленой [Сг2(504)з 6Н2О] и фиолетовой [Сг2(304)з- 18Н2О] модификаций сульфата хрома [286]. Изучение обмена сульфатных групп в этом комплексе с сульфат-ионами, содержащими изотоп серы-35, показало, что обмен протекает с различной [c.160]

    Таким образом, если препарат устойчив в условиях твердофазных реакций, этот метод позволяет получать меченые соединения с более высокой молярной радиоактивностью, чем при изотопном обмене с растворёнными соединениями, так как проведение реакций с газообразным тритием более эффективно при повышенных температурах, а в отсутствие растворителя изотопное разбавление значительно меньше. С другой стороны, возможность использования твердофазного метода не гарантирует, что это будут условия оптимальные для введения метки именно в данное вещество. Так, при введении метки в рибавирин и тиазофурин применение твердофазного метода предпочтительно, а при введении метки в алпразолам и залеплон к успеху приводит использование метода изотопного обмена с тритиевой водой [61]. Кроме того, недостатками метода твердофазного изотопного обмена, как и других методов изотопного обмена, является следующее. Во-первых, распределение метки не строго фиксировано (это уменьшает ценность данных препаратов для некоторых биологических исследований). Во-вторых, молярные радиоактивности соединений, которые не выдерживают жёстких условий твердофазного метода, недостаточны для проведения ряда экспериментов, например, рецепторных исследований. Так, методом изотопного обмена с тритиевой водой редко удаётся получить препараты с молярной радиоактивностью больше одного ПБк/моль. Эти проблемы позволяют решить химические методы введения тритиевой метки. С их помощью можно [c.528]

    Для работ, выполненных под руководством А. А. Гринберга, характерно использование многообразных физикохимических методов для исследования комплексных соединений. Так, при изучении оксалатных комплексов четырехвалентного урана и уранила был использован метод изотопного обмена. В частности, было установлено, что оксалатные ионы в комплексных анионах [и(С204)4] и [1102(0204)2] практически мгновенно обмениваются со свободными оксалатными ионами в растворе, в то время как обмен между П (IV) и П (VI) в оксалатной среде протекает крайне медленно [14]. [c.35]

    Е. Изотопный обмен. Важным подразделом метода, основанного на изучении химических свойств, является использование стабильных или радиоактивных изотопов. Применимость этих методов ограничивается в основном доступностью подходящих изотопов, счетного обрудования и аппаратуры для количественного определения изотопного замещения. Интересный пример применения этих методов описан в работе по термическому и фотохимическому разложению ацетальдегида. Реакция может быть представлена уравнением [c.100]

    МЕЧЕНЫЕ СОЕДИ11ЁПИЯ, хим. соед., содержащие стабильные или радиоактивные нуклиды и используемые в качестве изотопных индикаторов. Большое число М. с. производят пром. способами, однако их можно получить и лаб. методами из меченого сырья. Для получения М. с., содержащих радиоактивные нуклиды, применяют, помимо обычного хим. синтеза, изотопный обмен, р-ции с участием горячих атомов, биосинтез и нек-рые др. спец. приемы. При выборе метода приготовления следует учитывать, что один метод позволяет получить М.с., содержащее атом-метку в строго определенном положении (напр., хлорбензол, содержащий атом только в положении 1), другие-М. с., в к-ром положение метки не фиксировано (напр., меченная радионуклидом глюкоза, получаемая биосинтезом с использованием в качестве исходного сырья СОз). В нек-рые простые соед., характеризующиеся высокой радиац. устойчивостью, радиоактивную метку можно ввести, облучая в-во потоком нейтронов, протонов или др. частиц. Напр., в СВг радиоактивную метку можно ввести облучением нейтронами Вг( , у) Вг. [c.78]

    Эксплуатация термоядерных эисргетич. установок будущего приведет к дальнейшему росту выбросов Т., т. к. ТЯЭС (термоядерная энергетич. станция) по оценкам будет выделять Т. в 10 -10 раз больше, чем АЭС эквивалентной мощности. Задачи улавливания Т. и очистки сбросов до санитарных норм, вьщеления и концентрирования Т. с целью его локализации (захоронения) или использования м. б. решены при помощи методов разделения изотопов водорода ректификацией воды под вакуумом, хим. изотопным обменом (очистка и начальное концентрирование), низкотемпературной ректификацией жидкого водорода, сорбционным разделением на твердых сорбентах. [c.7]

    Метод с LIAPH4 имеет некоторые преимущества по сравнению с методами изотопного обмена, применяемыми в определениях активного водорода как в низкомолекулярных соединениях, так и в малых количествах соединений. Он применим к анализу как растворимых твердых веществ, так и жидкостей, если последние не слишком сильно улетучиваются за время, требуемое для их разложения под действием реагента. Кроме того, использование при анализе этим методом замкнутой системы для проведения реакции и измерения радиоактивности создает благоприятные условия для обнаружения следовых количеств активного водорода. В то же время чувствительность обменных методов уменьшается из-за неполного удаления меченого спирта и, быть может, в еще большей степени, за счет дополнительного обмена трития обработанного образца с атмосферной влагой. Основной недостаток метода с алюмогидридом лития заключается в том, что он не является абсолютным, и это сильно ограничивает возможность его применения в анализе полимерных материалов. При этом в качестве стандартов можно использовать полимеры, проанализированные другими методами, но и тогда часто получаются лишь полуколичественные или относительные результаты. Менее существенным недостатком метода является наличие помех от нитросоединений. [c.254]

    В первом случае основным требованием является равномерное распределение радиоактивного изотопа между всеми атомами определяемого элемента. Это достигается переведением всех форм определяемого элемента и индикатора в одну или использованием для разбавления радиоактивного изотопа в той форме, в которой он способен к быстрому изотопному обмену со всеми формами определяемого элемента. Невыполнение этих условий при рещёнии задач такого рода делает невозможным получение правильных результатов при анализе по методу изотопного разбавления. [c.110]

    Для водорода, кислорода, галогенов и серы весьма перспективно дальнейшее развитие введения метящих атомов каталитически регулируемым изотопным обменом. Для углерода, азота было бы весьма желательно изыскание каталитических методов введения этих атомов в готовую молекулу изотопным обменом — в соотЕетствующие группы и радикалы (СОг СПд КНа и т. д.) для этого в ряде специальных методов синтеза имеются достаточные возможности. Перспективно более широкое использование каталитического изотопного обмена при изомеризации. Можно ожидать распространения в этой области радиационно-химических и электрохимических методов. [c.421]

    Промышленное производство тяжелой воды в значительных количествах впервые было организовано в Норвегии на заводе электролиза воды фирмы Норск-Гидро (в Рьюкане) незадолго перед второй мировой войной. В связи с развитием работ по использованию атомной энергии производство тяжелой воды было организовано в ряде стран. На стадии начального концентрирования использовалась ректификация воды и сочетание электролиза с каталитическим и фазовым изотопным обменом на стадии конечного концентрирования применялся электролитический метод Затем в ряде стран были разработаны и внедрены другие более экономичные методы Однако, несмотря на применение таких методов производства тяжелой воды, как низкотемпературная ректификация водорода и двухтемпературный обмен между НгЗ и Н2О, электрохимические методы концентрирования сохраняют практическую целесообразность в тех случаях, когда, исходя из местных экономических условий, выгодно получение больших количеств водорода электролизом воды. При этом тяжелая вода может являться побочным продуктом [c.238]

    Алимарин и сотр. [59—61] разработали метод субстехиометри-ческого извлечения различных металлов с использованием колонки, заполненной хлороформным раствором диэтилдитиокарбамината цинка 2п(ДДК)2, который нанесен на пористый фторопласт ПФ-4. Метод применен для радиоактивациоиного определения следовых количеств цинка, меди, кадмия, серебра, ртути, марганца и железа в различных материалах — молибдене, иттрии, цирконии. При использовании образцов весом 0,1—1 г, облученных потоком нейтронов 1,2-10 н-см -с , чувствительность определения составляет 10 —10 %. ЫаДДК оказался наиболее удобным реагентом для такого метода (кроме него были изучены дитизон, купферон и 8-меркаптохинолин). Для разработки метода определения цинка изучен гетерогенный изотопный обмен между раствором 2п(ДДК)2 в хлороформе и водным раствором радиоактивного изотопа цинка (pH 6—7) выбраны условия такого изотопного обмена. [c.410]

    Изотопный обмен был использован В. И. Спицыным для выяснения строения такого сложного класса соединений, как гетерополикислоты. Продемонстрирована равноценность атомов вольфрама в солях состава NaaWjO и NaaW40i3, что согласуется с данными других методов исследования. [c.205]

    Природная изотопная смесь бора служит источником получения изотопов в концентрированном виде. Последнее достигается разделением этой смеси с использованием таких промышленно-развитых методов как криогенная ректификация трифторида бора (ВРз) [2-14], химобменная ректификация комплексного соединения ВРз с диметиловым или диэтиловым эфиром [2, 15-23], а также химический изотопный обмен в двухфазной системе, образуемой ВРз в газе и его термически нестойким комплексом с анизолом в жидкости [2, 13, 14, 21-31]. Все перечисленные процессы реализуются [c.192]

    Методы введения тритиевой метки можно разделить на две основные группы различные варианты изотопного обмена и химические методы. В свою очередь, методы изотопного обмена подразделяются на реакции с газообразным тритием и реакции с тритиевой водой, а химические методы — на методы введения метки гидрированием или дегалоидированием газообразным тритием методы восстановления тритийсодержащими реагентами соответствующих предшественников методы с использованием конденсации сложных немеченых фрагментов с мечеными реагентами на последних стадиях синтеза или с использованием меченых предшественников в многостадийном синтезе. Кроме того, возможно превращение одних меченых соединений (полученных химическими методами или изотопным обменом) в другие ферментативными и химическими методами. Формулы ряда препаратов, в которые вводили метку перечисленными выше методами, приведены на соответствующих рисунках. [c.485]

    Такой подход связан с невозможностью введения метки в конечный продукт из-за крайней неустойчивости его в условиях получения высокомеченых соединений. Таким образом, изотопный обмен более предпочтителен, когда соединение устойчиво в условиях обработки его газообразным тритием или тритиевой водой в присутствии катализаторов (при этом не нужны дорогостоящие предшественники). При необходимости получения лабильных высокомеченых соединений, содержащих метку в определённых положениях, достичь поставленной цели невозможно без использования химических методов введения метки. [c.525]

    Дейтерий. Для получения тяжелой воды можно применять электролиз, электролиз с изотопным обменом, двухтемпературный обмен, дистилляцию воды и водорода. Метод электролиза был предложен Уошбэрном и Юри [33] и применен Льюисом [22] для приготовления первых порций ОоО. В Норвегии для получения тяжелой воды был использован завод Норск-Гидро (рис. 9. 3) этот завод, работающий на дешево й гидроэлектроэнергии, производит электролитический водород для синтеза аммиака и в качестве побочного продукта — тяжелую воду. [c.368]

    Исследование изомеризации октена-1 [76] в уксусной кислоте при использовании в качестве катализатора хлорида палладия показало, что изомеризация н-С5НпСОгСН = СН2 дает меньше дейтерия в концевых метильных группах образующихся октенов, чем можно было бы объяснить с помощью 1,3-переноса по я-аллиль-ному механизму. Никаких дейтерированных октенов не было обнаружено в ИК-спектре продуктов изомеризации октена-1 в СНзСООО. Эти результаты были объяснены, исходя из внутримолекулярного 1,2-переноса водорода, по которому при изомеризации н-С5НпС02СН = СНг О переходит от Сз к Сг, а Н переходит от Сг к С]. Альтернативное объяснение, представленное в работе [77], основано на механизме присоединения — элиминирования гидрида палладия в сочетании со значительным изотопным эффектом при разрыве связей углерод—водород и предпочтительным анти-марковниковском присоединением гидрида. Высокое отношение выхода продуктов изомеризации к выходу продуктов дейтерирования, наблюдаемое при изомеризации октена-1 в СНзСООО, можно легко понять, если принять, что гидридный комплекс палладия, образующийся в первом периоде изомеризации олефина, изомеризует октен-1 быстрее по сравнению с изотопным обменом с растворителем. Небольшое количество дейтерия в образующихся олефинах обычно нельзя определить методом ИК-спектроскопии. [c.282]

    В кЕяестве варианта метода И. и. для выяснения механизма нек-рых реакций и строения химич. соединений может быть использован изотопный обмен. Снособность к изотопному обмену определяется строением молекул и природой заместителей, реакцией среды, наличием сольватации и ассоциации, окислительно-восстановительных процессов, катализаторов и т, д. Но зависимости константы скорости изотопного обмена от темп-ры определяют энергию активации реакции обмена, что позволяет судить о характере химич. связи, ее реакционной способности и о подвижности атомов и групп. [c.93]

    Химический обмен — метод И. р., основанный на неравномерном распределении изотопа в системе двух веществ при равновесии изотопного обмена. Коэфф. разделения определяется соответствующими константами равновесия. Так же, как ректификация, метод химич. обмена применим к легким изотопам, однако мол. вес соединений не имеет значения для величииы а. Процесс чаще всего проводят в колоннах. Поскольку обмен происходит между различными химич. соединениями, то прямой поток в колонне представлен одним веществом, а возвратный — другим поэтому на конце колонны необходим реактор для обращения потоков, т. е. для химич. превращения одного вещества в другое. В лабораторной практике метод широко применяется для разделения многих легких изотопов. Используется иногда каталитич, изотопный обмен и изотопный ионный обмен. В пром-сти химич. обмен применяется при концентрировании дейтерия ири этом для ликвидации дорогостоящей стадии обращения потоков использован т. н. двухтемпературный вариант изотопного обмена между водой и сероводородом, в к-ром стадия химич. превращения воды в сероводород заменена изотопным обменом между этими же веществами, но при более высокой темп-ре. В произ-ве тяжелой воды применяют также химич. обмен между водой и водородом в сочетании с электролизом, к-рый представляет собой в этом случае стадию обращения потоков (см. Дейтерий). [c.100]


Смотреть страницы где упоминается термин Использование метода изотопного обмена: [c.286]    [c.286]    [c.463]    [c.212]    [c.526]    [c.135]    [c.488]    [c.139]    [c.236]    [c.30]    [c.100]    [c.96]    [c.167]   
Смотреть главы в:

Радиоактивные индикаторы в химии основы метода Издание 2 -> Использование метода изотопного обмена




ПОИСК





Смотрите так же термины и статьи:

Изотопный обмен

Обмен изотопный Изотопного обмена



© 2024 chem21.info Реклама на сайте