Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроды в органических растворителях

    Сущность метода по ГОСТ 10097-94 заключается в растворении навески нефти в органическом растворителе, состоящем из 30 мл изобутилового спирта и 70 мл бензола и подкисленном азотной кислотой, и потенциометрическом титровании полученного раствора азотнокислый серебром. В точке эквивалентности наблюдается скачок потенциала серебряного электрода. По расходу титрованного раствора устанавливают содержание хлористых солей. [c.75]


    Инверсионную вольтамперометрию можно использовать также, зля определения неорганических токсикантов в крови. Однако следует учитывать, что белковые компоненты крови являются поверхностно-активными веществами, адсорбция которых на электроде может сделать невозможным проведение анализа. Для преодоления данного препятствия применяют специальные электроды импрегнированный фафитовый и в виде тонкой пленки графита [72] Указанные электроды, особенно пленочный графитовый, позволяют определять свинец и кадмий в крови даже без специальной подготовки пробы В случае других природных матриц для определения общего содержания токсичных металлов желательно применение комбинированных методов, основанных на сочетании вольтамперометрии с методами выделения и концентрирования определяемых компонентов Этим вопросам в литературе уделяется заметное внимание 110,73,74]. Особый интерес вызьшает применение легкоплавких экстрагентов с последующим растворением экстракта в подходящем органическом растворителе [74]. Так, расплавленный нафталин эффективно извлекает из водных растворов тяжелые металлы в виде комплексов с гфо-изводными 8-меркаптохинолина При этом нижняя фаница определяемых концентраций для свинца и кадмия составляет Ю" мг/л [c.285]

    Жидкие мембранные электроды представляют собой раствор электродноактивного вещества в органическом растворителе, несмешивающемся с водой. К группе жидких мембранных электродов можно отнести также пленочные, или матричные. Они создаются на основе тех же жидких электродноактивных веществ, внедренных в полимерную матрицу. [c.39]

    Жидкие мембранные электроды представляют собой раствор электродноактивного вещества (хелат, ионообменник, биологически активное вещество) в органическом растворителе, не смешивающемся с водой. Органическая и водная фазы отделены друг от друга полупроницаемой инертной мембраной. [c.105]

    Применение щелочных металлов в качестве отрицательных электродов источников тока всегда представлялось заманчивым из-за высокого отрицательного потенциала и больших токов обмена. Однако в водных растворах использование щелочных металлов связано с чрезвычайно большими трудностями. В современных вариантах источников тока со щелочными металлами применяют расплавы солей, органические растворители (апротонные растворители) или твердые электролиты. Наиболее перспективны последние две группы источников тока. В качестве примера можно привести натрий-серный аккумулятор. Электролитом в этом аккумуляторе служит мембрана из Р-алюмината натрия  [c.221]


    Некоторые важные, находящиеся в стадии активной разработки направления электрохимии органических соединений были лишь кратко освещены или только упомянуты в данной книге. К ним относится, например, использование нестабильных промежуточных продуктов в электросинтезе. Вступая в химические реакции с веществами, добавляемыми в раствор, эти продукты могут приводить к образованию новых ценных веществ, получить которые другими методами либо чрезвычайно трудно, либо вообще невозможно. Принципиально новые возможности открывает электросинтез органических соединений с использованием электрохимически генерируемых сольватированных электронов. Одним из эффективных способов интенсификации процессов окисления и восстановления органических соединений является применение катализаторов-переносчиков, которые позволяют окислять или восстанавливать органические соединения, не обладающие электрохимической активностью либо реагирующие на электроде с образованием нежелательных продуктов. Сравнительно мало внимания в книге было уделено электродным процессам в неводных средах, число которых увеличивается вместе с расширением ассортимента органических растворителей, применяемых в качестве среды при проведении электрохимических реакций. [c.304]

    Необходимо соблюдать все условия, способствующие хорошему прилипанию осадка. Однако при электролизе водных растворов выделение газов на электродах сильно мешает этому. В связи с указанным в настоящее время изучают электролиз с применением органических растворителей (спирта, ацетона, их смесей и др.). [c.347]

    В основе ИСЭ жидкостного типа лежат мембраны, электродноактивное вещество которых растворено в органическом растворителе, не смешивающемся с водой (рис. IX. 10,а). Можно пользоваться конструкцией без каких-либо перегородок в контакте жидкой мембраны с водным раствором (рис. IX. 10,б). В данной конструкции водная фаза наслаивается на органическую. Для практики такая конструкция непригодна и может быть использована для научных целей из-за большого слоя органического раствора электрод имеет высокое сопротивление, а потенциал его устанавливается медленно. [c.536]

    Осложнения при работе с жидкостными электродами с диафрагмами из различных пористых материалов обусловлены главным образом постепенным растворением органического ионообменника во внешнем растворе. Кроме того, не просто достичь полного заполнения пор диафрагмы органическим раствором. Эти трудности удалось преодолеть, когда были разработаны так называемые пленочные электроды, в которых мембрана представляет собой полимерную пластифицированную пленку с введенным в нее раствором жидкого ионита или хелата в органическом растворителе, несмешивающемся с водой. Этот растворитель одновременно служит и пластификатором. [c.537]

    Определение влажности. Для определения влажности самых различных объектов (органические растворители, газы, твердые соли, текстильные материалы, бумага, зерно, почвы и т. д.) применяют прямую кондуктометрию. Принцип измерения основан на проводимости исследуемых объектов. За последние годы в практике сельского хозяйства подобные приборы получили широкое применение для определения влажности зерна. Некоторый объем зерна помещается в измерительную ячейку между электродами и измеряется сопротивление этой пробы. Чем большей влажностью характеризуется зерно, тем меньшим сопротивлением оно обладает. Обычно приборы градуируются в процентах (мае.) влажности для каждого вида зерна. Кондуктометрический метод определения влажности зерна отличается быстротой и достаточно высокой точностью. [c.234]

    В заключение следует заметить, что вычисление стандартных потенциалов электродов в неводных растворах по отношению к нормальному водородному электроду в водном растворе связано с трудностями, объясняемыми прежде всего тем, что многие органические растворители вообще не содержат ионов водорода. [c.173]

    Рабочий образец с поверхностью 1 см из исследуемого металла или сплава зачищают тонкой наждачной бумагой, тщательно протирают фильтровальной -бумагой или ватой, смоченной органическим растворителем, и промывают дистиллированной водой. Подготовленный образец устанавливают в трехэлектродную ячейку вплотную к электроду сравнения и заполняют ячейку электролитом. [c.85]

    Для получения адиподинитрила используют электролизер фильтр-прессного типа с интенсивной циркуляцией раствора злектролита (рис. 2.63) и биполярным включением электродов. Основным элементом такого электролизера является электродная плита 1, изготовленная из пластмассы, устойчивой к действию органических растворителей (полипропилен, фторопласт). С боковых сторон плиты в пазах устанавливают электроды 2 и 3, электрически соединенные между собой металлическими шпильками 4. В теле электродной плиты имеются каналы 5 для ввода и вывода раствора как в анодную, так и в катодную камеры. Каналы имеют отверстия 6, по которым раствор равномерно распределяется по камере. Каждая электродная плита зажата между двумя мембранными рамами 7, также изготовленными из пластмассы. В середине мембранной рамы запрессована мембрана 8. С торцов электролизера устанавливают концевые плиты 9, имеющие по одному электроду. [c.213]


    При другом способе сопоставления потенциалов в органических растворителях и в воде за основу берется среднее значение между обратимыми потенциалами окисления и восстановления ароматических углеводородов [173], Несмотря на важность этих вопросов для определенных аспектов электрохимии, они представляют мало интереса в случае практического электролиза, так как межфазный потенциал между электродом сравнения и исследуемым раствором должен быть постоянным и воспроизводимым в требуемых пределах. Еслн предполагают, что межфазный потенциал влияет иа точность измерений, то для исключения его влияния применяют метод пилотных ионов [ре-докс-потенциалы ЕЬ+, Сб+ и др. (см. выше) используют как внутренний Стандарт]. [c.192]

    Такой электрод обратим во многих растворителях [177], Основное преимущество этого и аналогичных электродов заключается в возможности их использования в системе, содержащей один растворитель. Ионы серебра реагируют с некоторыми органическими растворителями, например с диметилформамидом в таких случаях следует применять другие металлические электроды. [c.194]

    В электрохимическом анализе под смешанными растворителями понимают растворы органических растворителей в воде. Иногда такие растворители называют водно-органическими. При составлении смешанного растворителя следует руководствоваться правилом свойства органического растворителя по возможности должны быть близки к свойствам воды. Используют следующие растворители метанол, этанол, пропанол, диоксан, этиленгликоль и др. Однако применение смешанных растворителей сопряжено с рядом неудобств. Прежде всего встает вопрос, какой электрод сравнения можно использовать для измерений, поскольку присутствие органического растворителя приводит к появлению потенциала жидкостного соединения. Это означает, что возникает дополнительная разность потенциалов между индикаторным электродом и электродом сравнения по сравнению с разностью потенциалов, измеренной в водной среде. Далее, шкала pH для буферных систем в смешанных растворителях не совпадает со шкалой pH, относящейся к чисто водным растворам. Для каждого растворителя необходима своя калибровка стеклянного электрода. [c.99]

    Стеклянные электроды можно использовать для измерений в неводных и смешанных растворителях. В смешанных растворителях (смеси воды с ацетоном, этанолом, этиленгликолем, формами-дом и др.) стеклянные электроды обычно сохраняют свою функцию по отношению к определяемым ионам, хотя при этом и наблюдается изменение коэффициентов селективности. При высоких концентрациях органического растворителя обнаруживаются некоторые сокращения линейных участков кривых Е - pH. Так, в 50% и 70%-ном этаноле отклонения наступают при pH 7 и 8 соответственно. В метаноле потенциал стеклянных электродов стабилен. Потенциал стеклянного электрода удовлетворительно следует водородной функции в пероксиде водорода, в муравьиной и уксусной кислотах, в ацетоне, ацетонитриле, хинолине и пиридине, а также в диметилформамиде. [c.190]

    Из неводных растворителей чаще всего применяют ледяную уксусную кислоту, ацетонитрил, ДМФА и ДМСО, реже - метилен-хлорид, пропиленкарбонат, ацетон, сульфолан, хотя в вольтамперометрии они используются достаточно широко. Применение органических растворителей с высокой диэлектрической проницаемостью обеспечивает получение широкого диапазона рабочих потенциалов как в катодной, так и в анодной области, что позволяет генерировать титранты без заметных омических потерь на элементах цепи. Их получают при электроокислении или восстановлении солей металлов, анодном растворении металлических электродов, а также в ходе электродных реакций с участием органических соединений, например галогенсодержащих. В водных растворах, как правило, протекают побочные реакции, которые приводят к уменьшению эффективности тока генерации. [c.531]

    Кулонометрические титранты на основе ионов металлов чаще всего получают из соответствующих солей на инертных электродах. Оптимальные условия генерации находят по вольт-амперным кривым, исходя из значений выходов по току. При этом в неводных средах можно получить титранты в необычном состоянии окисления. Так, в обычных условиях генерация Ti(III) из Ti(IV) в смеси кислот даже на электродах с высоким перенапряжением водорода сопровождается выделением последнего, тогда как в ДМФА или ацетонитриле в присутствии НС1 100%-ный выход по току Ti(III) возможен на платиновом или графитовом электроде. Генерацию Sn(II) из солей Sn(rV) проводят на катодах из золота, платины, стеклоуглерода и графита в растворах уксусной кислоты. В органических растворителях выход по току Sn(II) низкий. [c.532]

    В общем случае ионизация металлов в тех или иных степенях окисления зависит от природы растворителя, фонового электролита, его концентрации, плотности тока и способа активирования металлического электрода. Примеси воды обычно не оказывают заметного влияния на реакции анодного растворения металлов в органических растворителях. Однако они могут оказывать как акти- [c.532]

    Электрокинетические явления, происходящие в неводных дисперсных системах, в частности влияние постоянного однородного электрического поля на суспензии твердых углеводородов нефти в органических растворителях, описано в работах [104, 114]. В качестве дисперсионной среды были взяты органические растворители разной природы, многие из которых широко применяются в процессах производства масел, парафинов и церезинов (н-гексан, н-гептан, изооктан, бензол, толуол, метилэтилкетон, ацетон и др.). Поведение суспензий в электрическом поле исследовали при 20 °С в стеклянной ячейке с плоскими параллельными никелевыми электродами в интервале напряженностей до 12,5 кВ/см. Установлено, что в алифатических растворителях происходит перемещение частиц дисперсной фазы (твердых углеводородов) в сторону катода, в то время как в ароматических растворителях эти же частицы перемещаются к аноду. Для твердых углеводородов, очищенных от ароматических компонентов и смол, в дисперсных системах с той же дисперсионной средой наблюдается явление двойного электрофореза, т. е. частицы дисперсной фазы перемещаются в сторону как положительного, так и отрицательного электрода. В суспензиях твердых углеводородов, где дисперсионной средой являются полярные растворители (МЭК, ацетон), явление электрофореза выражено слабо. Для таких систем характерна можэлектродная циркуляция, сопровождаемая агрегацией частиц. Эти электрокинетические явления в суспензиях твердых углеводородов объясняются существованием двойного электрического слоя на границе раздела фаз. Двойной электрофорез и меж-электродная циркуляция объясняются [115] поляризацией частиц твердой фазы и свойственны частицам, не имеющим заряда или находящимся в изоэлектрическом состоянии с мозаичным распределением участков с различным знаком заряда. Таким образом, у частиц дисперсной фазы как в полярной, так и в неполярной среде, отсутствует электрический заряд, а если он и есть, то весьма неустойчив. [c.187]

    К способам опреснения без изменения агрегатного состояния воды [2] относятся химические (ионный обмен и осаждение растворенных соединений) электродиали ) электролиз растворенных солей с использованием поглощающих электродов экстракция органическими растворителями биологический ионно-осмотический паро-осмотический обратный осмос. [c.5]

    Система Au l - тетрафениларсоний - органический растворитель может быть применена для изготовления Au-селективного электрода. [c.56]

    Изучение биологических мембран привело к разработке электродов на основе так называемых "нейтральных переносчиков" -макроциклических полиэфиров - антибиотиков (моноактин, грамицидин, валиномицин). Молекулы циклических полиэфиров содержат кольца иа атомов кислорода, энергетически способные вьшолнять роль сольватной оболочки вокруг катиона. Таким образом, происходит внедрение катиона в органическую фа у. При этом образуются подвижные заряженные комплексы, обеспечивающие катионную проводимость таких сред. Среди них наиболее известен К -селективный электрод с жидкой мембраной - раствором ва-линомицина в органическом растворителе. Коэффициенты селек-tивнo ти составляют = Ю- , = 1  [c.57]

    Однако следует отметить, что с изменением среды (pa TBopHj-теля), в которой находится электрод, изменяется и стандартный электродный потенциал. Поэтому сведения, приведенные в 12, табл. 79], непригодны для сравнения химических свойств веществ в неводных средах (органических растворителях, расплавах), [c.237]

    Говоря об оптических методах изучения адсорбции на электродах органических веществ, следует упомянуть также метод фотоэлектронной эмиссии. В этом методе электрод освещают монохроматическим светом с длиной волны X, которая должна быть меньше некоторого порогового значения Ао (красная граница фотоэффекта). При < о электроны выбиваются из металла в раствор, теряют там часть своей энергии (термализуются), соль-ватируются молекулами растворителя и, наконец, захватываются специально добавленными в раствор акцепторами электронов (молекулы N2O, ионы Н3О+, NO3- и др.). Если толщина двойного электрического слоя d<, то между регистрируемым током фото-эмиссии /ф в степени 0,4 и потенциалом Е наблюдается линейная зависимость (закон пяти вторых 5/2= 1/0,4). Адсорбция органических молекул приводит, как правило, к раздвнженню обкладок двойного слоя, т. е. к увеличению d. Если при этом будет нарушено условие d< k, то произойдет искажение зависимости [c.35]

    В силу описанных осложнений, не учитываемых теорией и усугубляемых высокими абсолютными значениями токов заряжения, резко возрастающими с увеличением скорости изменения потенциала электрода, имеющиеся в литературе оценки возможностей нестационарных методов с точки зрения количественного исследования кинетики электродных процессов с участием органических соединений оказываются существенно завышенными. Разумеется, это справедливо и в отношении тех вариантов методов, которые позволяют изучать поведение промежуточных продуктов электродных реакций. Поэтому к результатам, получаемым с помощью коммутаторной и циклической вольтамперметрии, хронопотенциометрии с реверсом тока, необходимо подходить достаточно осторожно, используя их главным образом для качественной трактовки механизма процесса. Вероятно, более оптимистично следует отнестись к проведению подобных исследований в органических растворителях, где адсорбционные процессы могут играть незначительную роль, что, однако, в каждом конкретном случае требует специальной проверки. [c.207]

    Применение щелочных металлов в качестве отрицательных электродов источников тока всегда представлялось заманчивым из-за высокого отрицательного потенциала и больших токов обмена. Однако в водных растворах использование щелочных металлов связано с чрезвычайно большими трудностями. В современных вариантах источников тока со щелочными металлами применяют расплавы солей, органические растворители (апротонные растворители) или твердые электролиты. Наиболее перспективны две последние группы источников тока. В химических источниках тока с апротонными растворителями в качестве анода используют литий, что позволяет достигать значительных ЭДС (до 3—4 В) и высоких значений удельной энергии. В качестве материала катода применяют галогениды, сульфиды, оксиды и другие соединения. Особый интерес представляют катоды ща основе фторированного углерода. Это вещество нестехиометрического состава с общей формулой ( F r)n получают при взаимодействии углерода с фтором при 400—450 °С. При работе такого катода образуются углерод и ион фтора. Разработаны литиевые источники тока с жидкими окислителями (системы SO b — Li и SO2 — Li). Предпринимаются попытки создания аккумуляторов с использованием литиевого электрода в электролитах на основе апротонных растворителей. Литиевые источники тока предназначаются в основном для питания радиоэлектронной аппаратуры, кардиостимуляторов, электрических часов и т. д. [c.266]

    Мембраноактивная частица — крупный анион например, алкилфосфорной кислоты КОРОгН, тетра-/г-хлорфенилборатный анион в органическом растворителе, несмешивающемся с водой эти электроды обладают катионными функциями Са +, Ва2+). [c.529]

    Степень заполнения поверхности 0, таким образом, зависит от строения и свойств адсорбирующихся частиц. При увеличении длины углеводородной цепи молекулы значение аттракционного фактора возрастает. При введении в водный раствор органических растворителей у уменьшается. При увеличении катодного потенциала электрода значение у возрастает, иногда же, как при адсорбции алифатических спиртов и аминов из водного раствора Ыа2304, величина у, наоборот, падает с ростом катодного потенциала. Б. Б. Дамаскин показал, что у изменяется приблизительно линейно с потенциалом электрода. [c.372]

    Жидкие мембраны готовят из жидких или твердых ионитов или их растворов в подходящих органических растворителях, не смешивающихся с водой. Так, ионы кальция можно определять посредством электрода на основе кальциевой соли эфира фосфорной кислоты Активными группами электродов, имеющих нитратную или перхлоратную функцию, т. е. чувствительных по отношению к ионам NO3 или IO4, являются нитраты фенантролинатов никеля Ni(РЬеп)з(ЫОз)2 или перхлораты фенантролинатов железа Fe(Phenb( 104)a и т. д. [c.468]

    Жидкие мембранные электроды — растворы ионных ассоциатов в органических растворителях. В качестве растворителей используют обычно различные эфиры, например октиловый или дециловый эфиры фосфорной кислоты, дибутилфосфат и др. Потенциал-образующими ионами являются катионы или анионы ионных ассоциатов, т. е. электрод с катионоанионным ассоциатом чувствителен и к катионам, и к анионам, входящим в состав ассоциата. Для уменьшения растворимости ассоциата в водной фазе, т. е. для удержания его в основном в фазе органического растворителя, обычно применяют ассоциаты потен-циалобразующих ионов с противоионами большой молекулярной массы, что обеспечивает достаточно [c.476]

    Хлористый сульфурил ЗОгСЬ, оксихлорид фосфора Р0С1з, а также растворы двуокиси серы ЗОг в органических растворителях, входящих в состав неводных электролитов, восстанавливаются на углеродном электроде аналогично хлористому тионилу. [c.17]

    Аналогичным образом среда оказывает очень сильное влияние на явления в двойном слое Следует отметить три основных момента Емкость двойного слоя не связана простым соотношением с диэлектрической посгоянной в объеме раствора. Это объясняется особенностями строения растворителя (ориентацией его молекул) вблизи электрода [97]. Кроме того, адсорбция, которая затрудняет интерпретацию результатов электрохимических измерений (см. гл. 3), реже встречаются в органических растворителях, чем в воде, поскольку энергия, необходимая для замещения молекулы растворителя молекулой растворенного всш,ества (энергия замещения), обычвю выше в случае органических растворителей, нежели в случае воды [98]. Наконец, нужно помнить о влиянии ионов электролита фона иа строение двойного слоя (см. разд. 2.4.3). Это указывает на необходимость учета влияния не только растворителя, но и срсды в целом. [c.84]

    Электроды с жидкими и пленочными мембранами. Эти электроды создаются на базе раствора ионоактивного вещества в органическом растворителе, пе смешивающегося с водой. Органическую фазу отделяют от водного раствора пористой инертной мембраной. При наличии пленочной мембраны пропитьшают раствором иопоактивпого вещества стеклянный фильтр или пористую пластинку из синтетического полимера (тефлона, ноливипилхлорида и т.д.), которая закреплена на конце трубки. [c.96]

    Угольный настовый электрод изготавливается из графита (порошка) спектральной чистоты и органических растворителей, не смешивающихся с водой (бромнафталин, вазелиновое масло и др.). Приготовленную насту в тестообразном состоянии занрессовьшают в стеклянную трубку либо в отверстие тефлонового стержня. [c.148]

    В неполярных органических растворителях можно использовать четвертичные аммониевые соли хлориды, бромиды, иодиды, перхлораты и тетрафторбораты тетраэтил-, тетрабутил- и тетрагек-силаммония. Эти соли легко доступны и выпускаются промышленностью, их получение не представляет трудностей. Однако ионы тетраалкиламмония адсорбируются на электродах, что может привести к нежелательным явлениям. [c.98]

    В рассматриваемых электродах слой жидкого ионообменника, состоящего из не смешивающегося с водой органического растворителя и растворенного в нем ионита, удерживается между анализируемым раствором и водным раствором постоянного состава, в который погружен внутренний электрод, с помощью пористого гидрофобного пластмассового диска. Последний препятствует вытеканию органической жидкости из резервуара, расположенного между двумя концентрическими трубками (рис. 6.5, с. 192). Внутреннюю трубку заполняют стандартным раствором определяемого иона и насыщают Ag l, чтобы при погружении в него серебряной проволоки образовался Ag/Ag l-электрод. Данный электрод обладает всеми преимуществами электродов с тонкими мембранами, и в то же время способен выдерживать давление более одной атмосферы без разрушения мембраны или вытеснения из нее органической жидкости. [c.202]

    Образовавшиеся на электроде частицы имеют различную окислительную или восстановительную способность. Это позволяет определять широкий круг соединений. Проблема состоит лишь в том, чтобы выбрать такие условия, при которых побочные реакции будут сведены к нулю. Для этого электрогенерацию титрантов проводят в смешанных или индивидуальных органических растворителях, обеспечивающих стехиометрию реакций. В общем случае выбор растворителя для кулонометрического титрования определяется следующими факторами  [c.530]


Смотреть страницы где упоминается термин Электроды в органических растворителях: [c.60]    [c.40]    [c.116]    [c.196]    [c.124]    [c.119]    [c.364]    [c.455]    [c.71]    [c.128]    [c.283]    [c.333]   
Смотреть главы в:

Электрохимия Том 9 -> Электроды в органических растворителях




ПОИСК





Смотрите так же термины и статьи:

Растворители органические



© 2025 chem21.info Реклама на сайте