Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод валентных связей описание

    Метод молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи как метода валентных связей, так и теории кристаллического поля. Так, из рис. 78 следует, что шести а -орбиталям окта- [c.125]

    Описание комплексных соединений по методу валентных связей [c.115]

    Метод валентных связей дает теоретическое обоснование широко применяемым химиками структурным формулам. Большое достоинство метода заключается в его наглядности. Однако представление о локализованных (двухцентровых, двухэлектронных) химических связях оказывается слишком узким для объяснения многих экспериментальных фактов. В частности, метод валентных связей несостоятелен для описания молекул с нечетным числом электронов, большой группы молекул с дефицитом электронов, свойств соединений, синтезированных в последнее время. Большие трудности испытывает этот метод при объяснении магнитных свойств соединений, их окраски, энергетических характеристик молекул и многих других важных экспериментальных фактов. [c.83]


    Классический вариант метода валентных связей, описанный выше, мало используется химиками-неорганиками для интерпретации данных экспериментальных исследований комплексных соединений. Предсказание геометрической формы простых соединений по методу валентных связей, как правило, хорошо подтверждается практикой. Для комплексных соединений такое предсказание основано на результатах предварительного определения магнитных свойств. Предпринимались попытки улучшить метод валентных связей наибольшее распространение при объяснении связей в комплексных соединениях получила теория поля лигандов, простейший вариант которой (теория кристаллического поля) изложен ниже. [c.252]

    Так как валентный штрих в методе локализованных пар сопоставляется с локализованной парой электронов, то приведенным двум формулам Кекуле соответствуют по меньшей мере два разных распределения электронной плотности. Но для молекулы в стационарном состоянии существует одно-единственное распределение. Поэтому в методе валентных связей реальное распределение электронной плотности молекулы бензола надо представить как наложение по меньшей мере двух распределений локализованных пар, а для более точной картины—пяти распределений. Это значительно усложняет метод, не облегчая восприятия реальности. Для более сложных молекул число используемых при их описании валентных схем стремительно возрастает. Метод полностью утрачивает преимущества наглядности, а в расчете молекулярных свойств становится менее удобным, чем метод молекулярных орбиталей. [c.58]

    Для описания химической связи наиболее широко используются два подхода метод молекулярных орбиталей (МО) и метод валентных связей (ВС). В развитии метода ВС особая заслуга принадлежит В. Гейтлеру и Ф. Лондону, Д. Слетеру и Л. Полингу, в развитии метода МО — Р. Малликену и Ф. Хунду. [c.44]

    Надо совершенно ясно представлять себе, что приближенный метод, с которым мы здесь познакомились, является лишь одним из многих возможных. Другой подобный метод описан в следующем разделе. Однако рассмотренный метод и полученные результаты полезны, поскольку соответствуют привычной картине так называемой атомной или ковалентной связи (метод валентных связей). Для наглядности такие связи изображаются с помощью пары точек (пара электронов) (Н Н) или черточки (Н—Н). Понятие валентности и явление насыщения химической связи хорошо объясняются с помощью метода валентных связей (разд. 6.3). [c.87]


    Не следует таким же образом объяснять образование молекулы кислорода О2. Ее строение трудно поддается описанию методом валентных связей, которым мы пользуемся. Метод же молекулярных орбиталей, который в данном случае более применим, изучается только в высшей школе. [c.63]

    В свете энергетики и периодического закона в пособии излагаются основы учения о строении атома (планетарная и волновая модели), методы валентных связей и молекулярных орбиталей, явления гибридизации, линейного и пространственного Сопряжения связей, расщепления энергетических уровней -орбиталей центрального атома приводится описание невалентных сил взаимодействия. [c.240]

    Ниже не будет обсуждаться применение метода валентных связей для предсказания и описания структур молекул, так как это уже было сделано в гл. 5 для простых соединений непереходных элементов и будет сделано в гл. 7 для комплексных соединений переходных элементов. Однако будет показано, что конфигурации молекул могут быть объяснены с помощью более простых теорий, чем метод валентных связей. Кроме того, будет отмечено, что для метода валентных связей концепции о гибридизации, резонансе п обмене являются просто удобными математическими описаниями, но они не дают объяснений истинным причинам явлений, которые [c.198]

    Наиболее широко используют метод валентных связей (ВС), метод молекулярных орбиталей (МО) и теорию кристаллического поля, которая нашла наибольшее применение для описания комплексных соединений (см. гл. X). [c.35]

    Метод валентных связей. Весьма наглядным способом описания комплексных соединений является МВС, предложенный и разработанный Полингом в 30-х годах, вскоре после создания квантовой механики. В основе метода лежат следующие положения  [c.161]

    Многоцентроаые связи. По мере развития метода валентных связей выяснилось, что в некоторых случаях любая из возможных для данной молекулы палентных схем плохо согласуется с установленными на опыте свойствами этой молекулы истинные свойства молекулы оказываются промежуточными между теми, которые приписываются ей каждой отдельной схемой. В подобных случаях структуру молекулы можно выразить набором нз нескольких валентных схем. Такой способ описания молекул получил названне метода наложения валентных схем. [c.139]

    Описание процесса формирования химической связи и геометрического построения многоатомных частиц проводится квантово-механически с помощью метода валентных связей и метода молекулярных орбиталей, взаимно дополняющих и уточняющих друг друга. [c.157]

    В ряде случаев метод валентных связей не в состоянии объяснить наличие парамагнетизма, например в молекуле О2. Объяснение этому факту дает другой метод описания химической связи — метод молекулярных орбиталей. [c.115]

    Для квантово-механического описания ковалентной связи и строения молекул могут быть применены два подхода метод валентных связей и метод молекулярных орбиталей. [c.12]

    В методе молекулярных орбиталей волновая функция молекулы строится, как и в методе валентных связей, из атомных орбиталей, но движение электрона рассматривается в поле всех ядер молекулы и остальных электронов. Волновые функции метода молекулярных орбиталей являются многоцентровыми. Каждому электрону соответствует многоцентровая орбиталь, характеризующаяся набором квантовых чисел и определенной энергией. Таким образом, общие представления о состоянии электрона в многоэлектронном атоме применяются и для описания состояния электрона в молекуле. Спиновое состояние электрона описывается спиновым квантовым числом, принимающим, как уже указывалось, лишь два значения ( + 1/2 и —1/2). Поэтому на каждой молекулярной орбитали может помещаться максимум два электрона. Молекулярная орбиталь (МО) является спин-орбиталью, так как волновая функция включает и пространственную (г) и спиновую (5) части ф(г, 5). Каждая пространственная функция сочетается с двумя спиновыми (а и Р). [c.107]

    Существует два основных подхода к описанию химической связи метод валентных связей и метод молекулярных Орбиталей. "  [c.82]

    В отличие от упомянутых в предыдущем параграфе модельных, наглядных представлений о химической связи квантовомеханический подход есть способ математического описания состояния (энергетического, пространственного) электрона в той или иной-системе (атоме, молекуле, кристалле и т. п.). Естественно, что может существовать и на самом деле существует несколько математических методов решения одной и той же квантовомеханической задачи о движении электрона. Эти методы не очень строго называют теориями химической связи, хотя они тождественны в своей физической основе и опираются на один и тот же расчетный аппарат волновой механики при этом, однако, различаются исходные позиции и из-за вынужденной приближенности расчетов (как уже отмечалось в гл. 4, уравнение Шредингера точно решается в настоящее время только в случае одноэлектронной задачи) отличаются количественные результаты, получаемые при различных степенях приближения. Поэтому в зависимости от объекта рассмотрения (конкретной молекулы) или поставленной задачи используются разные более или менее равноправные методы. Здесь будут рассмотрены два из них метод валентных связей (ВС) и метод молекулярных орбиталей (МО) первый благодаря его большей наглядности и связи с предыдущими теориями хид и-ческой связи, в частности с теорией Льюиса—Ленгмюра электронных пар, а второй — из-за лучшего описания строения и свойств, молекул при использовании его простейшей формы. [c.107]


    Проблема электронной структуры переходных металлов далека от полного решения и в настоящее время при описании свойств-металлов нельзя обойтись без применения как метода молекулярных орбиталей МО, так и метода валентных связей ВС, способствующих выяснению строения металлов в нескольких разных аспектах. Прочность связи в металлах и межатомные расстояния в них более удобно описываются методом ВС. Однако при этом утрачивается возможность описать явление электропроводности, изящная трактовка которого дается в методе МО. Наряду с этим величина энергии сублимации свидетельствует о том, что в связывании активное участие принимает большее число электронов, чем следует пз простого метода МО. В этом отношении метод ВС облада ет определенным (хотя и небольшим) преимуществом. [c.147]

    Прежде чем применить ТКП для описания комплексного соединения необходимо установить геометрию комплекса. (Согласно методу валентных связей (МВС) геометрическая конфигурация комплекса определяется взаимным расположением атомных орбиталей (АО) центрального атома, участвующих в образовании химических связей. [c.522]

    При разработке теории строения молекул в начале 30-х годов возникли и затем развивались два метода —метод валентных связей, ВС-метод (разрабатывался Полингом, Слейтером и другими на основе работы Гейтлера и Лондона) и метод молекулярных орбиталей, МО-метод (развивался Малликеном, Гундом, Герцбергом, Хюкке-лем и др.) В высших своих приближениях они приводят к практически одинаковым результатам, достигаемым, однако, разной ценой. В более простом приближении каждый из них обладает преимуществами в описании одних явлений и недостатками при описании других. [c.56]

    Описание молекул с нелокализованными связями на основе метода молекулярных орбит не уступает проводимому на основе метода валентных связей. Для описания собственных функций электронов, охватывающих несколько атомов, используется нулевое приближение теории возмущения, подобно тому, как это выше сделано при рассмотрении иона молекулы водорода. Однако число слагаемых в функции будет равняться не двум, как это имело место в этой задаче, а будет равно числу атомов, которые охватывает общая молекулярная орбита. Так, я-электроны бензола охватывают шесть атомных орбит. Поэтому собственные функции таких молекулярных орбит будут иметь шесть слагаемых  [c.614]

    Квантово-механическая модель молекулы получила количественное подтверждение в экспериментальной химии, что позволило использовать метод валентных связей ( С), или электронных пар, для описания строения и энергетики более сложных молекул, образованных из атомов различных элементов периодической системы. Проведя расчет энергии химической связи в молекуле Н , Гейтлер и Лондон сделали попытку вычислить энергию присоединения к ней третьего атома водорода (Н ) + (Н) —>(Нд). Расчет показал, что этот процесс невозможен. Отсюда был сделан вывод о том, что химическая связь, возникающая в молекулах за счет появления общей пары электронов, имеет предел насыщения. Двухэлектронная химическая связь получила название ковалентной. [c.241]

    Таким образом, перекрывание электронных облаков или спаривание электронов может происходить только в том случае, если их спины противоположны. Метод описания химической связи, образование которой связано с общей электронной парой, называется методом валентных связей (МВС). При написании структурных формул электронные пары, обусловливающие связь, часто изображаются черточками (валентными штрихами)  [c.92]

    Рассмотренный метод описания молекул называют методом валентных связей. Каждый атом в молекуле сохраняет свою индивидуальность, но один или более электронов внешней оболочки каждого атома способны проникать за счет перекрывания орбита-лей во внешнюю оболочку другого атома. [c.84]

    В заключение мы хотели бы подчеркнуть общность природы особенностей исключенного объема для многих областей химии. Проблемы, связанные с укладкой без самопересечений разнообразных семейств графов на решетке, часто встречаются в статистической механике допустимые семейства просто определяются с помощью различных моделей, например моделей Изинга, моделей льда и моделей сегнетоэлектриков. (См. различные обзоры в [55] . ) Проблемы электронной структуры также могут обсуждаться в рамках подобных моделей, в особенности для протяженных молекул или кристаллов. Плодотворность применения теории графов наиболее успешно иллюстрируется тг-электронными моделями как моделью Хюккеля (см., например, [56]), так и моделями, подобными методу валентных связей (см., например, [57—61]). В меньшей степени осознано, что такой формализм применим к общим коррелированным описаниям локализованных центров (как в работах [62, 63]) и даже в неэмпирических расчетах. Между такими различными проблемами имеются общие аналогии  [c.496]

    В рамках классич. теории хим. строения К. с. объясняется как образование электронных пар, общих для связываемых атомов и достраивающих их электронные оболочки в молекуле до замкнутых (с числом электронов 8, 18 и т.д.). Квантовохим. описание К. с. проводят обычно в рамках метода валентных связей (валентных схем) или методов мол. орбиталей. В последнем случае К. с. связывают с мол. орбиталью, локализованной в области, охватывающей неск. (два, три и т. д.) ядер (двухцентровые, трехцентровые и т. д. связи). Такая мол. орбиталь м. б. заполнена одним или двумя электронами. Все электроны молекулы одинаковы, однако обычно считают, что при образовании электронной пары от каждого атома на мол. орбиталь поставляется по одному электрону, и отдельно выделяют случай донорно-акцептор- [c.420]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Для кванто1ю-,м( .чаничсского описания ковалентной связн и строения молекул могут быть примснсш, два подхода метод валентных связей н метод молекулярных орбиталей. [c.55]

    Ковалентная связь. Метод валентных связей. Мы уже знаем, что устойчивая молекула может образоваться только при условии уменьшения потенциальной энергии системы взаимодействующих атомов. Для описания состояния электронов в молекуле следовало бы составить уравнение Шредингера для соответствующей системы электронов и атомных ядер и найти его решение, отвечающее минимальной энергии системы. Но, как указывалось, в 31, для мно-гоэлсктронных систем точное решение уравнения Шредингера получить не удалось. Поэтому квантово-механическое описание строения молекул получают, как и в случае многоэлектронных атомов, лишь на основе приближенных решений уравнения Шредингера. [c.119]

    Говоря о методе валентных связей, подразумевают, с одной стороны, один из квантово-химических способов расчета электронной структуры молекулы, с другой—связанную с этим способом методику описания и анализа химических связей в системе. Согласно этой методике выделяют валентную группу атомных орбиталей (АО), охватывающую наивысшие по энергии занятые и наииизшие по энергии свободные АО. Образование химической связи рассматривают в духе концепции Льюиса за счет спаривания электронов соседних атомов по схеме А-- - В— -А В (ковалентная связь) или передачи электронной пары от донора к акцептору по схеме А +В—>А В. Таким образом, электронная пара соответствует валентному штриху в структурных формулах. [c.61]

    Расчет молекул на основе принципа локализации электронов на связях носит название метода валентных связей (ВС). Локализованное описание систем может быть важным при структурных исследованиях, анализе химических реакций и т. д. Однако в силу ряда причин (простота расчета по методу МОХ и легкость интерпретации результатов, популярность полуэмпирических методов для решения на ЭВМ конкретных, особенно оптических задач, успехи расчетов аЬ initio с конфигурационным взаимодействием и др.) квантовохимические расчеты проводятся в основном методом МО. Учитывая краткость нашего курса, мы не будем останавливаться на методе валентных связей. [c.100]

    Описание химической связи в методе молекулярных орби-< талей (МО). Метод валентных связей (МВС) широко используется химиками. В рамках этого метода большая и сложная молекула рассматривается как состоящая из отдельных двухцентровых и двухэлектронных связей. Принимается, что электроны, обусловливаюш,ие химическую связь, локализованы (расположены) между двумя атомами. К большинству молекул метод валентных связей может быть применен с успехом. Однако имеется ряд молекул, к которым этот метод неприменим или его выводы находятся в противоречии с опытом. [c.117]

    РЕЗОНАНСА ТЕОРИЯ, теория электронного строения хим. соединений, в основе к-рой лежит представление о том, что электронное распределение, геометрия и все др. физ. и хим. св-ва молекул должны быть описаны не одной возможной структурной ф-лой, а сочетанием (резонансом) всех альтернативных структур. Идея такого способа описания электронного строения принадлежит Л. Полингу (1928). Р.т. является развитием классич. теории хим. строения для молекул, ионов, радикалов, строение к-рых можно представить в виде неск. разл. структ) рных фйл, отличающихся способом распределения электронных пар между атомными ядрами. Согласно Р.т., строение таких соед. является промежуточным между отдельными возможными классич. структурами, причем вклад каждой отдельной структуры можно учесть при помощи разл. модификацгпг квантовомех. метода валентных связей (см. Валентных связей метод). [c.227]

    Эта глава посвящена строению ароматических гетероциклических соединений и кратким сведениям об их физических свойствах [1]. При описании строения ароматических гетероциклов нами был использован метод валентных связей. Применение этого метода, как мы полагаем, весьма эффективно при рассмотрении реакционной способности таких соединений кроме того, этот метод наиболее подходит для общих учебников по химии гетероциклических соединений. Более фундаментальный подход к описанию строения гетероциклических ароматических соединений на основе метода молекулярных орбиталей до сих пор не нащел широкого применения при рассмотрении реакционной способности таких соединений. Применение в некоторых случаях метода граничных орбиталей [2], хотя и необходимо, однако рассмотрение таких ситуаций выходит за рамки этой книги. [c.15]

    Метод валентных связей (ВС) представляет собой другой, отличный от метода МО, способ описания делокализации электронов при образовании химической связи. Если в методе МО делокали-зованные электроны располагаются на молекулярных орбиталях, то в методе ВС они остаются на атомных орбиталях, но получают возможность часть времени проводить у чужого атома (одного или нескольких). При этом делокализация электронов описывается как своего рода обмен, который приводит к тому, что в пространстве между атомами возникает повышенная электронная плотность, обеспечивающая их связь. В соответствии с принципом Паули два обменивающихся электрона, образующие связывающую пару, должны иметь противоположные спины. [c.52]


Смотреть страницы где упоминается термин Метод валентных связей описание: [c.187]    [c.42]    [c.86]    [c.90]    [c.270]    [c.180]    [c.522]   
Неорганическая химия (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Валентных связей метод Метод

Валентных связей метод Метод валентных связей

Метод валентных

Метод валентных связей МВС

Связь валентная

Связь метод



© 2025 chem21.info Реклама на сайте