Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физическая структура целлюлозы

    Фазовые состояния полимеров и их надмолекулярная структура (надмолекулярная организация) - один из самых сложных и противоречивых вопросов физики полимеров. Существующие представления о физической структуре полимеров и в частности целлюлозы еще далеки от совершенства. Практически все исследователи в настоящее время относят целлюлозу к кристаллическим полимерам. В соответствии с этим в данном учебнике надмолекулярная структура целлюлозы (строение ее микрофибрилл), а также физико-химические и химические свойства рассматриваются с позиций теории кристаллического строения. [c.236]


    В заключение раздела о надмолекулярной структуре целлюлозы следует подчеркнуть ее важное значение для всех свойств целлюлозы - физических, физико-химических и химических. Однако надмолекулярная структура целлюлозы, особенно непосредственно в древесине и в технических целлюлозах, где она усложняется в результате процессов, протекающих при их получении, выяснена еще недостаточно. Существующие взгляды на структуру целлюлозы часто неоднозначны, а иногда даже противоречивы. [c.252]

    Первичная структура целлюлозы установлена в 1930-х годах. При анализе этого полисахарида методом метилирования образуется более 90 % 2,3,6-три-0-метил-Л-глюкозы следовательно, молекулы целлюлозы в основном линейны. Поскольку при частичном гидролизе целлюлозы образуется целлобиоза (6), этот полисахарид содержит р-(1->4)-связи, р-Конфигурация внутримолекулярных гликозидных связей подтверждена ферментативным анализом. Определение длины цепи по содержанию концевых групп в случае в основном линейных молекул неточно и дает очень низкие значения (- 200 моносахаридных звеньев) из-за деструкции в ходе анализа. Длина молекулы целлюлозы, определенная физическими методами, составляет до 10 000 остатков D-глюкозы. Изучение кинетики гидролиза целлюлозы показало, что свыше 99 % связей в ее молекулах имеет один и тот же характер (р-1,4-связи) [94]. Существование в молекулах целлюлозы связей другого типа не доказано. [c.239]

    Описать первичную структуру целлюлозы и амилозы. Почему эти два полимера различаются по физическим свойствам  [c.391]

    Глава 9. ХИМИЧЕСКОЕ СТРОЕНИЕ И ФИЗИЧЕСКАЯ СТРУКТУРА ЦЕЛЛЮЛОЗЫ [c.225]

    Водородные связи в целлюлозе имеют очень важное значение. Они определяют физическую структуру целлюлозы (форму макромолекул, фазовые и релаксационные состояния, надмолекулярную структуру) и оказывают влияние на все свойства целлюлозы - физические, физикохимические и химические (химическую реакционную способность). [c.235]

    Изменения в физической структуре целлюлозы при переходе целлюлозы 1 в целлюлозу II приводят к изменению свойств гидратцеллюлозы [c.572]

    Вследствие высокой жесткости цепей и сильного межмолеку-лярного взаимодействия целлюлоза имеет температуру плавления, лежащую значительно выше температуры ее термического распада и поэтому в отсутствие растворителей всегда находится в твердом агрегатном состоянии смешанного аморфно-кристаллического фибриллярного строения, характерного для большинства линейных полимеров. В физической структуре целлюлозы обычно выделяют два уровня надмолекулярный, имея под этим в виду особенности строения наиболее мелких по размеру структурных элементов— фибрилл, содержание упорядоченной (кристаллической) и аморфной части, а также морфологический, отражающий взаимное расположение фибрилл и строение самих волокон, т. е. их геометрическую форму, наличие слоистой структуры. Целлюлоза была первым объектом исследования, на примере которого познавались особенности структуры полимеров. Поэтому не удивительно, что для объяснения ее структурных особенностей предложено большое число моделей, превышающее несколько десятков, подробно рассмотренных в ряде обзоров [13, 14]. Тем не менее, ни одна из предложенных моделей не объясняет все экспериментальные факты, что обусловливает необходимость дальнейших исследований [15]. [c.19]


    Целлюлоза, каждое элементарное звено которой содержит три гидроксильные группы, в воде нерастворима, но обладает большой водопоглощаемостью и гигроскопичностью. Если отвлечься от физической структуры целлюлозных материалов, отличающихся развитой поверхностью, их чувствительность к влаге объясняется притяжением диполей воды полярными гидроксильными группами. При блокировании гидроксилов, т. е. при связывании их другими группами, как и в случае поливинилового спирта, резко снижается гидрофильность материала. Такое связывание широко применяют, получая простые и сложные эфиры целлюлозы  [c.72]

    Сущность производства первых двух видов искусственного волокна заключается в изменении физической структуры целлюлозы нитевидные макромолекулы, которые в природной целлюлозе имели беспорядочное расположение, располагаются во вновь образованном волокне более или менее параллельно вдоль оси волокна. [c.68]

    При гидролизе полиэтилентерефталата, так же как и при гидролизе целлюлозы, большую роль играет физическая структура полимера. В гетерогенной среде гидролиз полиэтилентерефталата протекает только на поверхности, причем скорость его настолько мала, что полимер практически стоек к действию кислот и щелочей. В растворе же полиэтилентерефталат гидролизуется с такой же легкостью, как низкомолекулярные эфиры терефталевой кислоты. [c.267]

    Данный обзор целиком посвящен описанию свойств, методов получения и областей использования новых волокон, полученных путем изменения физической структуры целлюлозы. [c.56]

    К другим важным работам, выполненным до Великой Отечественной войны, относятся работы В. А. Каргина и сотр. [12, 13] по установлению физической структуры целлюлозы методом электронографии. Было показано, в противоположность господствующей тогда концепции о кристаллической структуре этого полимера, что структура целлюлозы является аморфной. [c.318]

    Различные полисахариды гидролизуются с неодинаковой скоростью. К наиболее трудно гидролизуемым полисахаридам относится целлюлоза крахмал и пентозаны гидролизуются значительно легче. Это объясняется главным образом различной физической структурой полисахаридов, а также особенностями их химического строения. [c.267]

    ИК-спектры позволяют сравнивать химический состав полимеров, обнаруживать химические изменения и примеси, изучать водородные связи и др. Ниже (часть III) приведены ИК-спектры основных компонентов древесины - целлюлозы (см. рис. 9.1 и табл. 9.1) и лигнина (см. рис. 12.2 и табл. 12.1). ИК-спектры используют и при изучении физической структуры полимеров, например, для характеристики кристалличности целлюлозы и сравнения ее полиморфных модификаций (см. 9.4.4 и 9.4.6). [c.147]

    В большинстве случаев реакции целлюлозы протекают гетерогенно (гетерогенные процессы), т.е. в двух фазах твердая целлюлоза реагирует с жидким или газообразным реагентом или с раствором реагента. Гетерогенные процессы у целлюлозы отличаются от гетерогенных реакций низкомолекулярных соединений. На характер гетерогенных процессов у целлюлозы влияет физическая структура - надмолекулярная структура, межмолекулярное взаимодействие, релаксационное состояние. У целлюлозы это свойство полимеров проявляется особенно ярко. В структуре целлюлозы как аморфно-кристаллического полимера имеются и аморфные и кристаллические области, обладающие различной доступно- [c.547]

    Среди перечисленных видов сырья особое место занимает целлюлоза, что обусловлено ее сложной химической и физической структурой, значительной неоднородностью свойств и связанными с этими трудностями в переработке. [c.13]

    Сравнительное изучение гидролиза ксилана п целлюлозы в гомогенной и гетерогенной среде показало [34], что скорость гидролиза ксилана в гомогенной среде примерно в 4 раза, а в гетерогенной среде — в 70 раз больше скорости гидролиза целлюлозы. Авторами был сделан вывод, что основным фактором, определяющим более высокую скорость гидролиза ксилана в гетерогенной среде по сравнению с целлюлозой, является не состав элементарного звена, а различная физическая структура полисахаридов, определяющая различную интенсивность межмолекулярного взаимодействия. [c.191]

    Такая линейная цепеобразная структура целлюлозы объясняет все вышеперечисленные ее особенности. Ее физическая инертность соответствует высокому молекулярному весу. Альдегидной группы как таковой в молекуле нет она остается в молекуле в потенциальной форме только в конечном глюкозном остатке цепи. Поэтому при отсутствии гидролиза целлюлоза должна вести себя как спирт с тремя гидроксильными группами в каждом глюкозном остатке. Длинная цепеобразная структура создается, повидимому, посредством эфирных связей. Гидролиз поэтому должен приводить к образованию многих продуктов, из которых каждый обладает потенциальной альдегидной группой, и это приводит к увеличению медного числа. Полный гидролиз должен приводить к образованию глюкозы. [c.162]


    При изготовлении вискозного и медноаммиачного волокон из природной целлюлозы получают растворимые производные, из растворов которых формуют волокна требуемой формы, длины, тонины и с нужными физико-механическими свойствами. При формовании таких волокон в осадительной ванне происходит регенерирование целлюлозы, образуются так называемые гидратцеллюлозные волокна. По относительной молекулярной массе, физической структуре, форме упаковки и расположению макромолекул, а также по ряду других особенностей строения волокна из регенерированной целлюлозы существенно отличаются от природных целлюлозных волокон — хлопка и льна. [c.21]

    Хотя гидролитическую деструкцию полимеров впервые изучали на примерах белков и целлюлозы, позднее в этом направлении начали исследовать синтетические продукты поликонденсации, особенно полиэфиры и полиамиды. Технологическое значение реакций гидролиза полимеров как в процессе их синтеза, так и при их использовапии заключается в том, что гидролиз макромолекул вызывает снижение разрывной прочности. Вследствие этого необходимо знать механизм гидролитической деструкции отдельных полимеров, а также иметь возможность сравнивать разные полимеры по устойчивости их к гидролизу. Для выяснения механизма в свою очередь нужно определить скорость исследуемой химической реакции, а также влияние физической структуры полимера на скорость этой реакции. [c.5]

    Регенерированная целлюлоза имеет физическую структуру гидратцеллюлозы. [c.719]

    Однако регенерированная целлюлоза имеет другую физическую структуру. [c.258]

    Стюарт [92] и Найт [93] рассмотрели основные данные о структуре целлюлозы и ионообменных целлюлозных бумаг. В бумаге некоторая часть воды прочно связана физическими или химическими силами с волокнами целлюлозы. [c.552]

    Полисахариды древесины, в том числе выдрлённые из нее холоцеллюлоза, альфа-целлюлоза, гемицеллюлозы, устойчивы к нагреванию примерно до температуры 100°С, а при дальнейшем нагревании начинают разрушаться со всё возрастающей скоростью, причем гемицеллюлозы оказываются более чувствительными к термообработке, чем целлюлоза. При относительно низких температурах, до 180...200°С, вследствие присутствия воды в древесине, по-видимому, преимущественно протекают реакции частичного деацетилирования гемицеллюлоз (гидролиза сложноэфирных группировок) и, в результате образования уксусной кислоты, - реакции гидролитической деструкции полисахаридов. При увеличении температуры выше 200°С уже идут реакции термической деструкции с гомолитиче-ским разрывом гликозидных связей и С-С-связей в звеньях моносахаридов с образованием промежуточных свободных радикалов. Различия в химическом строении и физической структуре целлюлозы и гемицеллюлоз приводят к различию механизмов реакций. [c.355]

    Химическая и физическая структура целлюлозы подробно описана в ряде монографий [14, 15], поэтому здесь будут отмечены только те особенности этого полимера, которые непосредственно влияют на его сорбццонную способность по-отншыбнию к воде. [c.38]

    Как хорошо известно, физические свойства целлюлозы и крахмала, в том числе и чистой амилозы, резко отличаются. Если учесть чрезвычайную близость строения этих соединений в чисто органо-химическом аспекте, то эту разницу, естественно, следует отиести за счет разницы в строении в физическом смысле слова, т, е, за счет различия структуры, молекулярных агрегатов этих полисахаридов. Однако недостаточно ясным остается вопрос о том, в чем причина именно этих отличий в строении ассоциированных образований. Логично искать ее все-таки в различиях между молекулами того и другого полисахарида, С точки зрения классической органической химии единственная разница между молекулой целлюлозы и амилозы состоит в различии конфигурации у микозидного центра. Этой разницей и объясняли различия в конформации цепей обоих полисахаридов, следствием которого являет я,. очевидно, различие в характере межмолекулярной ассоциации. [c.158]

    Известно [64], что на практике растворяют целлюлозу в гидратах оксидов третичных аминов, т.е. в присутствии некоторого небольшого количества воды. По существу, вода является обязательным компонентом растворяющей системы, и от ее содержанри зависит концентрация целлюлозы в смешанном растворителе. Рассмотрим вкратце основные факторы, характеризующие взаимодействие воды с самой целлюлозой и с аминоксидным растворителем. Неоднозначность механизма взаимодействия целлюлозы с водой обусловлена сложностью строенрм целлюлозы и самой воды. Вода сопровождает целлюлозу как в процессе роста растений, так и после ее выделения из них. В многочисленных литературных источниках утверждается, что вода взаимодействует только с аморфной частью целлюлозы. Небольшие (до 6-7 масс.%) количества связанной с целлюлозой через образование водородных связей (адсорбированной) воды приводят к значительным изменениям как физических свойств целлюлозы (например, тангенс угла диэлектрических потерь, плотность, температура стеклования), так и свойств самой адсорбированной воды (76, 77]. Кластерная структура воды у поверхности целлюлозы переходит в структуру типа "частокола" из полярных молекул (толщина слоя 1,75-2,25 мкм). Анализ показал [78], что соседние диполи воды (при содержании ее в целлюлозе до 7%) направлены преимущественно параллельно, а при содержании более 10% - антипараллельно. Параллельная ориентация [c.378]

    Растворы полимеров имеют важное практическое значение в технологии полимерных материалов и при получении изделий из них, а также для исследовательских целей. Из растворов искусственных полимеров, главным образом на основе целлюлозы, формуют искусственные волокна и пленки. Клеи и лаки представляют собой растворы полимеров. В растворах определяют молекулярную массу, неоднородность по молекулярной массе и форму макромолекул полимеров. Следует отметить, что в технологии используют концентрированные растворы полимеров, а в анализе и исследованиях - разбавленные. Растворяются полимеры труднее, чем низкомолекулярные соединения, и для них сложнее подбирать растворители, что обусловленно значительным влиянием на растворимость, кроме природы полимеров, их физической структуры - гибкости макромолекул, межмолекулярного взаимодействия и надмолекулярной структуры. [c.159]

    Целлюлоза - наиболее распространенный в природе полисахарид. Кроме древесины, в большом количестве она содержится в семенных волосках хлопка (96...99%), в лубяных волокнах таких текстильных растений, как лен, рами (80...90%), соломе злаков и др. Свойства целлюлозы -физические, физико-химические и химические зависят как от химического строения целлюлозы, так и от ее физической структуры - формы макромолекул, межмолекулярного взаимодействия, надмолекулярной структурь[ и фазового и релаксационного (физического) состояний. Целлюлоза, будучи основным компонентом клеточных стенок, во многом определяет строение и свойства древесины. [c.225]

    Из гетероцепных полимеров легче всего деструктируются гидро-лйтнчески полиацетали (полисахариды), сложные полиэфиры и полиамиды. Гидролиз целлюлозы детально рассмотрен в гл. I. Аналогично протекает гидролиз до моносахаридов других полисахаридов, причем на скорости реакции сильно отражается различие в физической структуре этих веществ имеет также значение химическое строение. Гидролиз ускоряется ионами Н+, но ионы 0Н практически не влияют на процесс. Этим объясняются устойчивость полисахаридов в щелочной среде и сравнительно легкая расщеп-ляемость в кислой. [c.624]

    Гидролиз протекает ступенчато. В промежуточных стадиях образуются целлодекстрины различной сложности, целлотетро-за, целлотриоза и наиболее важная целлобиоза, СхзНзгОц. В отличие от промежуточных продуктов и глюкозы, получаемых в результате ее гидролиза, целлюлоза в очень малой степени восстанавливает Фелингову жидкость и подобные растворы, т. е. она имеет низкое медное число . Однако, как бы тщательно природная целлюлоза ни была очищена, она никогда не бывает полностью лишена способности к восстановлению, причем чистейшие образцы ее имеют медные числа порядка 0,05, тогда как -глюкоза имеет 300. Е сли целлюлоза находится в условиях, содействующих гидролизу, ее медное число всегда возрастает. Так, разбавленные слабые кислоты при низких температурах вызывают небольшое увеличение медного числа, хотя условия эти таковы, что никаких следов конечного гидролиза до глюкозы обнарун ить нельзя. Что эти небольшие изменения медного числа сопровождаются фундаментальными изменениями в структуре целлюлозы подтверждается тем, что одновременно меняются и физические свойства. Так, действие холодной разбавленно] слабой кислоты постепенно вызывает падение сопротивления иа разрыв целлюлозных изделий или отдельного волокна. Эти факты неминуемо приводят к заключению, что целлюлоза представляет собой продукт конденсации -глюкозы, образующийся с выделением воды, причем химический механизм этого процесса приводит к значительному, но все же неполному исчезновению альдегидных групп сахара. [c.159]

    Целлюлоза и хитозан обладают высоким взаимным адгезионным сродством и в условиях УДВ совмещаются на молекулярном уровне, при этом наблюдается существенное изменение надмолекулярной структуры реагентов. Был сделан вывод, что образование смесей целлюлозы с хитозаном в условиях УДВ, при которых происходит как разрушение физических структур, так и переход системы в пластическое состояние, позволяет в широких пределах варьировать степень диспергирования и гомогенизацию реагентов [47, 48]. [c.279]

    Это представление о физической структуре волокна совершенно отличается от того, что вытекало из мицеллярпой теории Марка—Мейера. По Марку-Мейеру, в идеальном волокне мицеллы расположены совершенно правильно и параллельно оси волокна, наподобие кирпичеобразной кладки. Такое волокно является фактически монокристаллом и, следовательно, термодинамически устойчивой системой, обладающей минимумом свободной энергии. Реальные волокна отличаются от идеального лишь тем, что в них некоторая часть мицелл дезориентирована относительно оси волокна, вследствие чего в системе возникают поверхности раздела между кристалликами, свободная энергия системы возрастает и поэтому она не является равновесной. Отсюда следует, что при любом процессе, самопроизвольно протекающем в волокне, ориентация его может только повышаться. Но если целлюлозные гели рассматривать как высокоструктурированпые жидкости, то ориентация цепей главных валентностей не будет вести к образованию монокристалла, а лишь к изменению характера среднестатистического распределения их направлений относительно оси волокна. Таким образом, новейшие представления о природе целлюлозы выдвинули вопрос об устойчивости ориентации и характере ее изменения под влиянием различных воздействий, способных вызвать нарушение структуры целлюлозы как псевдокристаллического вещества, обла- [c.18]

    При облучении целлюлозы в атмосфере кислорода скорости процесса деструкции, реакции образования карбоксильных групп и реакции образования карбонильных групп лишь незначительно превышают скорости соответствующих реакций при проведении облучения в атмосфере азота [308]. При прогреве влажных целлюлозных волокон были сделаны наблюдения противоположного характера [310]. Это дало основания сделать вывод, что окислительная деструкция облученных целлюлозных волокон протекает более интенсивно при облучении на воздухе, чем нри облучении в вакууме. Сопоставление показателей, характеризующих окрашиваемость облученных образцов, привело к выводу, что у-излуче-ние вызывает лишь окисление целлюлозы, в то время как одновременное действие у-излучения и нейтронов приводит также и к гидролизу [311]. При обсуждении результатов, основанных на физических эффектах, следует учитывать, что большое значение могут иметь изменения морфологической структуры целлюлозы, связанные с изменением ее кристаллич1[ости, а также величины внутренней поверхности. Результаты химического анализа и определения изменения молекулярного веса целлюлозы лучпю характеризуют реакции, протекающие при радиационных воздействиях. Были опубликованы и другие работы, в которых было исследовано изменение свойств целлюлозы в зависимости от условий радиационного облучения [312—314]. [c.116]

    Целлюлоза, растворенная в минеральных кислотах, претерпевает постепенное расщепление (гидролиз) и не может быть выделена из раствора в химически неизмененном состоянии. Из раствора в швейнеровом реактиве или в органических основаниях целлюлоза осаждается кислотами в химически неизмененном состоянии, приобретая, однако, другую физическую структуру, что проявляется в изменении характера рентгенограммы. Такая переосажденная целлюлоза, химически идентичная с исходной природной целлюлозой и представляющая собой ее физическую модификацию (подобно, например, физическим модификациям серы), носит название гидратцеллюлозы. Следует заметить, что гидратцеллюлоза получается не только при пере-осаждении природной целлюлозы, но и при выделении свободной целлюлозы из некоторых ее производных, например из щелочной целлюлозы или из эфиров целлюлозы (см. ниже). [c.716]

    Чем выше молекулярный вес органической кислоты или основания, тем прочнее они удерживаются ионообменными смолами, однако, если размер ионов выше некоторого предела, смолы начинают проявлять ситовой эффект ионы не могут проникнуть в поперечносшитую сетку смолы, и если это все же происходит, то в очень слабой степени. Большие ионы могут удерживаться обменниками с открытой физической структурой, как, например, пористые и крупносетчатые смолы, обменники на основе целлюлозы и микрокристаллические неорганические обменники. Большое значение приобретают неионные эффекты растворителя . Обменник на основе полистирола прочно связывает ароматические ионы, например катионы бензиламмония и 1,1 О-фенантролина или анионы л-толуолсульфокислоты. На неорганических обменниках эти ионы удерживаются совсем слабо. Когда речь идет о сорбции веш,ества неионного характера, гораздо большее значение имеет химическая природа матрицы или основной хребет обменника, а не тип ионных групп. [c.218]


Смотреть страницы где упоминается термин Физическая структура целлюлозы: [c.550]    [c.293]    [c.56]    [c.42]    [c.365]    [c.39]    [c.171]    [c.308]   
Смотреть главы в:

Взаимодействие целлюлозы и целлюлозных материалов с водой -> Физическая структура целлюлозы




ПОИСК







© 2025 chem21.info Реклама на сайте