Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Церий ртутью

    Целлюлозные материалы, обладая редуцирующей способностью, восстанавливают соли железа, свинца, серебра, олова, золота, церия, ртути, меди и палладия, йод в ион йодида, а также кубовые красители. Исследователи пытались применить многие из этих реакций для количественного определения альдегидных групп или для характеристики редуцирующей способности. Для измерения редуцирующей способности целлюлозы используется метод определения ее медного числа. [c.246]


    Сейчас установлено, что РЗЭ не так уж редки (табл. L7). Даже самые малораспространенные из РЗЭ — лютеций, европий, тулий, гольмий — имеют кларк (мае. % в земной коре) выше, чем у ртути ( 8-10 ). Менее редкие РЗЭ, такие как лантан, церий, иттрий, по распространенности сравнимы со свинцом и медью, их кларк больше,, чем [c.63]

    Нитрат бария 135 бериллия 93 висмута 397 галлия 180 индия 187 иттрия 614 калия 52 кальция 114 лантана 621 лития 14 магния 103 меди 556 натрия 31 никеля 864 палладия 884 ртути 596—7 рубидия 71 свинца 264 серебра 566 скандия 607 стронция 125 таллия 196—7 тория 671 уранила 685 цезия 83 церия 629—30 Нитрид бора 153 иода 535 лития 20 магния 106 серы 456 фосфора 356 хлора 506 Нитрит 303—5 Нитрит, гипо- 301 Нобелий 700 [c.477]

    Было найдено, что рТуть можно полностью удалить из амальгамы высокотемпературной перегонкой в вакууме. Этот метод с успехом применялся для приготовления бария, неодима, лантана и церия [2]. [c.11]

    Для определения 0,5—5 мкг ртути было применено каталитическое титрование сульфатом церия(1У) сурьмы(1П)в присутствии ионов J- [506]. [c.91]

    Серебро, кобальт, церий и марганец могут быть отнесены к группе А к группе Б относятся фториды свинца, висмута, хрома и ртути. В группы А и Б входят все металлы, у которых окислительные потенциалы равны или больше, чем у ртути. Остальные металлы в табл. 1 имеют потенциалы ниже ртути и их фториды являются либо инертными по отношению к углеводородам при температуре, при которой углеводород устойчив, либо разрушительно действуют на углеводород без образования фторированного продукта. [c.145]

    Она образуется при смешивании водного раствора солей двухвалентного кобальта с водным раствором цианата калия. Реакция лучше удается при добавлении к исследуемому раствору сухого цианата калия. Чувствительность обнаружения возрастает при добавлении ацетона (можно обнаружить 0,02 мг Со) или при экстракции окрашенного соединения изоамиловым спиртом. Цианат позволяет обнаруживать кобальт в присутствии ионов трехвалентного железа, которые не дают окрашенных соединений с реагентом. Не влияют на чувствительность обнаружения ионы ртути, мышьяка, сурьмы, олова, золота, родия,, палладия, осмия, платины, селена, теллура, молибдена, вольфрама, ванадия, алюминия, хрома, урана, титана, бериллия, цинка, марганца, рения, никеля, щелочных и щелочноземельных металлов. Несколько затрудняют обнаружение кобальта большие количества ионов с собственной окраской— меди, ванадия, хрома, платины. Ионы серебра, свинца, висмута, кадмия, редкоземельных элементов, церия, циркония и тория образуют осадки белого цвета. [c.49]

    Большинство обычных катионов не мешает обнаружению кобальта. Катионы трех- и двухвалентного железа легко маскируются фторидом натрия. Ионы серебра, молибдена, вольфрама, циркония, таллия и анион хромовой кислоты образуют желтые осадки и. мешают обнаружению кобальта уже при отношении 1 1. Ионы ртути (I), меди и церия дают оранжевые осадки, а ионы родия и палладия — осадки фиолетового цвета. [c.55]


    Катионы многих других металлов также осаждаются щавелевой кислотой. К числу их принадлежат, в частности, кальций, стронций, магний, никель, кадмий, цинк, медь, свинец, ртуть, серебро, висмут, церий, редкоземельные элементы. Поэтому метод неселективен и может применяться только в отсутствие мешающих элементов. Раствор не должен содержать нитратов, которые частично замещают оксалат-ионы в осадке. Лучше всего вести осаждение из раствора, содержащего муравьиную кислоту [983]. Описан также метод осаждения оксалата кобальта из уксуснокислого раствора 1901]. [c.112]

    Катионы трехвалентного железа и меди образуют с реагентом соединения бурого цвета, катионы двухвалентного железа— зеленого. Однако эти соединения разрушаются при нагревании с соляной или азотной кислотой, и таким путем около 1 мкг кобальта можно определить в присутствии 100 мкг меди и 1000 мкг железа [1129]. В случае очень больших количеств этих элементов их следует отделить или замаскировать. Для маскирования железа можно применять фторид натрия [1166, 1313], а для его отделения — экстрагировать диэтиловым эфиром из солянокислых растворов. Небольшие количества никеля, марганца, титана, ванадия, хрома не мешают допустимо также присутствие до 3000 мкг ионов свинца, ртути (И), олова (IV), цинка, церия (111), марганца, молибдена (VI) и уранила. [c.139]

    Причиной такого выделения является горизонтальная аналогия. Физической основой построения П. С. является заряд ядра и последовательность заполнения электронных оболочек. В пределах малых периодов, а также в нечетных рядах больших периодов с увеличением заряда ядер происходит заполнение наружного (внешнего) электронного слоя 1—8 электронами. В четных же рядах больших периодов с увеличением 2 заполнение электронных слоев происходит несколько иначе. Так, в четвертом и пятом периодах у элементов четных рядов заполняется а-подуровень предвнешнего уровня 1—10 электронами (Зс1 — Зс1 ° и 4(1 — 4Ь °). В шестом периоде после лантана у элементов с 2 = 58-5-71 (лантаноиды) заполняется -подуровень четвертого уровня от 4 у церия до 4 у лютеция. После лютеция завершается заполнение 5Ь-подуровня от гафния до ртути. В седьмом периоде (он не завершен) заполнение электронных слоев аналогично шестому периоду. Здесь после двух в-элементов — Рг и Ра — и одного сУ-элемен-та — Ас — следуют 14 элементов, относящиеся к актиноидам, у которых происходит заполнение 5/-подуровня. [c.225]

    Совершенно очевидно, что если адсорбированные на платине иодид-ионы (равно как и другие ионы и молекулы) влияют на электрохимическое поведение тех или иных присутствующих в титруемом растворе веществ, то это в свою очередь может привести к осложнениям при амперометрических определениях. В нашей практике мы часто наблюдали, что платиновый электрод, на котором проводилось титрование по току окисления иодида или восстановления иода, оказывался совершенно непригодным для работы при определении по току других веществ (трехвалентного железа, четырехвалентного церия, бихромата и т. д.). Кроме того, адсорбция иодида в ряде случаев обусловливает нарушение нормального хода кривых амперометрического титрования. Так, например, при титровании ртути (И) иодидом калия по току окисления иодид-иона при потенциале +0,8 в (НВЭ) амперометрическая кривая (как и следует ожидать) имеет форму б (рис. 15, кривая /). Однако если в титруемом растворе находится железо (II), которое также окисляется при данном потенциале и обусловливает высокий начальный ток, то кривая титрования принимает форму в (рис. 15, кривая 2), хотя иодид-ионы не реагируют с железом (II). Этот аномальный ход кривой титрования обусловлен тормо- [c.56]

    Окислы меди, серебра и соединения церия Соли ртути 258 424 [c.196]

    Соли церия, лантана и других редких земель, а также смеси солей меди и ртути Соли ртути 130 350, 351, 340, 342 [c.196]

    Синтез уксусной кислоты из ацетилена (непосредственно) 130 частей. ацетилена плюс 80— 100 частей кислорода Смесь 50 частей окисной азотнокислой ртути (гидратация ацетилена) и 10 частей двуокиси церия (окисле-ниг ацетальдегида) 813 [c.64]

    Г идратация ацетилена в уксусную кислоту 130 частей ацетилена и 80—100 частей кислорода температура 50—100° выход почти количественный (смесь 400 частей уксусной кислоты и 100 частей воды) 50 частей азотнокислой ртути плюс 10 частей двуокиси церия соль ртути является гидратирующим катализатором двуокись церия ускоряет окисление ацетальдегида кислородом 808. [c.121]

    Анализ смеси ионов церия, ртути (1) и висмута. Через колонку пропускают исследуемый раствор, затем раствор тиомочевины. Вверху хроматограммы образуется желтая зона (ионы висмута), ниже—черная зона (ноны закис-ной ртути). Ионы Се " обнаруживают в той же колонке реакцией с HaOg в аммиачной среде по образованию бурого кольца. [c.78]

    Приборы и реактивы. Прибор для получения сероводорода. Стакан. Тигель № 1. Фарфоровая чашечка (с1 = 3.— 4 см). Железная полоска. Цинк (гранулированный порошок). Натрий. Церий или мишметалл. Диоксид марганца. Мод кристаллический. Магний лента. Пероксид бария. Сульфат натрня. Сульфит натрия. Нитрит калия. Сульфид железа. Нитрат меди Си(Ы0з)2-ЗН20, Висмутат натрня. Дихромат аммоиия. Пероксодисульфат калия или аммония. Спирт этиловый. Растворы сероводородная вода хлорная вода бромная вода йодная вода крахмала фенолфталеина щавелевой кислоты (0,5 н,) серной кислоты (2 и. 4 и, плотность 1,84 г/см ) хлороводородной кислоты (2 н. плотность 1,19 г/см ) азотной кислоты (0,2 н. 2 н.) уксусной кислоты (2 и.) гидроксида натрня или калия (2 и.) аммиака (2 н. 25%) сульфата марганца (0,5 и.) сульфата меди (0,5 н,) сульфита натрня (0,5 н,) хлорида олова (11) (0,5 и,) дихромата калия (0,5 н.) перманганата калия (0,5 н,) нитрата ртути (II) (0,5 н,) нитрата серебра (0,1 н.) формальдегида (10%-ный) пероксида водорода (3%-ный) иодида калия (0,5 н.) сульфата цинка (0,5 и.) хлорида железа (111) (0,5 и.) гексацнано-феррата (III) калия (0,5 н.) соли ттана (IV) (0,5 и.) сульфида натрия нли аммония (0,5 и,) гидроксида натрия (2 н,). [c.94]


    Спирты, содержащие в б-положении атом водорода, могут циклизоваться под действием тетраацетата свинца [173]. Обычно реакцию проводят при температуре около 80 °С (чаще всего при кипячении в бензоле), но реакция идет и при комнатной температуре, если реакционную смесь облучать УФ-светом. Тетрагидрофураны образуются с высокими выходами, однако четырех- и шестичленные циклические эфиры (оксетаны и тет-рагидропираны соответственно) получаются в незначительных количествах или совсем не образуются даже при наличии в у-и е-положениях подвижного атома водорода. Для циклизации использовались также смеси галогенов (Вг2 или I2) с солями или оксидами серебра и ртути (особенно с HgO и AgOA ) [174] и нитрат аммония-церия (НАЦ) [175]. Вероятным механизмом для реакции с тетраацетатом свинца представляется следующий [176]  [c.84]

    У элементов с 2 = 39, 40, 43 на внешнем уровне по 2 электрона. В атоме палладия происходит двойной провал , т. е. у него на внешнем уровне число электронов равно 0. Это единственное исключение подобного провала во всей системе. Итак, в периоде после рубидия и стронция (5х и 55 ) далее следует десять элементов (от иттрия до кадмия), у которых заполняются -подуровни четвертого уровня. После кадмия следует шесть элементов (индий, олово, сурьма, теллур, иод, ксенон), у которых происходит достраивание р-подуровней внешнего уровня (от 5р до 5р ) и период заканчивается благородным газом — ксеноном (55 5р ). У этих элементов на предвнешнем уровне по 18 электронов (4s 4p 4 ). Снова период завершен, но недостроенными остаются не только пятая, но и четвертая электронные оболочки. В шестом периоде после цезия и бария (б5 и б5 ) следует только один элемент — лантан, у которого заполняется 5 -пoдypoвeнь. После лантана у элементов с 2 = 58 71 (лантаноиды) идет заполнение /-подуровня четвертого уровня от 4/ у церия до 4/ у лютеция. После лютеция завершается заполнение 5 -пoдypoвня от гафния до ртути. От таллия к радону происходит заполнение бр-подуровня. Период вновь заканчивается благородным газом (бх бр ). [c.46]

    НОЙ КИСЛОТОЙ непосредственное действие ряда окислителей, как, например, двухромовокислого калия и серной кислоты , двуокиси марганца , окиси никеля и двуокиси церия действие окиси ртути в присутствии щелочи с последующим гидролизом полученного о-нитробензальд имеркуриоксида азотистой или азотной кислотой действие раствора хромовой кислоты в уксусной кислоте и уксусном ангидриде с последующим гидролизом полученного о-нитробепзальдиацетата . о-Нитробензальдегид образуется также, наряду с большим количеством ж-нитробенз-альдегида, при непосредственном нитровании бензальдегида .  [c.351]

    Литий, натрий, калий, кальций, бериллий, магний, цинк, кадмий, стронций, алюминий, свинец, хром, молибден, марганец, железо, кобальт, германий, никель, медь, серебро, ртуть, олово, планша, бор, сурьма, висмут, палладий и церий в виде металлов, их окислов, гидроокисей, гидридов, формиатов, ацетатов, алкоголятов или [c.43]

    На реакционную способность спирта могут оказывать влияние и стерические факторы при сольватации иона щелочного металла, образующегося по уравнению (2). Очевидно, уменьшение сольвата-ционной способности веществ в порядке ЕЮН> шо-РгОН> >пгрет-ВиОН совпадает с уменьшением реакционной способности. Возможно, что в таких системах важную роль играют и электронные, и стерические факторы. Реакции двух- и трехвалеитиых металлов со спиртами могут протекать энергично и с выделением тепла, но для таких реакций обычно требуются катализаторы или инициаторы. Общепринятое объяснение этого явления заключается в том, что поверхность металла покрывается непроницаемой окис-ной пленкой, которая препятствует взаимодействию металла со спиртом, а инициаторы как бы очищают поверхность металла. В качестве наиболее известных примеров можно привести реакции с магнием и алюминием [1]. Для инициирования реакции с магнием обычно добавляют следы иода (ср. реакцию Гриньяра) лучше пользоваться сухим спиртом. Хорошим инициатором для алюминия является хлорид ртути(П), который, по-видимому, образует на поверхности алюминия амальгамы. Недавно Турова и др. [2] сообщили о получении этоксида бериллия реакцией этанола с бериллием в присутствии хлорида бериллия, или иода, или хлорида ртути(П). Однако попытки заставить лантан [3], церий [4] или торий [14] взаимодействовать со спиртами к успеху не Привели. [c.227]

    Фарис и Штрассель [396] для ускорения и облегчения очистки плутония висмутфосфатным методом добавляют яеред восстановительным осаждением раствор солей церия (ИI) (в количестве 1—5 г л), а перед окислительным осаждением продуктов деления — раствор солей ртути(П) (в количестве 1—5 л). [c.274]

    Окиси и гидроокиси Сн, Zii, ]lg, РЬ, Л1, Fe, U полностью осаждают висмут из слабоазотнокислого раствора при кипячении [1040], а гидроокиси бериллия и кадмия и окиси магния и цннка — даже при комнатной температуре [1347]. Нитраты висмута, цирт опня, меди и никеля гидролизуются окисью ртути [958]. ( сульфатами алюминия, титана и четырехвалентного церия окись ртути взаимодействует с образованием HgSO и соответственно A](OH)j, H2Ti0g-H20 и Се(ОН)з. [c.22]

    Многие другие ионы также осаждаются тетрароданомерку-риатом аммония так, ионы серебра, ртути, свинца, кадмия, мышьяка, сурьмы, олова, осмия, молибдена, вольфрама и цинка дают белые осадки, ионы висмута, родия, платины, хрома, церия и циркония — светло-фиолетовые, ионы золота и иридия — светло-бурые, ионы уранила — светло-желтый, ионы ванадия (V) и железа (II)—серые осадки, ион никеля — светло-зеленый, ион меди — оливково-зеленые кристаллы. Тем не менее синие розетки или иглы кристаллов кобальтовой солн легко различимы под микроскопом даже в присутствии значительных количеств посторонших ионов. Железо маскируют [c.49]

    Нитрозо-2-нафтол. Свойства соединения кобальта с этим реагентом были уже рассмотрены на стр. 31. Обнаружение кобальта 1-нитрозо-2-нафтолом описывается во многих работах [13, 131 — 133, 232, 405, 406, 408, 443, 495, 559, 587, 642, 666, 683, 689, 792, 793, 1047. 1261, 1338, 1360, 1410, 1435]. Реагент образует осадки не только с ионами кобальта, а также с ионами уранила, церия(1 /), ртути(1), ванадия(У), титана(И1), никеля, ртути (И), меди и железа, однако большинство этих осадков растворимо в кислотах, и поэтому обнаружение кобальта с использованием 1-нитрозо-2-нафтола достаточно селективно. Влияние железа и меди устраняют, осаждая ионы трехваленг-ного железа фосфатом натрия, приче.м таким путем устраняется также влияние уранил-ионов медь восстанавливают иодидом калия, а выделившийся иод удаляют прибавлением сульфита натрия. [c.54]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Церий (IV). Церий [IV] восстанавливается [9, 10] перхлоратом ртути (I) до церия (III). При прямом титровании в среде 0,5—6 н. раствора H2SO4 прибавляют AuGlg (катализатор). Точку эквивалентности находят потенциометрически [9] или визуально [10] с использованием N-фенилантраниловой кислоты. При титровании Се раствором Н 2(НОз)2 получаются [9] заниженные на 1—2% результаты. [c.205]

    Для окислительного титрования мышьяка (III) предложено еще несколько реактивов, например иодхлорид хлорамин Т церий (IV) и хлорид ртути (И) . В щелочной среде в присутствии комплексона III (2 М раствор КОН, 0,05 М раствор комплексона III) двухвалентная ртуть окисляет сурьму (III) и мышьяк (III), восстанавливаясь до металлической ртути. Титруют при —0,2 в (МИЭ) с платиновым электродом (кривая титрования имеет форму б). Определению мышьяка этим методом мешает сурьма (сМ. соответствующий раздел). [c.270]

    В щелочной среде (8—107о-ный раствор едкого кали) селен (IV) окисляется раствором феррицианида калия в присутствии катализатора OSO4. Для ускорения реакции рекомендуют нагревать раствор примерно до 40° С, но можно работать и при комнатной температуре. В этом случае лучше добавлять избыток феррицианида и титровать его арсенитом или, наоборот, титровать образовавшийся ферроцианид окислителем — раствором церия (IV). Метод считается достаточно точным — ошибка оценивается авторами примерно в 0,2%. Определению селена мешают теллур (IV), ртуть (II) и таллий (III). [c.294]

    Молекулярный водород не является в растворе сильным восстановителем в отсутствие катализатора. Молекула водорода может расщепляться либо гомолитнческн на два атома водорода, причем в водном растворе энергия, необходимая для этого процесса, вероятно, приблизительно равна той же величине, что и в газовой фазе (около 103 ккал), либо гетеролитически на сильно гидратированные гидрид-ион Н" и протон Н энергия, необходимая для этого расщепления, составляет приблизительно 33 ккал. Гомолитическое расщепление сильно катализируется поверхностями металлов, которые способны образовывать связь с атомами водорода, а когда эта связь не слишком прочна, такие поверхности являются активными катализаторами для реакции гидрогенизации или восстановления. Коллоидальные платина или палладий, а также тонкораздробленный никель в течение многих лет применялись как катализаторы гидрогенизации. Совсем недавно Кельвин [28] показал, что соли одновалентной меди действуют как гомогенные катализаторы восстановления иона двухвалентной меди или бензохннона в пиридиновом растворе. Аналогичная активность была обнаружена для ряда простых или комплексных ионов металлов в растворах из различных растворителей, а также и для некоторых анионов. Так, например, ионы серебра, двухвалентных меди и ртути, перманганат-и гидроксил-ионы и некоторые комплексы тех же ионов металлов являются в водных растворах катализаторами реакций восстановления ионов бихромата, перманганата, иодата, ионов четырехвалентного церия, двухвалентных меди и ртути, а также катализаторами некоторых реакций обмена и конверсии. В органических растворителях медные или серебряные соли органических кислот выступают в роли катализаторов для аналогичных реакций дико-бальтоктакарбонил Со2(СО)8 служит катализатором реакций гидроформилирования и гидрогенизации, что обсуждается в разд. 4 гл. VIII. В среде аммиака анион является катализатором [c.93]


Смотреть страницы где упоминается термин Церий ртутью: [c.343]    [c.293]    [c.54]    [c.168]    [c.346]    [c.348]    [c.418]    [c.316]    [c.319]    [c.196]    [c.640]    [c.640]    [c.61]    [c.120]    [c.346]    [c.25]   
Новые окс-методы в аналитической химии (1968) -- [ c.204 , c.206 , c.209 , c.210 ]




ПОИСК





Смотрите так же термины и статьи:

Церий

Церит



© 2024 chem21.info Реклама на сайте