Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бимолекулярные реакций, влияние

    Таким образом, в рассматриваемой бимолекулярной реакции влияние заместителей соответствует ожидаемому для механизма (см. гл. 6). Если эта бимолекулярная реакция протекает через замкнутое переходное состояние то важна и координация галоида со ртутью  [c.42]

    Множитель перед фигурной скобкой для бимолекулярной реакции имеет значение порядка 0,1, а для тримолекулярной реакции <С1. Поскольку Ецр/НТо не бывает много больше 1, то ясно, что рекомбинация начинает оказывать влияние лишь тогда, когда Т близко к Т . Для больших 0 совпадение Т происходит в момент времени т, определяемый уравнением (4.34). В случае малых 0 систему (4.29) можно упростить к виду [23] [c.324]


    При числе Дамкелера tf тx = 1 пульсации температуры не успевают достаточно уменьшиться за время протекания химической реакции, и поэтому мы не наблюдаем перегиба у кривой сМ (Т. В случае же малых пульсаций температуры, которые мы рассмотрели раньше (см. рис. 1Л,а), перегиб возникает всегда. Таким образом, можно сказать, что влияние пульсаций температуры в случае их малой интенсивности на бимолекулярную реакцию менее сильное, чем на мономолекулярную. [c.183]

    Рассмотрим влияние катализатора на скорость реакции (рис. 105). Пусть в отсутствие катализатора протекает простая одностадийная бимолекулярная реакция (рис. 105, а, кривая I) [c.406]

    Влияние растворителя на скорость моно-и бимолекулярных реакций [c.297]

    Влияние диэлектрической проницаемости среды. 1. Ионы — точечные заряды 2а и гв, сближающиеся на расстоянии гдб, среда — бесструктурный диэлектрик с диэлектрической постоянной е, влияние ионной атмосферы не учитывается, т. е. х = О, к — константа скорости бимолекулярной реакции между А и В Каъ как сомножитель входит в к). За принимают е=1 или е = оо п к=Лп к - -/ I [c.95]

    Уравнение, подобное (70), будет описывать влияние давления и на отношение скоростей бимолекулярных реакций такого вида  [c.185]

    Экспериментальные данные свидетельствуют о том, что кинетика реакций Арбузова, проведенных в различных растворителях, хорошо описывается уравнением для бимолекулярной реакции. Таким образом, с точки зрения теории переходного состояния можно ожидать ускорения реакций Арбузова при проведении их под высоким давлением. Изучение влияния давления на скорость изомеризации триэтилфосфита при 80 °С в растворе толуола в присутствии этилиодида привело к следующим результатам (табл. 23). [c.192]

    Отклонения от законов идеальных растворов наиболее существенны в случае ионов. В элементарных реакциях также можно ожидать заметных отклонений от законов идеальных растворов для реакций ионов. Применим (17.16) для выяснения влияния ионной силы раствора на константу скорости моно- и бимолекулярных реакций между ионами. Для мономолекулярных реакций получаем  [c.271]

    Р И с. У-18. Начальные скорости бимолекулярных газовых реакций. Влияние [c.406]

    Рассмотрим реакцию атома или радикала X с двухатомной молекулой в результате которой получается новая молекула XV и атом, или радикал, 2. Эксперимент показывает, что все бимолекулярные реакции этого типа протекают быстрее с увеличением температуры. Это влияние температуры находит свое выражение в эмпирическом законе Аррениуса. Скорость образования XV пропорциональна произведению концентраций [c.308]


    Важным научным событием в химии стало появление в 1884 г. книги Якоба Вант-Гоффа Очерки по химической динамике , где автор обобщил данные кинетических исследований, рассмотрел кинетические законы протекания мономолекулярных и бимолекулярных превращений, влияние среды при протекании реакций в растворах и явления, которые он назвал возмущающими факторами . Большой раздел- очерков посвящен влиянию температуры. Вант-Гофф вплотную подошел к закону, который несколько лет спустя обосновал Сванте Аррениус. Из соотношения для химического равновесия и температуры [c.19]

    Компенсационный эффект отсутствует для газофазных реакций атомов и радикалов с молекулами, не наблюдается он и для радикальных реакций в растворах, когда один из двух реагентов - неполярная частица. Один из источников этого эффекта - влияние среды на элементарный акт полярных частиц. Константа скорости бимолекулярной реакции в растворе зависит от константы ассоциации частиц АХв, амплитуды колебания частиц а V p и диэлектрической проницаемости е. Все [c.234]

    Из-за большого объема переходного состояния и рассредоточенности в нем заряда взаимодействие с протонными растворителями с образованием сильных водородных связей происходит в значительно меньшей степени, чем взаимодействие меньших по размеру анионов с этими растворителями. Вследствие этого бимолекулярные реакции анионов, протекающие через промежуточное образование большого поляризуемого активированного комплекса, содержащего этот анион, осуществляется в апротонных полярных растворителях гораздо быстрее, чем в протонных [12]. Некоторые примеры влияния водородных связей на скорость реакций нуклеофильного замещения в протонных растворителях приведены в табл. 2. При этом надо подчеркнуть следующее. [c.13]

    В реакциях (5.23) и (5.24) результирующий заряд не изменяется, тогда как в реакциях (5.22) и (5.25) заряды соответственно создаются и нейтрализуются. Другие примеры влияния природы растворителей на скорость моно- и бимолекулярных реакций элиминирования приведены в работах Хьюза и Ингольда [16, 44]. Для большинства изученных реакций галоген- [c.213]

    Обычно влияние растворителей на константу скорости бимолекулярной реакции Дильса — Альдера очень мало. Как правило, при замене неполярного растворителя на полярный скорость реакции возрастает только в 3—15 раз [34, 35, 121 — 130, 531—537]. [c.237]

    В работе [580] влияние растворителя на скорость бимолекулярных реакций переноса атома водорода типа —Х-  [c.280]

    Уравнение (5.87) в общем виде описывает влияние растворителей на скорость бимолекулярных реакций биполярных соединений. Если в этом уравнении опустить второе стоящее в скобках слагаемое, учитывающее вклад второго реагента В, то получим уравнение, пригодное для описания мономолекулярных реакций биполярных молекул А. Классическим примером таких реакций является сольволиз 2-хлор-2-метилпропана ( а = 7,Ь. 10-30 к л-м или 2,1 Д). Эту 5к1-реакцию изучали в самых разнообразных растворителях, в том числе и в бинарных смесях [c.289]

    Константу скорости такой бимолекулярной реакции в растворителе 8 можно выразить через константу ее скорости в стандартном растворителе О соответствующие коэффициенты активности переноса растворителя. Уравнение (5.115) позволяет оценить влияние растворителя на скорость реакции, обусловленное изменением степени сольватации взаимодействующих аниона V и неэлектролита КХ, а также активированного комплекса анионной природы [УКХ ] . При замене одного растворителя на другой анионные и незаряженные активированные комплексы ведут себя точно так же, как и настоящие анионы и неэлектролиты близкого строения. Анионные активированные комплексы типа [УКХ ] должны обладать всеми свойствами больших поляризуемых анионов и, следовательно, лучше сольватироваться в поляризуемых биполярных растворителях, чем в протонных средах. [c.326]

    Инициирование. Самоинициирование. Для окисления тщательно очищенных олефиновых углеводородов требуется образование активных центров или свободных радикалов, вызывающих инициацию цепей. Подобное условие, в настоящее время не вполне ясное, является неотъемлемым свойством олефинового углеводорода. Некоторые высокореакционноспособные олефины, например, полиены, обнаруживают особенную способность образовывать такие инициирующие центры, и поэтому обладают высокой степенью окисляемости. Процесс инициирования, возможно, протекает через бимолекулярную реакцию между олефином и кислородом [12] и, следовательно, концентрация кислорода должна оказывать влияние на эту определяющую скорость реакции стадию, что экспериментально установлено для альдегидов [32]. [c.290]

    Как было пока 1ано на примере низших углеводородов, наиболее существенное влияние высокого давления на распределение продуктов сказывается в увеличении выходов тех из них, образование которых можно рассматривать как результат отщепления водорода метоксильными, этоксильными и пропоксильными радикалами. С одной стороны, повышение давления снособствуот протеканию реакции при таких температурах, когда эти радикалы оказываются белое устойчивыми к мономолекуляр-ному разложению. С другой стороны, увеличение концентрации углеводорода благоприятствует бимолекулярной реакции отщепления водорода. [c.337]


    Следует ожидать, что для соответствующих нуклеофильных реагентов этот первый порядок реакции должен был бы быть заменен бимолекулярным замещением. Кинетика показывает некоторые отклонения, которые подтверждают предположение о незначительном влиянии бимолекулярной реакции [90,197]. Однако до сих пор еще не показана достаточно определенно роль реакции бимолекулярного замещения для иона арилдиазопия [С1Х]. [c.476]

    Оба эти механизма описываются одинаковым кинетическим уравнением только до тех пор, пока диссоциация Ij находится в состоянии термического равновесия и число имеющихся в наличии атомов иода определяется термической константой равновесия согласно уравнению (22-23). При более высоких температурах диссоциация усиливается, и это дает такой же результат, как и повыщение константы скорости бимолекулярной реакции. Дж. Салливэн рещил проверить обе теории, изменяя концентрацию атомов иода по сравнению с нормальной, соответствующей термической диссоциации Ij. Он осуществил это при помощи ртутной лампы, пары которой излучают свет с длиной волны 578 нм, вызывающий диссоциацию Ij. Этот свет не должен оказывать на реакцию заметного влияния, если она протекает по бимолекулярному механизму, лишь несколько понижая концентрацию Ij. Но если реакция действительно вклкэчает стадию тримолекулярных столкновений с атомами иода, скорость реакции должна возрастать с интенсивностью облучающего света, поскольку при этом образуется больше атомов иода. [c.381]

    Между тримолекулярной реакцией (2.83) и внешне аналогичной бимолекулярной реакцией (2.53) имеется важное отличие — в бимолекулярном процессе (2.53) молекула А2А3 находится в сильно связанном состоянии и влияние обратного процесса пренебрежимо мало. В процессе типа (2.83) молекула АдАд в начальный момент связана слабо и при последующих столкновениях может легко диссоциировать (рис. 12). Поэтому и скорость процесса (2.83) в отличие от (2.53) определяется не одним столкновением, а последовательностью столкновений и механизмом энергоотвода в момент прохождения системой узкого лшста ( горла ). [c.84]

    При обсуждении влияния различных факторов на состав смеси олефинов, находящейся в фотостационарном состоянии, и на скорость достижения этого i) тoяния интерпретация экспериментальных результатов основывается на анализе скоростей элементарных стадий. При формальном описании элементарных фотохимических процессов используют уравнения скоростей моно- и бимолекулярных реакций. Поскольку кинетика фотохимической изомеризации ранее не рассматривалась подробно, приведем характеризующие ее кинетические уравнения. [c.75]

    Как отмечалось в 8, неравновесные бимолекулярные реакции должны описываться микроскопическими кинетическими ураинениями. Решение атих уравнений требует информации о зависимости сечений реакций от энергии различных степеней свободы. Поэтому проведенные к настоящему времени модельные расчеты неравновесных эффектов основаны на модельных представлениях о зависимости сечений от поступательной или колебательной энергии [98]. Что касается влияния нарушения максвелловского распределспия на скорость бимолекулярной реакции, ю оно сравнительно мало, если энергия активации заметно превышает к [71]. С другой стороны, следует ожидать, что неравновесные аффекты, обязанные нарушению больцмановского распределения по колебательным состояниям реагентов, будут значительно больше. Это связано с тем, что времена колебательной релаксации намного больше времен поступательной релаксации, и поэтому вполне вероятно, что столкновения не будут успевать восстанавливать равновесное распределение, нарушаемое реакцией. Мы раесмотрим этот вопрос в рамках фспомено.логического подхода, заменяя сложную систему кинетических уравнений для заселенностей более простыми уравнениями для концентраций молекул, способных в различной степени участвовать в реакции. [c.146]

    Зависимость отношения с/с (Г) от Т/т в случае а )3 = 10, w/w T) 10 показана на рис. 7.1,6. Сравнение кривых на рис. 7.1,а и б позволяет сделать вывод о том, что для характеристики влияния пульсаций температуры на скорость химической реакции необходимы по крайней мере два критерия подобия а / и tf/Тх, причем предельное значение параметра при котором необходимо учитывать пульсации температуры, зависит от интенсивности последних. Кривые с/с (Г) для бимолекулярной реакции в случаях tfhx = 10 и имеют перегиб, в случае же tflr = 1 пе- [c.182]

    Порядок процесса зависит от природы инициируюш,ей стадии 1 и стадии обрыва 4. Рассмотрим ряд случаев и покажем, что порядок процесса может изменяться от О до 2. Пусть а — радикал, ведущий цепь (а аналогичен R(2)), ар — радикал, который распадается при термическом превращении (Р аналогичен Ro)). Следует учесть (см. гл. И и III), что стадия зарождения цепи может быть мономолекулярной (или бимолекулярной) реакцией, а обрыв цепи — бимолекулярной (или тримолекулярной) реакцией. Влияние характера зарождения и обрыва цепи на порядок радикально-цепного процесса можно проследить на основе приведенных ниже данных  [c.72]

    Выше рассматривались случаи, когда сама реакция служила причиной возникающих отклонений от равновесия. Ei последнее время интенсивно развиваются физические методы стимулирования газофазных реакций, в частности лазерная накачка в ИК-диапазоне. При решении задач этого направления принципиальное значение имеют вопросы кинетики заселенностей и, в частности, колебательной кинетики, так как любое воздействие на вещество (тепловое, химическое, электронный удар, оптическая накачка) приводит к перераспределению заселенности уровней, которые определяют кинетику и механизм химических реакций. Широко проводимые в настоящее время исследования касаются самых различных аспектов кинетики в существенно неравновесных условиях и включают а) изучение вида функций распределения по ко.пебательным уровням б) определение общей скорости релаксации колебательной энергии в) нахождение зависимости неравновесного запаса колебательной энергии от скорости накачки вненпшм источником, приводящим к разогреву колебаний г) анализ взаимного влияния колебательной релаксации и химического процесса (диссоциация молекул, бимолекулярная реакция компонент смеси), а также, например, генерации на колебательно-вращательных переходах. [c.66]

    Наиболее существенной переработке подвергнута гл. Ill, в которой рассматриваются элементарные химические реакции. С более общих позиций, чем в предыдущих изданиях, излагается вопрос о расчете абсолютных скоростей реакций. Метод активированного комплекса (теория переходного состояния) приводится лишь как один из существующих подходов к решению этой задачи. Проанализирован вопрос о границах применимости теории переходного состояния. Даны сведения о новых подходах к расчету абсолютных скоростей реакций — теории мономолекулярных реакций Райса, Рамспергера, Кесселя и Маркуса, о методах расчета динамики газовых бимолекулярных реакций. В 3 гл. Ill приводятся основы диффузионной теории бимолекулярных реакций в растворе. При описании основных типов элементарных реакций, в том числе фотохимических реакций, использованы подходы, основанные на рассмотрении орбитальной симметрии и граничных орбиталей. Расширено изложение клеточного эффекта в свободнорадикальных реакциях, где обнаружены такие важные эффекты, как химическая поляризация ядер и влияние магнитного поля на направление превращений свободных радикалов. [c.5]

    Устаноилеио, что восстановление аэосоединений, несмотря иа то, что в нем принимают участие три молекулы, является бимолекулярной реакцией, так как оно протекает в две стадии На первой стадии образуется с определенной скоростью гидразосоединенне, которое затем с неизмеримо большей скоростью восстанавливается до амина [30] Вероятно, на скорость рассматриваемой реакции огромное влияние оказывает наличие н растворе иоиов С1 [31]. [c.122]

    Влияние растворителя иа скорость MOHO-и бимолекулярных реакции [c.297]

    Значительную информацию о бимолекулярных реакциях можно получить, используя метод молекулярных пучков. Простейший вариант применяемых для этой цели приборов схематически изображен на рис. 10.8 А и В — источники молекулярных пучков двух реагируюш,их ве-ш,еств, которые сталкиваются в области С. Столкновения происходят в камере, которая откачивается мош ным насосом, так что столкновения происходят практически только между молекулами из источников А и В. Молекулы продукта реакции и упругорассеянные молекулы исходных веществ регистрируются в В. Влияние изменения угла сближения молекул можно исследовать, передвигая А или В, а влияние изменения величины относительной скорости можно определять, применяя селекторы скорости (рис. 9.5) на выходе пучков из Л и . Имеет значение также ориентация молекул при соударении влияние ориентации на скорость реакции можно обнаружить в опытах с молекулами, обладающими дипольными моментами (разд. 14.13), так как в этом случае молекулы можно ориентировать, используя электрическое поле. Константы скорости газовых реакций представляют собой величины, усредненные по всем направлениям сближения двух молекул и по разным энергиям столкновений. Соударяющиеся молекулы могут также иметь разные количества колебательной и вращательной энергий, и вероятность реакции будет зависеть от внутреннего состояния молекул. В экспериментах с молекулярными пучками влияние этих разнообразных факторов на вероятность реакции можно изучать по отдельности. [c.306]

    БИМОЛЕКУЛЯРНЫЕ РЕАКЦИИ В РАСТВОРАХ ВЛИЯНИЕ СРВДЫ [c.205]

    Образование активированного комплекса из двух частиц-реагентов сопровождается изменением объема. Поэтому внешнее давление влияет на константу скорости бимолекулярной реакции. Поскольку в жидкости в силу межмолекулярного взаимодействия существует внутреннее давление порядка 10 -10 Па (в I4 при 293 К оно составляет 3,48 10 Па), то для ощутимого воздействия на жидкость приходится создать внешнее давление порядка 10 -10 Па. Изучение влияния давления на протекание реакции позволяет получить сведения об изменении объема системы при образовании активированного комплекса. Измеряя константу скорости реакции А ксп при разных давлениях д находят Д Кэ сп из зависимости [c.210]

    Опубликованы обзоры, посвященные изучению влияния растворителей на с н-анги-дихотомию бимолекулярных реакций элиминирования в ациклических и циклических (со средней величиной цикла) бромидах, тозилатах и ониевых солях [395, 693], поэтому эта тема будет затронута здесь только вкратце. Как правило, сик-элиминирование в существенной степени идет только в недиссоциирующих растворителях, а диссоциирующие растворители способствуют обычному механизму анг -элимини-рования. В соответствии с механизмом (5.151а) нетипичное син-элимин ирование в недиссоциирующих растворителях обусловлено ассоциацией ионной пары, благоприятствующей образованию циклического шестичленного активированного комплекса [395]. [c.363]


Смотреть страницы где упоминается термин Бимолекулярные реакций, влияние: [c.300]    [c.182]    [c.234]    [c.134]    [c.106]    [c.299]    [c.348]    [c.395]   
Принципы органического синтеза (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции бимолекулярные



© 2024 chem21.info Реклама на сайте