Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород электронная структура

    По электронному строению молекула S2 подобна молекуле О2. Магнитные свойства последней указывают на наличие в ней двух неспаренных электронов. При четном числе внешних электронов в атоме кислорода (6) это возможно лишь для связи простой ( O—O ) или тройной ( O=O ). Так как длина простой связи О—О составляет около 1,50 А, а в молекуле О2 она равна 1,21 А, связь должна быть тройной. Возникновение структуры 0=0 связано с затратой энергии для перевода неспаренных электронов на более высокий энергетический уровень (3s) и преодоления их взаимного отталкивания (из-за параллельности спинов). Однако такая затрата перекрывается энергией образования тройной связи. Как следует из спектральных данных, переход от приведенной выше к обычно принимаемой для молекулы кислорода электронной структуре 0=0 требует затраты 22 ккал/моль. Эта структура является, следовательно, не основной для молекулы кислорода, а возбужденной (с энергией диссоциации 97 ккал/моль). [c.322]


    Направленность химических связей и распределение электронных плотностей в молекуле воды можно объяснить электростатическим взаимодействием между атомами водорода при образовании связей О—Н и гибридизацией 5- и р-электронных орбиталей атома кислорода. В невозбужденном атоме кислорода электронная структура 2-го слоя 28 2рг 2ру 2ру ) описывается следующим образом 252-электроны образуют сферическое облако над электронным облаком 1-го слоя (15 ), а плотность заряда электронов р-подуровня симметрично распределена в форме гантелей вдоль осей х, у, г, расположенных под углом 90° относительно друг друга. Молекула [c.7]

    В нуклеиновых кислотах основными хромофорами являются пуриновые (аденин и гуанин) и пиримидиновые (цитозин и тимин у ДПК, цитозин и урацил у РПК) азотистые основания нуклеотидов. Наряду с к —< т1 -переходами (основная полоса при 260 нм) вклад в обш ее поглош ение дают и п —> т1 -переходы ( плечи в области 280 - 320 нм) с участием неподеленной пары электронов гетероатомов азота и кислорода. Электронную структуру нуклеотидных оснований исследовали с помош ью метода молекулярных орбиталей, в том числе с учетом взаимодействия л-электронов. В результате удалось получить значения плотностей зарядов, локализованных у отдельных атомов. На основании этих данных можно судить о связи реакционной способности с отдельными участками молекулы (А. Пюльман, Б.Пюльман). Так, оказалось, что электрон-акцепторные свойства аденина обусловлены в основном атомом С в положении 6, а электрон-донорные свойства — атомом С в положении 8. Эта закономерность также подтверждается и на примере пиримидиновых [c.363]

    Хлор образует целую серию оксианионов СЮ, СЮ , СЮ3 и СЮд, в которых проявляет последовательный ряд положительных степеней окисления. Хлорид-ион, С1 , обладает электронной структурой благородного газа Аг с четырьмя парами валентных электронов. Указанные выше четыре оксианиона хлора можно представить себе как продукты реакции хлорид-иона, СГ, в качестве льюисова основания с одним, двумя, тремя или четырьмя атомами кислорода, каждый из которых обладает свойствами акцептора электронов, т.е. льюисовой кислоты  [c.482]

    В некоторых случаях, без учета резонанса структур, в рамках метода ВС может получаться качественно неправильное описание электронной структуры молекулы. Так, для бензола ни одна из двух классических формул Кекуле не отражает реальной симметрии молекулы, а также ее физических и химических свойств. Другой пример — диоксид углерода СО2. Длина связи углерод — кислород в нем равна 0,115 нм, тогда как длина нормальной двойной связи С=0 (в кетонах) равна 0,122 нм, а расчетная длина тройной связи С = 0 — 0,110 нм. Т. е. связь углерод — кислород в СО2 оказалась промежуточной между двойной и тройной, что можно объяснить в терминах концепции резонанса  [c.169]


    Эти исследования показали, что пиролиз и окисление нефтяного сырья кислородом воздуха приводят не только к изменениям в групповом и элементарном составе тяжелых остатков. При этом происходят глубокие изменения в электронной структуре атомов, которые можно проследить на электрических свойствах коксов, получаемых из этих остатков. [c.218]

    Эффективность присадки зависит от валентного состояния и положения элементов в молекуле присадки, наличия функциональных групп, их синергизма и других факторов. Применение фосфор-, серу-, кислород- и азотсодержащих соединений в качестве присадок к смазочным маслам тесно связано с особенностью электронной структуры этих элементов. Взаимодействие их с металлической поверхностью деталей двигателя приводит к модифицированию последней (изменению структуры) и за счет образования защитных пленок обеспечиваются противокоррозионные, противоизносные и противозадирные свойства указанных соединений в растворе масел. Кроме того, присадки, содержащие эти элементы, стабилизируют масло, обрывая цепь окисления по реакции с пер-оксидными радикалами и разрушая гидропероксиды. [c.9]

    При сравнении активности некоторых окислов металлов замечено, что она возрастает с понижением энергии связи кислорода, которая зависит от легкости изменения валентного состояния катиона металла в окисле, определяемого его электронной структурой. Отсюда вытекает возможность регулирования каталитической активности окисных катализаторов путем введения добавок. Добавка окислов, содержащих более электроотрицательный катион, уменьшает энергию связи кислорода и соответственно повышает каталитическую активность, причем последняя возрастает с увеличением порядкового номера промотирующего металла. [c.35]

    Если водород в соединении замещен другим атомом или группой атомов, то изменяется электронная структура молекулы и теплота сгорания ссединения увеличивается или уменьшается па величину структурной поправки (табл. 4). При этом число перемещенных к кислороду электронов уменьшается на величину р, равную числу электронов, прочно связанных с атомами, замещающими в соединении атомы водорода (например, с атомами кислорода, галогенов и т. п.). Тогда  [c.904]

    Этот небольшой экскурс в проблему поляризации связей не так уж абстрактен. Дело в том, что поляризованные, частично ионные, связи прочнее ковалентных — если выражать их прочность как энергию теплового распада в вакууме. Однако поляризация (М->Ь или Мч-Ь), как правило, резко повышает их способность к различным реакциям замещения при атаке нуклеофильными или электрофильными агентами или реакциям окисления-восстановления в присутствии влаги или кислорода воздуха. С повышением температуры эта кинетическая Нестабильность термодинамически устойчивых связей возрастает. Основная роль обрамляющих групп как раз и состоит в защите основной цепи от подобной атаки. Это достигается двумя путями стабилизацией электронной структуры (т. е. снижением поляризации главных связей) и непосредственно барьерной функцией , которая наиболее четко выражена у элементорганических полимеров с гидрофобными ароматическими радикалами, [c.20]

    Некоторые молекулы имеют как жесткие, так и мягкие центры. Так, в диметилсульфоксиде (рис. В.12) атом кислорода вследствие высокой электронной плотности проявляет жесткие свойства, а атом серы вследствие особенностей его электронной структуры является мягким основным центром. Соответственно жесткие кислоты, как, например, протон, прочно связываются с атомом кислорода. Мягкие кислоты, например соли платины и палладия, образуют прочные координационные соединения с серой. [c.399]

    Рассмотрим электронную структуру оксида азота (I) с учетом того, что его ковалентность определяется не только числом неспаренных электронов, но и наличием у него неподеленной пары электронов. Атом кислорода, имеющий два неспаренных электрона, образует две ковалентных связи с центральным атомом азота. За счет неспаренного электрона, оставшегося у центрального атома азота, последний образует ковалентную связь со вторым атомом азота. Таким образом, внешние электронные слои атома кислорода и центрального атома азота оказываются заполненными здесь образуются устойчивые восьмиэлектронные конфигурации. Но во внешнем электронном слое крайнего атома азота размещено только шесть электронов этот атом люжет, следовательно, быть акцептором еще одной электронной пары. Соседний же с ним центральный атом азота обладает неподеленной электронной парой и может выступать в качестве донора. Это приводит к образованию по донорно-акцепторному способу еще одной ковалентной связи между атомами азота. Теперь каждый из трех атомов, составляющих молекулу N20, обладает устойчивой восьмиэлектронной структурой внешнего слоя. Если ковалентную связь, образованную донорно-акцепторным способом, обозначить, как это принято, стрелкой, направленной от атома-донора к атому-акцептору, то структурную формулу оксида азота (I) можно представить следующим образом О—N—N. [c.124]


    Электронная структура молекулы N0 лучше всего описывается методом МО (см. разд. 4.5.3). Молекула N0 имеет на один электрон больше, чем молекулы N2 и СО этот электрон находится на разрыхляющей орбитали. Таким образом, число связывающих электронов превышает здесь число разрыхляющих на пять. Это соответствует порядку связи 2,5 (5 2 = 2,5). Действительно, энергия диссоциации молекулы N0 на атомы (632 кДж/моль) имеет промежуточное значение по сравнению с соответствующими величинами для молекулы О2 (498 кДж/моль), в которой порядок связи равен двум, и молекулы N2 (945 кДж/моль), где связь тройная. Вместе с тем, по энергии диссоциации молекула N0 близка к молекулярному иону кислорода 0 (644 кДж/моль), в котором порядок связи также равен 2,5. [c.436]

    Такая электронная структура атома кислорода обусловливает большие энергетические затраты на распаривание его электронов, не компенсируемые энергией образования новых ковалентных связей. Поэтому ковалентность кислорода, как правило, равна двум. Однако в некоторых случаях атом кислорода, обладающий неподеленными электронными парами, может выступать в качестве донора электронов и образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. [c.452]

    Сера — элемент шестой группы периодической системы Д. И. Менделеева, по электронной структуре подобен кислороду (рис. 19). [c.111]

    Оксид NjO — малоустойчивое вещество, содержит азот в степени окисления +3, плотность электронного облака которого смещена к более электроотрицательному элементу — кислороду. Одну из возможных электронных структур N 0,3 можно выразить схемой [c.311]

    По сравнению с электронной структурой молекулы азота в молекуле кислорода появляются еще два электрона, которые размещаются на разрыхляющих п -орбиталях (рис. 30). Эти электроны, согласно правилу Гунда, размещаются на двух разрыхляющих орбиталях с одинаковой энергией. Поэтому в молекуле оказывается два неспаренных электрона, что обусловливает ее парамагнитные свойства. В целом же порядок связи в молекуле кислорода равен двум, т. е. [c.60]

    Теперь можно подвести итоги. Немонотонное изменение прочности связи Б ряду двухатомных молекул О Рг не является хаотическим, а закономерно связано с электронной структурой молекул. Энергии диссоциации и межъядерные расстояния изменяются в той же последовательности, что и избыток связывающих электронов в системе (рис. 45). Понятие об ординарной, двойной и тройной связи, сложившееся в химии, отражает существование избытка в одну, две и три пары связывающих электронов. Такова а -связь во Рг, — в О2 и — в N2. Вместе с тем могут существовать связи, не укладывающиеся в понятие целочисленных, такие, как в Нг , F2 02 и др., обусловленные наличием нечетного числа избыточных связывающих электронов. Парамагнетизм молекул кислорода и бора полностью объясняется теорией МО на основе правила Гунда. [c.123]

    Поэтому при образовании молекулы азота обобществляются три пары электронов (тройная связь N=N). Атом кислорода, электронная структура которого s 2s 2p , должен иметь два спаренных электрона в одной из трех 2р-орбиталей. Таким образом, он обладает лишь двумя неспаренными электронами, которые участвуют в обраюза-нии химической связи. Вследствие этого в молекуле кислорода общими являются две пары электронов (двойная связь 0=0). [c.44]

    Пенланд и сотрудники [159] изучали инфракрасные спектры комплексов мочевины для определения в них координации через атом азота или кислорода. Электронную структуру мочевины можно представить резо- [c.252]

    Рассмотрим электронную структуру оксида азота(I), причем электроны отдельных атомов будем попеременно обозначать точками или крестиками. Атом кислорода, имеющий два неснаренных электрона, образует две ковалентных связи с центральным атомом азота  [c.131]

    Рассмотрим, например, электронную структуру молекулы азотной кислоты HNOз. В этой молекуле атом водорода связан с атомом кислорода ковалентной связью  [c.139]

    Здравый смысл подсказывает, что описание этого иона требует участия всех трех структур. Но поскольку они не эквивалентны, символ резонанса больше не означает необходимости их равномерного смешивания, а лишь указывает на самую необходимость смешивания. Таким образом, двусторонняя стрелка не содержит количественной информации. Когда мы переходим к полуколичественному описанию электронной структуры молекул, приходится указать, что структура III дает больший вклад в резонансный гибрид нитроамидного иона, чем каждая из эквивалентных структур I и II, потому что в структуре III оба формальных отрицательных заряда расположены на атомах кислорода. [c.479]

    Использование электронных спектров для получения структурной информации прекрасно иллюстрируют результаты исследования электронной структуры иона ванадила [38]. При интерпретации спектра ва-надил-иона VO полагают, что в связи V — О имеет место значительное я-связывание. Соединения, в которых, согласно данным рентгеноструктурного анализа, содержится группа VO , дают сходные электронные спектры переноса заряда и в твердом состоянии и в растворе. Поэтому можно предположить, что водные растворы этих комплексов содержат группы УОЩ О) , а не ViH O) . Протонирование VO в принципе должно заметно влиять на спектр переноса заряда. Предполагается, что кислород не протонируется, поскольку его основность ослаблена из-за образования я-связи с ванадием. Полный расчет по методу МО для VOiHjO) представлен в статье [38], там же дано отнесение полос в спектре водного раствора V0S04-5H20. Аналогичные исследования других окси-катионов также свидетельствуют о значительном п-связывании металл — кислород [39] и помогают установлению электронной структуры этих частиц. [c.108]

    Нами была рассчитана электронная структура молекулы ди-метилсульфоксида (аналога диалкилсульфоксидов) и предпринята попытка расчета электронной плотности на атомах серы и кислорода в молекулах сульфоксидов тиофана и тизциклогексана.  [c.42]

    Для расчета электронной структуры и электронной плотности на атомах серы и кислорода был использован полуэмпирический вариант метода ССП МО ЛКАО в приближении полного пренебрежения дифференциальным перекрыванием (ППДП) без учета вклада 3(1-А0 серы. Геометрия основного состояния диметилсуль-фоксида известна достаточно хорошо, имеет точечную группу симметрии Сз. В качестве базисных функций были взяты Зз- и Зр-орбитали серы и 2з-н 2р-орбитали кислорода, с целью сокращения базисного набора одна зр —гибридная орбиталь углерода от каждой группы СН3. Атомные параметры взяты т литературных данных. При расчете циклических сульфоксидов изменяли угол связи между углеродными атомами от 96,4 до 120°. [c.42]

    Роль химической природы растворителя в адсорбционном процессе некоторые исследователи связывают с особенностями химического строения цеолита СаА. Стенки полостей цеолита и его окна образованы атомами кислорода, а атомы кремния и алюминия находятся в глубине алюмоснликатных скелетов за ионами кислорода. Отрицательный заряд алюмосиликатного аниона рассредоточен на внутренних связях 0-А1, а компенсирующий положительный заряд сосредоточен в обменных катионах, находящихся в полостях цеолитов в непосредственной близости к стенкам и окнам, что приводит к образованию в полостях цеолитов областей с резко выраженными не-однородн1лми электростатическими полями. Это и определяет природу взаимодействия цеолита с молекулами разной электронной структуры. [c.288]

    При приближенном решении задачи большую помощь может оказать знание некоторых экспериментальных характеристик системы (атома или молекулы), на основании которых формируются предварительные представления об ее электронной структуре. Например, парамагнетизм молекулярного кислорода 0 указьтает на существование в основном состоянии спинового магнитного момента, а следовательно, и на не-замкнутость электронной оболочки. В этом последнем утверждении предполагается наличие некоторых предварительных, а возможно, и интуитивных представлений об электронной структуре молекулы, [c.73]

    Решение. Прежде всего запишем льюисову (валентную) структуру молекулы. Полное число валентных электронов в ней равно 42 8 от атома ксенона, по 7 от каждого из четырех атомов фтора и б от атома кислорода. Валентная структура молекулы ХеОР показана на рис. 21.7, а. Мы видим, что в валентной оболочке Хе содержится 12 электронов. Следовательно, можно предположить, что шесть электронных пар образуют октаэдрическую конфигурацию. Одна из них осуществляет связь с атомом кислорода. [c.288]

    Подобная близость свойств объясняется тем, что в высшей степени окисления атом элемента, находящегося в третьем периоде (в главной подгруппе) и атомы элементов побочной подгруппы приобретают сходное электронное строение. Например, атом хрома имеет электронную конфигурацию 1з Когда хром находится в степени окисления 4-6 (например, в оксиде СгОз), шесть электронов его атома (пять М- и один 4б-электрон) вместе с валентными электронами соседних атомов (в случае СгОз — атомов кислорода) образуют общие электронные пары, осуществляющие химические связи. Остальные электроны, непосредственно не участвующие в образовании связей, имеют конфигурацию отвечающую электронной структуре благородного газа. Аналогично у атома серы, находящегося в степени окисления -Ьб (например, в триокси-де серы ЗОз), шесть электронов участвуют в образовании ковалентных связей, а конфигурация остальных (1з 28 р ) также соответствует электронной структуре благородного газа. Короче говоря, сходство в свойствах соединений элементов побочной подгруппы и элемента третьего периода той же группы обусловлено тем, что их ионы, отвечающие высшим степеням окисления, являются электронными анапогами. Это легко видеть из данных табл. 21.1. [c.497]

    Кроме этого, сама силоксановая связь отличается особенностями электронного строения. Орбитали кремния под влиянием заместителей могут становиться более сжатыми или более диффузными, в зависимости от знака и величины эффективного заряда атома. Это сказывается на электронном распределении и участии валентных Зз-, Зр- и Зй-орбиталей <ремния в электронной структуре и свойствах силоксановой группировки. В зависимости от природы заместителя у атома кремния и структуры соединения валентный угол мостикового атома кислорода в группировке 81-О-81 изменяется от 86° до 180°. [c.595]

    Эта повышенная прочность обусловлена двумя главными причинами 1) взаимодействием молекул через водородные связи и 2) углом между свя зями в молекуле воды благодаря хр -гибридизации внешних электронных обо лочек атома кислорода близким к 109,5° (тетраэдрическому углу), в то время как в молекулах остальных гидридов из-за отсутствия гибридизации углы близки к 90°. Благодаря яр -гибридизацпи и тетраэдрическому углу атом кислорода каждой молекулы Н2О в структуре льда связан двумя связями череа заполненные лр -орбитали с атомом водорода двух соседних молекул воды Одновременно каждая молекула воды еще двумя связями своих атомов водорода соединена с двумя другими молекулами воды, В результате коорди национное число кислорода в структуре льда равно четырем и каждая молекула воды окружена четырьмя ближайшими соседями. Все водородные связи между молекулами энергетически равноценны, и кристаллическая структура льда напоминает структуру алмаза, если атом углерода мысленно заменить на [c.29]

    Предсказание равновесной конфигурации простейших молекул. При предсказании равновесной конфигурации в методе направленных валентностей исходят, как, например, для Н2О, ННз и т. д., из направленности орбиталей одного центрального атома. Тем самым допускают, что атомы, окружающие центральный (назовем их лигандами), не влияют на структуру молекулы. Однако в этом можно сомневаться. Действительно, в последние годы для молекулы Ь хгО устано влена рамо лёкулы р- линейная конфигурация, несмотря на ортогональность роцена 7-электронов атомов кислорода. Замена в молекуле воды атомов Н на изменяет угловую конфигурацию на линейную. При одном и том же центральном атоме валентный угол изменяется в ряду молекул Вар2 - ВаС - ВаВг -> ВаГ . Очевидно, что предсказания равновесной конфигурации, сделанного на основе электронной структуры одного из атомов, недостаточно, так как молекула — результат взаимодействия всех атомов. [c.188]

    Дело в том, что реакция (I) и реакция (2) являются фактически окислительно-восстановительными,при которых происходит перестройка электронной структуры, как атома углерода, так и атома кислорода. В настоящее время принято считать, что в молекуле окиси углерода между атомами кислорода, имеющими свободную 2р-пару электронов и атомом углерода, имеюшим незаполненную 2р-орбиталь, возникает дополнительное донорно акцепторное взаимодействие, изображаемое формулой [c.311]

    Для понимания химического поведения карбонильных соединений следует рассмотреть электроннуй структуру карбонильной группы. Атом углерода, образуя с кислородом а- и л-связи, находится в 5р -гибридном состоянии. Это обусловливает плоское тригональное построение с валентным углом в 120°. Карбонильная группа сильно поляризована в направлении от углерода к кислороду, и ее электрический момент диполя равен 1,066-10- Кл-м  [c.154]

    В случае ковалентно-координационной связи в правило определения формального заряда вносится соответствующая поправка оба электрона принадлежат донору, а не акцептору. Таким образом, атомы азота и кислорода в триметиламиноксиде не несут формального заряда. Однако совершенно очевидно, что вид электронной структуры будет таким же, как указывалось выше, и мы можем выбирать, изобразить ли стрелку или разделенные заряды. Некоторые соединения, например амин-оксиды, можно изображать или тем, или иным способом. Проще использовать разделение зарядов, так как это избавляет нас от необходимости рассматривать как некий другой метод связывания тот путь, который на самом деле ничем не отличается от обычного ковалентного связывания, как только связь уже образовалась. [c.28]


Смотреть страницы где упоминается термин Кислород электронная структура: [c.159]    [c.320]    [c.58]    [c.160]    [c.647]    [c.46]    [c.14]    [c.25]    [c.84]    [c.184]    [c.128]    [c.180]    [c.131]   
Принципы органического синтеза (1962) -- [ c.25 ]




ПОИСК







© 2025 chem21.info Реклама на сайте