Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Предел текучести перехода

    Напряжения, возникающие при данном методе, всегда ниже предела текучести, поэтому опасных внутренних напряжений не возникает, а после правки остаточные напряжения отсутствуют, что обеспечивает стабильность формы вала. Продолжительность выдержки вала при нагреве может составлять 1 —3 ч. За это время упругая деформация переходит в пластическую. В процессе правки индикаторы могут измерять как остаточную (пластическую), так и упругую деформации. [c.160]


    Термомеханический метод правки заключается в том, что до начала нагрева выпуклого участка в вале создают напряжение с помощью механического нажима. При нагреве вал стремится еще больше разогнуться. Выпрямление же вала имеет место только при его охлаждении. Встречая сопротивление со стороны устройства для предварительного нажима, материал в месте нагрева переходит предел текучести раньше, чем при чисто термической правке, и этим самым процесс правки ускоряется. Деформация вала при предварительном нажиме и после правки контролируется индикаторами, устанавливаемыми на концах вала. После полного охлаждения вал освобождается от нажимного устройства для контроля. Нагрев может осуществляться несколько раз. Этот метод позволяет устранять большой прогиб, но в материале вала из-за одностороннего нагрева возникают значительные остаточные напряжения, вызывающие возврат прогиба при отжиге. [c.160]

    Основными факторами, лимитирующими долговечность, а следовательно, и надежность оборудования, являются поломки деталей износ трущихся поверхностей повреждения поверхностей в результате коррозии, действие контактных напряжений и наклеп пластические деформации деталей, вызываемые местным или общим переходом напряжений за предел текучести чли (при повышенных температурах) за предел ползучести. [c.51]

    Обычно упругая система, потерявшая устойчивость, переходит к некоторому новому положению устойчивого равновесия, отличающемуся от первоначального. Этот переход в подавляющем большинстве случаев сопровождался существенными перемещениями, нарушающими возможность нормальной эксплуатации конструкции в связи с возникновением больших пластических деформаций или приводящими к полному разрушению конструкции. При потере устойчивости тонкостенной конструкцией нормальные и касательные напряжения в ее поперечных сечениях могут быть значительно ниже предела текучести. [c.197]

    Из сказанного следует, что непрерывный переход от твердообразных тел к жидкообразным может быть осуществлен как с помощью постепенного уменьшения предела текучести (прочности структуры), так и путем уменьшения разности между двумя ньютоновскими вязкостями. В последнем случае переход может быть осуществлен увеличением вязкости до Т1 акс или уменьшением ее до т)мин. В пределе это будут жидкости с постоянной вязкостью, из которых высоковязкая жидкость может оказаться упругохрупким телом, если время действия напряжения окажется значительно меньше периода релаксации. [c.378]

    Рост взаимодействия между частицами приводит к упрочнению пространственной структуры в дисперсных системах. Жидкообразное тело переходит в твердообразное. Образование структуры обычно связывают с появлением у системы предела текучести Рт — минимальной нагрузки, при которой тело начинает течь. Чем прочнее структура, тем выше предел текучести. [c.187]


    До температуры пластичности Т разрыв полимера происходит без образования сужения, или шейки , в месте разрыва (поперечное сечение образца до разрыва и после разрыва, как и при хрупком разрыве, не изменяется). Выше температуры Тп при переходе через предел текучести Оп развивается пластическая деформация, пока в месте разрыва не образуется сужение и не наступит [c.333]

    Предел упругости Р , являющийся также пределом текучести, определяется как величина напряжения сдвига, при которой кривая е—I без течения (рис. 107) переходит в кривую с течением (рис. 108). Независимым критерием правильности выбора является инвариантность величины Г] , вычисленной по (5) для разных значений Р. При снятии нагрузки (р = 0 при t = il) система не возвращается к исходному состоянию. Конечное состояние отличается от начального на величину остаточной пластической деформации еь Из графика следует, что отношение е к продолжительности действия нагрузки fl равно отношению разностей в уравнении (5), а следовательно  [c.260]

    Определив, что суспензия является устойчивой, переходят к определению ее качества. Пользуясь прибором типа капиллярного вискозиметра, определяют наименьшую пластическую вязкость г]т, условный динамический предел текучести Р и рассчитывают динамическую пластичность суспензий — [c.248]

    Условие малоциклового нагружения появляется не только в случае повышения рабочих напряжений в стенке конструкции за предел текучести ( б - общая пластическая деформация), но и в случае местной пластической деформации, когда в концентраторе напряжений (трещина, надрез, резкий переход формы сечения, сварные швы) значения действующих напряжений превышают и рабочие [c.59]

    Изучая кривые течения, построенные из данных кинетики развития деформации при разных постоянных напряжениях, автор показал, что у битумов при постоянной температуре имеются две области условно упругая и пластической ползучести, разделенные критическим граничным напряжением — пределом текучести Рк-В условно упругой области при кратковременном наложении малых по величине напряжений, ниже предела текучести, развиваются весьма малые обратимые деформации. Однако длительное действие этих напряжений вызывает медленное течение, что характеризует область не как истинно упругую, а как условно упругую, для которой можно измерить высокую истинную вязкость. Переход из этой области в область пластической ползучести осуществляется в узком интервале напряжений. При этом градиент скорости лавинно увеличивается, что указывает на разрушение части связей, образующих пространственную структуру битума. Дальнейшее разрушение имеет место и в области пластической ползучести. Эффективная вязкость является итоговой характеристикой процессов разрушения и тиксотропного восстановления разрушенных связей системы при ламинарном течении с заданным градиентом скорости. [c.73]

    Деструктурирующее воздействие проявляют катионактивные вещества класса высокомолекулярных аминов и диаминов, в первую очередь в отношении битумов I типа. Адсорбируясь на полярных (лиофобных) участках поверхности асфальтенов, амины и диамины способствуют ослаблению или исчезновению взаимодействия между отдельными асфальтенами и тем разрушают коагуляционный каркас битума, что проявляется в изменении структурно-реологических свойств этих битумов в широком интервале температур. Битумы I типа с указанными добавками не обладают эластическими свойствами при отрицательных температурах, переходя из упруго-пластического непосредственно в упруго-хрупкое состояние. В интервале средних температур у битумов исчезает предел текучести, уменьшается вязкость неразрушенной структуры, пропадают тиксо-тропные свойства, снижаются температурные границы перехода в упруго-вязкое и вязкое состояния. [c.220]

    Расчет на прочность может выполняться по предельным напряжениям или по предельным нагрузкам. При расчете по предельным напряжениям считают, что пределом несущей способности конструкции служит достижение максимальным напряжением в любом ее месте величины предела текучести. В этот момент какая-то обычно небольшая часть конструкции переходит в пластическое состояние. [c.82]

    Напряжение Рт называется пределом текучести — это минимальное напряжение сдвига, при котором ползучесть системы переходит в течение. Чем прочнее структура, тем выше предел текучести. Расход жидкости в единицу времени Q, протекающей через трубу при Р < Рт можно рассчитать по уравнению Бингама  [c.157]

    Формулу (3.12) применяют главным образом к металлам, которые после перехода через предел текучести способны к чистой пластической деформации. Для полимеров, которые обнаруживают вязкоупругие свойства, истинная поверхность контакта определяется соотношением [c.124]

    Для характеристики механических свойств структуры в этом случае вводят три параметра минимальный предел текучести статическое напряжение сдвига), соответствующий началу течения жидкости предел текучести по Бингаму динамическое напряжение сдвига по Бингаму) т, максимальный предел текучести напряжение сдвига предельного разрушения структуры), при котором кривая переходит в прямую линию т (рис. 2.4). Значение т равно напряжению, при котором структура в жидкости полностью разрушается. [c.12]


    В принципе, однако, кристаллиты могут расплавиться до перехода в текучее состояние это довольно обычное явление в очень высокомолекулярных полиэтиленах. Оно приводило к курьезам повышение Т с М, резкое увеличение вязкости расплава по закону Т1 и появление истинного или кажущегося предела текучести приписывали. .. повышению Т л с М, [c.322]

    Продолжение прямой части кривой пластичного течения до пересечения с осью абсцисс дает теоретическую точку течения или предел текучести - - максимальный предел текучести, при котором кривая переходит в прямую линию, - представляет собой то напряжение, при котором структура в жидкости разрушается полностью. Все три предела являются характеристикой реологических свойств структуры, существу- [c.426]

    Значительную опасность представляют внутренние механические напряжения в стеклоэмалевых пленках. При напряжениях сжатия, превышающих предел прочности сцепления с нижележащим слоем, образуются межслойные трещины в результате разрыва зоны перехода. Трещины по толщине слоя образуются при напряжениях растяжения в результате превышения технического предела текучести (напряжение, при котором остаточная деформация достигает 0,2%). [c.60]

    Понижение значения работы пластической деформации Р будет происходить в результате увеличения или предела текучести, или скорости механического упрочнения в вершине трещины. В результате каждый из этих факторов при постоянном значении т) будет понижать величину Кх сс и, следовательно, понижать степень сопротивления материала коррозионному растрескиванию. Увеличение перенапряжения анодной реакции (потенциал металла становится более электроположительным) при определенном значении работы пластической деформации Р, согласно уравнению (1.4.3.3), будет приводить к понижению сопротивления коррозионному растрескиванию. Величина анодного перенапряжения является функцией электрохимических условий внутри трещины, контролирующих активно-пассивные переходы, от которых в свою очередь зависит, будет ли происходить растрескивание. Следовательно, коррозионное растрескивание [c.64]

    Являясь истинной физической характеристикой степени консистент-пости смазок, он позволяет более объективно и обоснованно, чем показатель пенетрации, различать смазки по сортам. По нему можно судить о содержании в смазке загустителя и его загущающей способности. Температура, при которой предел текучести становится равным нулю, является истинной температурой перехода консистентной смазки из пластичного в жидкое состояние. Она более обоснованно характеризует пределы применения смазки, чем эмпирический показатель — температура каплепадения. [c.667]

    Некоторые емкости под давлением разрушались по хрупкому механизму, в других случаях отмечались разрушения трубопроводов. Разрушения, названные Тилшем "ударной хрупкостью", происходят в хрупких материалах, которые имеют трещины, царапины, зарубки. Такое разрушение моясет произойти из-за наличия дефекта сварки прн приложении нагрузки ниже предела текучести. Тилш приводит девять конкретных случаев хрупкого разрушения емкостей в химической и нефтехимической промышленности. Температуру фазового перехода он определяет следующим образом "Температура фазового перехода стали - это температура, выше которой сталь ведет себя как преимущественно пластичный материал, а ниже которой - как преимущественно хрупкий материал". Как отмечено тем же автором, температуру фазового перехода сталей трудно точно определить и различные методы ее определения дают разные результаты. Данный вывод отражен в табл. 6.3, в которой автором настоящей книги сделан перевод значений Тилша в единицы СИ. [c.95]

    Если у индивидуальных химических соединений переход из жидкого состояния в твердое, п наоборот, совершается в определенной температурной точке, то у нефтяных многокомпонентных систем из-за постепенного выделения при охлаждении твердых углеводородов (прежде всего парафинов) этот переход менее четок. Предел текучести в этом реологически нестационарном состоянии зависит от длительности выдержки системы в покое. [c.37]

    Необходимо отметить, что твердообразные и жидкообразныо тела отличаются не только наличием или отсутствием предела текучести, но и определенным поведением при развитии деформации. Если для структурированных жидкостей с ростом нагрузки характерен переход к ньютоновскому течению, отвечающему предельно разрушенной структуре, то для твердообразных тел увеличение нагрузки приводит к разрыву сплошности тела и его разрушению. [c.368]

    Дпсперсные системы становятся твердообразными, когда в них начинает проявляться предел текучести и исчезает возможность перехода к состоянию предельно разрушенной структуры без разрыва тела при увеличении напряжений сдвига. Явно выраженный предел текучести наблюдается в пластичных твердообразных телах. Твердообразные системы могут обладать коагуляционной пли коидеисациоиио-кристаллизациоиной структурой. [c.378]

    Температура, при которой предел текучести равен нулю, является истинной температурой перехода смазки из твердого состояния в жидкое. При снятии нагрузки коллоидная структура смазки восстанавливается, хотя прочность ее становится меньше первоначальной. Эта способность восстанавлинать пластичность отражает тиксотроиные свойства смазок. [c.376]

    По современным представлениям [41-44], базирующимся в значительной мере на работах А. Ф. Иоффе, Н. П. Давиденкова и Я. Б. Фридмана, переход металла в хрупкое состояние наблюдается, когда разрушающее напряжение (сопротивление отрыву) становится равным пределу текучести. На микроскопическом уровне хрупкое разрушение происходит путем скола по плоскостям преимущественной ориентации решетки металла [45]. Важная роль при этом принадлежит механизмам ограничения пластического деформирования. Эти механизмы могут иметь различную природ , причем домиктфовакие любого из них определяется совок> пно стью большого числа факторов (температурой, скоростью деформирования, химическим воздействием и т. д). Общепризнанно, что на степень стеснения пластических деформаций оказывают влияние наличие в металле дефектов, конструктивных концентраторов напряжений, повышение плотности дислокаций, мелкодисперсные выделения [46]. [c.25]

    В фазовых контактах сцепление частиц обусловлено близкодействующими силами и осуществляется по крайней мере 10-... 10 межатомными связями вследствие увеличения площади контакта по сравнению с атомным [174]. В зависимости от дисперсности и средней прочности отдельного контакта прочность структуры составляет 10. .. 10 Н/м и более. Образование фазовых контактов можно рассматривать как процесс частичной коалесценции [174] твердых частиц из-за увеличения площади непосредственного контакта между ними с переходом от "трчечного" соприкосновения к когезионному взаимодействию на значитеяы ой площади. Такой переход может осуществляться постепенно, например вследствие диффузионного переноса вещества в контактную зону при спекании. Чаще он происходит скачкообразно, как правило, в тех случаях, кс гда возникновение фазового контакта связано с необходимостью преодоле1 ия энергетического барьера, определяемого работой образования устойчивого в данных условиях зародыша - контакта - первичного мостика между частицами. Возникновение и развитие его могут быть результатом совместной пластической деформации частиц в местах их соприкосновения под действием механических напряжений, превышающих предел текучести материала частиц. Зародыш-контакт может образоваться и при вьщелении вещества новой фазы из ме-тастабильных растворов в контактной зоне между кристалликами - новообразованиями срастание кристалликов ведет при этом к формированию высокодисперсных поликристаллических агрегатов [174,193]. [c.106]

    Примером систем, довольно хорошо подчиняющихся уравнению Бингама, могут служить пасты из глины и консистентные смазки. Однако для большинства структурированных коллоидных систем зависимость йи с1х от Р выражается не прямой, а кривой (рис. X, 6). Причи1 а такого явления заключается в том, что при достижении предела текучести структура разрушается не сразу, а постепеннр по мере увеличения градиента скорости движения жидкости. Очевидно, можно различать три критических напряжения сдвига I) 9/ — первый, или минимальный, предел текучести, соответствующий началу течения (началу разрушения структуры) 2) 0Б — предел текучести по Бингаму, отвечающий отрезку на оси абсцисс, отсекаемому продолжением прямолинейного участка кривой 3) 0макс — максимальный предел текучести, соответствующий значению Р, прй котором кривая переходит в прямую линию. [c.329]

    В области самых малых Р наблюдается течение в практически неразрушенной коагуляционной структуре с огромной вязкостью в 100 миллионов пуаз. Затем вязкость уменьшается с ростом Р, при переходе через предел текучести Рк 25 дин см резко падает в десятки миллионов раз вследствие лавиноподобного разрушения структуры. При этом вязкость уменьшается до предельного наименьшего значения [c.177]

    Известны случаи, когда предел ползучести, т. е. истинный предел упругости, равен нулю, что означает развитие ползучести с наибольшей постоянной (ньютоновской) вязкостью при сколь угодно малых напряжениях ниже предела текучести, подобно коагуляционным структурам, изученным в суспензиях бентолитовых глин в воде. Это наблюдается в металлических монокристаллах, имеющих ярко выраженную пластичность, вызванную наличием в кристаллической решетке плоскостей скольжения. Остаточные сдвиги развиваются по тем плоскостям скольжения, на которых локализованы дефекты кристаллической структуры, что и определяет размер пачек скольжения. При напряжениях выше предела текучести монокристалла ползучесть переходит в обычную, быстро развивающуюся пластическую деформацию. [c.180]

    В пластичных твердообразных телах с возрастанием напряжения наблюдается явно выраженный предел текучести, соответствующий наиболее резкому падению эффективной вязкости и повышению степени разрушения структуры. Наименьшая вязкость достигается выше предела текучести и определяется вязкостью той жидкой среды, в которой разрушается пространственная сетка. Вязкость эта несколько повышена вследствие загущения жидкости равномерно распределенными в ней обломками разрушенной структуры. Таким образом, твердые или твердообразные тела отличаются от жидкостей наличием достаточно прочной пространственной сетки. Непрерывный переход от твердообразных тел к жидкообразным осуществлятется двумя путями уменьшением разности — х и понижением предела текучести. [c.11]

    Механические свойства разрушившегося металла, отобранного из очаговых зон разрушения, следующие. В зависимости от группы прочности исследованных сталей предел их прочности составлял 570-820 МПа, предел текучести 380-615 МПа, относительное удлинение 16-20 %, относительное сужение 58 - 68 %, ударная вязкость при нормальной температуре 0,5-3,4 МДж/м . Указанные механические свойства соответствовали техническим условиям на трубы, кроме предела прочности стали Х70 фирмы Валлурек , имеющей незначительное снижение предела прочности (на 20-30 МПа) по отношению к регламентированному значению (переход через пойму р. Обь). Это проявилось только в единичном случае и поэтому не может быть отнесено к типичным признакам КР. [c.7]

    При высокой температуре наблюдается значительное снижение основных показателей, характеризующих прочностные свойства металлов и сплавов. Крометого, поведение металлов под нагрузкой при высоких температурах резко отличается от их поведения при нормальной температуре внутри производственных помещений. Предел прочности и предел текучести зависят от времени пребывания под нагрузкой и скорости нагружения, так как с повышением температуры металл из упругого состояния переходит в упругопластическое и под нагрузкой непрерывно деформируется (явление ползучее ги). Температуры, при которых начинается 1юл-зучесть, у разных металлов различны. Для углеродистых сталей обыкновенного качества ползучесть наступает уже при температурах выше 375 ° С, для низколегированных с гшшй — при температурах выше 525 ° С, для жаропрочных — при еще более высоких температурах. [c.10]

    Коррозия под напряжением характерна для латуней, и, чем выше содержание в них цинка, тем яснее она выражена. Двухфазные а + Р- или р + усплавы подвергаются коррозионному растрескиванию под действием влажного воздуха. Коррозионное растрескивание а-латуней вызывают аммиачные растворы или воздух, содержащий аммиак. Вредное влияние оказывают цаже незначительные примеси аммиака микробиологического происхождения. Коррозионное растрескивание может быть вызвано и другими коррозионными агентами. Этот вид коррозии наблюдается и у нелегированной меди, содержащей 0,17оР, когда по границам зерен выделяется фосфид меди с низким пределом текучести. Остальные медные сплавы также чуствитель-ны к коррозии под напряжением, но в меньшей степени, чем латунь. Трещины в а-латуни распространяются по границам зерен, в то время как в р-латунях сначала появляется межкристаллитная коррозия, которая через определенное время переходит в транскристаллитную. [c.117]

    Для изготовления металлостеклянных и металлокерамических уплотнений (переходов) обычно применяются аустенитные тройные сплавы Ре—N1— Со, имеющие коэффициенты термического расширения, близкие к соответствующим параметрам стекла или керамики. В работе [117] было исследовано поведение в условиях наводороживания и высокого давления водорода (69 МПа) двух таких сплавов Ре—29 N1—17 Со (ковар) и Ре— 27 N1—25 Со (керамвар), пределы текучести которых после отжига составили 320 МПа. Данные для второго сплава представлены на рис. 20. Оба сплава полностью сохраняли пластичность при испытаниях в водороде [117]. Их структура представлена довольно стабильным аустенитом и не должна проявлять склонность к непланарному скольжению. Этот вопрос следует исследовать в рамках общей проблемы корреляции между типом скольжения и стойкостью к индуцированному водородом охрупчиванию. [c.78]

    ПСЕВДООЖИЖЕНИЕ, способ взаимодействия-потока газа или жидкости (ожижающий агеит) со слоем твердого зернистого материала, при к-ром твердые частицы, взвешенные в потоке, совершают пульсационные и вихревые движения, не покидая пределов слоя. Переход неподвижного слоя в псевдоожиженный происходит при такой скорости потока ш ожижающего агента, при к-рой устанавливается равповесие между силами трепия потока о твердые частицы и весом частиц (первая критич. скорость П.). В этом состоянии слой приобретает текучесть. При увеличении скорости ожижающего агента высота слоя возрастает, повышается его по-розпость 8 (доля объема, занятого ожижающим агентом), но в результате сохранения равновесия между силами трения и весом частиц последние не покидают пределов слоя, а его гидравлич. сопротивление остается постоянным. Частицы начинают выноситься из слоя при скорости потока ю" (вторая крптич. скорость П.), превышающей ги в десятки раз. [c.486]


Смотреть страницы где упоминается термин Предел текучести перехода: [c.129]    [c.565]    [c.377]    [c.42]    [c.15]    [c.178]    [c.10]    [c.30]    [c.114]    [c.217]   
Механические свойства твёрдых полимеров (1975) -- [ c.294 ]




ПОИСК





Смотрите так же термины и статьи:

Изотермический переход через предел текучести

Молекулярная интерпретация явлений перехода через предел текучести и холодной вытяжки

Предел текучести

Текучесть



© 2024 chem21.info Реклама на сайте