Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хемосорбция на неоднородных поверхностях

    Наличие различных кристаллографических плоскостей и направлений, так же как и появление дефектов решетки, несомненно, вызывает неоднородное распределение адсорбционных сил. Эта неоднородность более важна для физической адсорбции, нежели для хемосорбции. Кроме того, при хемосорбции неоднородность поверхности является более важным фактором [c.157]

    Следовательно, количество адсорбированных частиц, которое пропорционально степени заполнения поверхности 0, является логарифмической функцией времени. Экспоненциальное уменьшение скорости сорбции с увеличением количества адсорбированных частиц может быть легко объяснено увеличением энергии активации хемосорбции с увеличением степени заполнения поверхности . Это может происходить за счет взаимодействия между адсорбированными молекулами [51]. Такое объяснение может быть правильным даже в случае однородных поверхностей. Однако значительно более вероятным является предположение, что этот эффект возникает из-за неоднородности поверхности [52, 53]. [c.551]


    Влияние поверхности. Для физической адсорбции имеет значение лишь величина поверхности, но химическая адсорбция— весьма специфичный процесс. Так, например, водород хемосорби-руется не окисью алюминия, а никелем, и кислород не окисью магния, а углеродом. Такое поведение согласуется с предположением, что хемосорбция сходна в общем с химической реакцией. На хемосорбцию оказывают влияние физическое состояние поверхности и ее химический состав. Неоднородность поверхности катализаторов доказывается, например, тем, что теплота процесса постепенно снижается по мере протекания хемосорбции. Поверхность состоит из атомов различной степени насыщенности. Атомы у краев кристаллов, трещин и выступов, вероятно, менее насыщены и, следовательно, более активны. [c.206]

    И. Лэнгмюр в своей теории учитывал только энергетически неоднородную поверхность, считая, что поверхностные частицы с ненасыщенными валентностями создают элементарные участки с более высокими потенциалами. Однако такие молекулы не занимают особого положения с точки зрения геометрии и структуры поверхности. Теория Лэнгмюра сводится к трем постулатам 1) поверхность состоит из ограниченного числа идентичных участков, 2) нет взаимодействия между адсорбированными молекулами и 3) образование хемосорбированного монослоя. Такие условные ограничения значительно лимитируют понимание сути гетерогенного катализа . Хорошо известно, что чем более неоднородна поверхность, тем интенсивнее и с тем большим термическим эффектом протекают адсорбция и хемосорбция, неразрывно связанные с гетерогенным катализом. [c.107]

    Факторы, обусловливающие неоднородность поверхности по отношению к хемосорбции [c.122]

    Экспериментальные методы изучения однородности и неоднородности поверхности по отношению к хемосорбции [c.127]

    Переход быстрой хемосорбции в медленную во многих случаях объясняется неоднородностью поверхности. Скорость медленной хемосорбции зависит от энергии активации и, согласно имеющимся наблюдениям, экспоненциально падает с увеличением количества адсорбированного вещества. Энергия активации линейно растет с увеличением степени заполнения 0. Мы вернемся к этому соотношению в разделах IX, 9 и 11, где будет показано, что данное явление еще ие доказывает наличия неоднородности. [c.128]

    При проведении каталитической реакции в адсорбированном слое дифференциальный изотопный метод дает возможность проследить, за распределением каталитических функций между разными участками поверхности. Если на поверхность активированного угля при —182° С ввести сначала порцию дейтерия, а затем водорода, то при вакуумировании преимущественно удаляется водород. Это можно было объяснить и тем, что дейтерий имеет большую молекулярную массу. При введении газов в обратном порядке, т. е. сначала водород, а затем дейтерий, в первую очередь откачивается дейтерий теперь вывод однозначен поверхность неоднородна и первые порции адсорбируются с большим выделением тепла. Эти опыты дали прямые доказательства неоднородности поверхности. Дифференциальный изотопный метод позволил обнаружить устойчивую биографическую неоднородность поверхности как при молекулярной адсорбции, так и при хемосорбции для таких систем, как металлы (N1, Ре), окислы с ионной решеткой (2пО, N10) и активированный уголь. [c.55]


    Методы составлений кинетических уравнений (моделей 1 гетерогенных каталитических реакций. Как правило, многие гетерогенные каталитические реакции (как ионного, так и электронного типов) удовлетворительно описываются кинетическими уравнениями первого порядка (особенно в области малых заполнений поверхности катализатора). Это, по-видимому, обусловливается тем, что лимитирующей суммарный каталитический процесс стадией является хемосорбция на однородной поверхности катализатора, осуществляемая мономолекулярно. При этом первый кинетический порядок имеет место обычно независимо от того, осуществляется ли хемосорбция по одноцентровому или многоцентровому (в виде мультиплетов, ансамблей и др.) механизмам. Установлено, что большее влияние на кинетический порядок каталитических реакций оказывает неоднородность поверхности. В ряде случаев большая адекватность достигается при использовании кинетических уравнений (моделей), выведенных исходя из представлений неоднородности поверхности (С.З.Рогинский, Я.Б.Зельдович, М.И.Темкин и др.). [c.434]

    При неравномерно-неоднородном распределении теплот хемосорбции по поверхности, отвечающем экспоненциальному закону распределения энергетически неоднородных мест поверхности, получается изотерма Фрейндлиха  [c.691]

    Из приведенного выше следует, что но отношению к адсорбции степень неоднородности поверхности надо рассматривать в зависимости от того, какая молекула адсорбируется, в каком интервале заполнений поверхности и при какой температуре. В связи с этим при изучении вопроса о степени однородности поверхности твердых тел важное значение имеет характер взаимодействия адсорбат — адсорбент, определяемый структурой как поверхности, так н молекулы. Взаимодействие это может быть молекулярным (молекулярная пли физическая адсорбция), когда адсорбированная молекула не теряет своей химической индивидуальности, и химическим (хемосорбция), когда между молекулой и поверхностью возникает химическая связь, в результате которой индивидуальность молекулы теряется. [c.21]

    Для проявления каталитической активности такие катализаторы нуждаются в активации, которая, в частности, может достигаться за счет тепловой энергии. Как установил автор [19], наиболее вероятный путь активации металлических катализаторов, приводящий непосредственно к образованию дублетного активного центра (а не одиночного активного атома),— разрыв когезионной связи металл — металл. Это заставило уточнить физический смысл энергии активации хемосорбции и гетерогенной каталитической реакции, происходящих на таких катализаторах. Математический анализ показал [20], что при малых степенях заполнения как однородной, так и неоднородной поверхности энергия активации реакции на таких катализаторах равна [c.177]

    Несмотря на широкое применение уравнений изотермы Лангмюра в практике кинетических исследований, полученные с их помощью уравнения скоростей реакций далеко не всегда приводят к однозначным результатам, особенно при значительных изменениях кинетических параметров процесса. Это объясняется тем, что ранее принятые допущения об однородности адсорбционной поверхности и отсутствии взаимодействия друг с другом хемосорбированных молекул в действительности не выполняются. Неоднородность поверхности здесь понимается в том смысле, что различные участки ее характеризуются разными теплотами хемосорбции и адсорбционными коэффициентами. При этом заполнение поверхности идет последовательно от участков с максимальными теплотами адсорбции к участкам с меньшими величинами. В соответствии с этим и теплота адсорбции также будет изменяться в зависимости от доли заполнения участков с различной теплотой адсорбции на поверхности катализатора. Очевидно, что в этих условиях значение величины А, будет зависеть от изменения температуры и концентрации реагирующих веществ. Поэтому и кажущаяся энергия активации оказывается пригодной лишь для аппроксимации кинетического уравнения в некоторой ограниченной области изменения параметров процесса. [c.80]

    Уравнение поляризационной кривой, выведенное в разделе 2 гл. VII, может быть распространено на процессы, протекающие в условиях хемосорбции одного из реагирующих веществ. Для расчета активности хемосорбированного вещества нужно предварительно знать соответствующую изотерму адсорбции. По этому последнему вопросу нет никакой определенной информации кроме того, проблема осложнена неоднородностью поверхности электрода. Процессы, сопровождаемые хемосорбцией более чем одного вещества, еще более трудны для анализа, так как мало что известно о совместной хемосорбции на электроде. Поэтому приводимый ниже анализ следует рассматривать как первый щаг, который тем не менее указывает на некоторые существенные факторы, контролирующие кинетику. [c.286]

    Отсутствие достаточно обоснованной теории сил отталкивания не препятствует рассмотрению законов хемосорбции с учетом взаимодействия молекул адсорбата, точно так же как отсутствие надежных сведений о функции распределения р(Я) не мешает разработке математических методов описания хемосорбции на энергетически неоднородной поверхности. Однако в обоих случаях это не позволяет создать полноценные физические теории. [c.28]


    Согласно Тейлору реакции протекают на особых местах поверхности катализатора, так называемых активных центрах. Даже в чистом металле дтомы, расположенные на дефектах решетки, на реС рах и вершинах кристаллитов, ведут себя иначе, чем атомы, расположенные на плоской поверхности. Неоднородность поверхности характеризуют различными методами, изучением зависимостей дифферешщальной теплоты адсорбции или энергии активации при термодесорб1лии от степени заполнения. На изобарах адсорбции может наблюдаться несколько максимумов, что свидетельствует о наличии нескольких типов хемосорбции. В некоторых случаях неоднородность катализатора можно измерить индикаторами Гаммета, другими основаниями, с помощью инфракрасного спектра для выявления числа и силы кислотных центров. В случае бифункциональных катализаторов подбором соответствующих ядов можно оценить соотношение шФаллических и кислотных центров. Центрами могут служить группы или кластеры [c.90]

    Вопрос о влиянии неоднородности поверхности иа теплоту хемосорбции рассмотрен в разделе IX,2, где дается обзор эксперцментальных методов, позволяюигих провести различие между однородными и неоднородными поверхностями (раздел IX, 3). В последующих разделах мы рассмотрим явление уменьшения тенлот хемосорбции с заполнением в случае однородных поверхностей. [c.122]

    Эффект разрыхления, возможно, также играл определенную. роль в опытах Тейлора и его сотрудников, уже описанных в разделе IX, 3, в которых увеличение температуры во время медленной адсорбции (требующей энергии активации) во многих случаях вызывало быструю десорбцию и последующую медленную повторную адсорбцию [290]. Как было отмечено в данном разделе, это явление часто считалось доказательством неоднородности поверхности по отношению к хемосорбции. При этом принималось, что наряду с участками, обладающими сравнительно низкой теплотой адсорбции и сравнительно низкой энергией активации, суидествуют участки, где как теплоты хемосорбции, так и энергии активации имеют более высокие значения. [c.154]

    О, адсорбированные анионы, адатомы металлов и др.) а/ и ttj/i — соответствующие значения адсорбционных коэффициентов. Уравнение отвечает аддитивному влиянию различных адсорбированных частиц на энергию активации процесса хемосорбции органического вещества. В случае собственной неоднородности поверхности уравнение (3.57) выполняется при условии, что адсорбция различных компонентов происходит на одних и тех же адсорбционных центрах и энергии адсорбции на i-x местах компонентов А, В, С... связаны между собой простой связью (ЛО°а) =а (ДО°в) = a"( AG° ). .., т. е. вид функции распределения для различных компоненто.в сохраняется неизменным. Одновременное выполнение названных условий при адсорбции веществ, сильно отличающихся по своей химической природе, представляется маловероятным. Возможна некоррелируемость или сложная связь свободных энергий и энергий активации процессов хемосорбции различных частиц. Соответственно уравнения, выражающие зависимость Уа от 0i, могут отличаться от уравнения (3.57) и быть значительно более сложными. Аддитивность в большей мере соответствует модели наведенной неоднородности, когда частицы различных сортов одновременно участвуют в соз-.дапии общего дипольного потенциала на поверхности или определенной плотности электронного газа. [c.111]

    Кинетика адсорбции при высоких анодных потенциалах имеет много общего с кинетикой адсорбции в области небольших Ег и формально подчиняется закономерностям хемосорбции на неоднородных поверхностях. Для многих органических веществ зависимость величины адсорбции от времени удовлетворительно описывается уравнением Рогинского — Зельдовича (3.45). Для ряда веществ кинетика хемосорбции лучше аппроксимируется степенной функцией (уравнение Бенхема — Барта) [c.119]

    Для более полного истолкования особенностей адсорбции органических веществ в области анодных потенциалов необходимо дальнейшее накопление экспериментального материала с использованием комплекса физико-химических и физических методов. Исследования должны быть направлены на более глубокое выяснение кинетики хемосорбции и электроокнсления хемосорбированных частиц, природы неоднородности поверхности, установление структуры хемосорбционного комплекса и ее зависимости от по-тенциалл и адсорбции атомов и ионов на поверхности. [c.123]

    Еще одна осообенность адсорбщ4И из растворов на поверхности твердых тел заключается в том, что заметную роль в адсорбционных и, в первую очередь, хемосорбционных процессах может играть неоднородность (мозаичность) строения поверхности и особенно различные дефекты структуры поверхности. Это имеет важное значение при хемосорбции на поверхности полярных тел неорганических ионов, создающих заряд поверхности (см. гл. VII). [c.112]

    Исследования показали [24], что при адсорбщш Ог на углях концентрация ПМЦ уменьшается. По данным этой работы, при адсорбции одной молекулы Ог может исчезать несколько десятков парамагнитных центров. Взаимодействие НаЗ с коксом происходит, вероятно, после его диссоциации иа элементарную серу и водород. Предварительный распад НгЗ может идти через стадию хемосорбции на поверхности кокса, так как двух- и трехатомные газы на поверхности углеродистых веществ легко диссоциируют на компоненты. Наличие ненасыщенных связей на поверхности кристаллитов будет несомненно препятствовать движению за пределы частип кокса осколков молекул — продуктов распада термически нестойких органических соединений серы. При этом сера будет сосредоточиваться иа наиболее активных центрах поверхности кокса. Исходя из неоднородности структуры углеродистых материалов, наблюдаемой до температур 2000—2600 С, удалось [139] теоретически обосновать и экспериментально подтвердить зависимость энергии активации адсорбции и десорбции различных газов на неоднородных поверхностях от степени нх заполнения газами. По аналогии с этим, а также в соответствии с представлениями, изложенными в работе [180], в процессе хемосорбцин серы на активной поверхности кокса с увеличением степени ее заполнения энергия активации процесса сульфуризации должна повышаться. В стадии десорбций — при разрушении сероуглеродных комплексов — наоборот, энергия активации должна быть низкой на начальной стадии и увеличиваться к концу обессеривания. [c.210]

    Указанные выше причины неоднородности поверхности ионных и молекулярных кристаллов относятся также и к кри - ллическим окисным адсорбентам, таким, как окись магния, .яатаз, рутил, кварц и др. В этом случае часто возникают дополнительные осложнения из-за химической неоднородности поверхности, так как дегидроксилированные окислы легко хемосорбируют воду, в результате чего на поверхности образуются гидроксилированные участки, которые при дальнейшей откачке перед опытами по адсорбции частично снова дегидроксилируются. Очень большое значение в этих случаях имеют примеси. В частности, примеси алюминия или бора на поверхности кремнезема создают сильные кислотные центры, вызывающие хемосорбцию многих органических оснований (см. обзоры (333— 335]).  [c.70]

    Адсорбция, как физическая, так и химическая, обусловливается избыточной свободной энергией поверхности. Если валентные связи между атомами и ионами, расположенными внутри объема твердого тела, взаимно скомпенсированы (насыщены), то таковой компенсиро-ванности межмолекулярных сил на его поверхности (как и на поверхности жидкости) не происходит. Кроме того, поверхность твердого тела не является идеально гладкой, а имеет многочисленные ультрамикроско-нические выступы и углубления различных форм в зависимости от геометрии кристаллической решетки. Сама кристаллическая решетка также не всегда идеальна и однородна, и на ней имеются различного рода дефекты и примеси. Естественно, степень компенсированности валентных сил на различных участках неоднородной поверхности твердого тела различна и, следовательно, неоднородна адсорбционная активность этой поверхности. Наиболее активные участки (центры) поверхности будут более энергично адсорбировать (хемосорбировать) молекулы реактантов. Отсюда следует вывод о том, что адсорбция (хемосорбция) неоднородна. [c.201]

    Энергия активации сорбции кислорода на серебре и платине изменяется по мере заполнения, что указывает на неоднородность поверхности этих металлов и на различие в энергиях связи адсорбированного кислорода с металлами. Работы Чэпмена и Холла [98], а также электрохимические исследования [102 и 103] показали, что наряду с относительно непрочными соединениями кислорода с серебром нри адсорбции образуются и более прочные соединения. На основании измерений равновесия реакции Ме + НгО (газ) Нг (газ) + Ме 0 Гонзальц и Парравано [104] рассчитали теплоту хемосорбции кислорода на никеле, платине и серебре. В результате взаимодействия металла с водяным паром возникают поверхностные соединения типа №0, РЮ и Ag20. [c.33]

    Заметная адсорбция кислорода на гладкой платине, по данным Лэнгмюра [110] и Рейшауера [111], начинается нри 120—130°. В интервале температур 400—800° происходит дополнительная адсорбция, но уже с другой энергией активации. Кинетика адсорбции кислорода на платине [111] очень своеобразна (рис. 12). Кинетика адсорбции [112] описывается уравнением Бэнхема q = или уравнением Зельдовича-Рогинского q = а In t, характерным для неоднородных поверхностей. Крылов [100] исследовал адсорбцию кислорода на платине и показал, что при 290—520° кислород адсорбируется в количествах, равных одному-трем монослоям. Кинетика адсорбции такл е характеризуется уравнением Зельдовича-Рогинского. Энергия активации хемосорбции составляет 10 — 15 ккал моль. При 520—800° платина поглощает кислорода значительно больше (несколько десятков монослоев). Кинетический закон [c.34]

    Довольно подробно изучена адсорбция кислорода на серебре [93]. Установлено, что уже при 0° на серебре наблюдается хемосорбция кислорода, скорость которой возрастает с температурой. Бентон и Дрейк [93] определили, что энергия активации хемосорбции равна 12,7 ккал/молъ, а энергия активации десорбции — 28,4 ккал/молъ. Чэпмен и Холл [98] нашли, что кислород на поверхности серебра образует соединения с различной прочностью связи. Файнштейн [117] показал, что кислород, адсорбированный при —132°, образует прочную пленку на серебре, более подвижную, чем нри повышенной температуре. Данные исследований Веселовского [102] и Ракова [103] также указывают на различную прочность связи кислорода с серебром. В результате более поздних исследований [99] адсорбции кислорода на серебряном катализаторе установлено, что энергия активации адсорбции меняется по мере заполнения и что кинетика процесса подчиняется уравнению Рогин-ского-Зельдовича, характерному для неоднородных поверхностей. [c.35]

    В том, что теплота хемосорбции нередко меняется со степенью заполнения поверхности, нет ничего удивительного. Это, собственно, следует уже из материала, приведенного в предыдущем разделе. Примеры та.кой зависимости даны иа рис. ХУ-5. Обычн-о ее объясняют либо неоднородностью поверхности, либо энергетическим распределением центров адсорбции (гл. XIV, разд. Х1У-14). (В реальных системах возможен комбинированный механизм изменения теплоты хемосорбции.) [c.511]

    Тбрмодияам Ическая теория, развитая для физической адсорбции (гл. XIV, разд. Х1У-12), конечно, прим-енима к хемосорбции. Как и в физической адсорбции, в хемосорбции термодинамичедкие уравнения в основн.о м служат для расчета теплот адсорбции, т. е. для нахождения 8 из данных, полученных при различных температурах. Найденные таким способом значения qst должны совпадать с калориметрическими дифференциальными теплотами адсорбции, отличаясь от последних не больше чем на ЯТ, вероятно, даже для неоднородных поверхностей. Правда, при исследовании хемосорбции всегда существует опасность несоответствия экспериментальных данных адсорбционному равновесию. Рассматриваемый в разд. ХУ-5 критерий Бика для поверхностной подвижности применим для предельной ситуации, когда только часть поверхности находится в равновесии с газовой фазой. Напомним, что в таких случаях величины не имеют ясного физического смысла. [c.515]

    Поэтому при развитии лэнгмюровского подхода к выводу изотерм лучше пользоваться представлением об однородных или изменяющихся известным образом центрах , например соответственно теплотам адсорбции. В частных случаях, даже тогда, когда какая-либо изотерма оказывается применимой, центры поверхности все же необходимо идентифицировать. Вывод различных изотерм для однородных и неоднородных поверхностей дан в приложении II. Конечно, существуют и другие методы вывода изотерм их расчет на основе представлений о запорном слое, столь успешно применяемом к хемосорбции на полупроводниках, уже был упомянут в разд. 3. Хотя эти альтернативные расчеты и не использовались особенно широко для каталитических реакций, вполне возможно, что развитие воль-кенштейновской теории хемосорбцни может привести к более широкому их использованию. [c.212]

    За исключением работ Мак-Интоша и его сотрудников [67— 69] с пористым стеклом, все описанные выше опыты проводились с древесными и другими углями, отличающимися по степени неоднородности поверхности. Вместе с тем желательно было при определениях изменений длины иметь больше сведений о процессах, происходящих на поверхности. В частности, только в одном случае [67] сообщалось о теплотах адсорбции, измеренных на том же адсорбенте, что и в опытах по определению изменений длины. Следовательно, оставалось неясным, обусловлен ли процесс, приводящий к расширению, исключительно физической адсорбцией, или же происходящая в небольшой степени хемосорбция определяет ход процесса. При любом теоретическом рассмотрении данного эффекта эти сведения являются весьма существенными, так как только физическая адсорбция полностью обратима и соответствует термодинамическим положениям. Независимо от поверхности, на которой протекает адсорбция, только редкие газы, образующие небольшое число истинных химических соединений, удерживаются исключительно физическими или ван-дер-ваальсовыми силами. Хотя пористое стекло имеет сложную поверхность, автор полагает, что оно является более подходящим объектом для изучения, чем древесные угли, сложность и невоспроизводимое поведение которых хорошо известны. Оказалось возможным измерить изменения длины при 77° К, и получить данные об эффектах, вызванных аргоном, криптоном, азотом, кислородом и водородом [74]. При использовании той же аппаратуры и образца были изучены, кроме того, эффекты, обусловленные адсорбцией ряда полярных газов [75—77], [c.261]

    Энергетические эффекты, сопровождающие адсорбцию,— очень важный показатель сродства адсорбата к поверхности адсорбента, указывают на тип адсорбции (физическую и химическую), неоднородность поверхности твердого тела и форму изотерм адсорбции, т. е. являются критерием сорбционного процесса и одним из его характерных параметров. Знание теплот адсорбции дает нам точные сведения о физической или химической природе явления, а также об активности поверхности адсорбента или катализатора. Обзор этой области можно найти в книгах Адама [17] и Брунауэра [18]. Теплота физической адсорбции первого монослоя, обусловленная действием сил Ван-дер-Ваальса, для подавляющего большинства известных случаев несколько выше теплоты конденсации адсорбируемого вещества и редко превышает ее удвоенное значение. Адсорбция же второго и последующих слоев протекает с меньшей энергией, величина которой сравнима с теплотой конденсации. Наоборот, теплота хемосорбции имеет более широкий энергетический интервал и измеряется десятками (20—100) ккал1моль. Несмотря на это, резкой границы между этими видами адсорбции не существует, сильное смещение электронов при физической адсорбции трудно отличить от обобществления электронов при хемосорбции. [c.21]


Смотреть страницы где упоминается термин Хемосорбция на неоднородных поверхностях: [c.210]    [c.169]    [c.69]    [c.121]    [c.127]    [c.119]    [c.120]    [c.52]    [c.92]    [c.691]    [c.25]    [c.38]    [c.41]    [c.513]    [c.25]    [c.110]   
Физическая химия поверхностей (1979) -- [ c.511 ]




ПОИСК





Смотрите так же термины и статьи:

Хемосорбция



© 2025 chem21.info Реклама на сайте