Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция плотность

    В соответствии с изложенными взглядами величина К должна быть функцией прочности удержания ПАВ на новерхности, т. е. работы адсорбции, плотности адсорбционного слоя, возрастающей параллельно с концентрацией ПАВ, размера элементарной капли, температуры. Если предположить, что процесс коалесценции аналогичен реакции, описываемой теорией соударений, то зависимость К от перечисленных параметров должна быть экспоненциальной. Предэкспонента в этом случае является функцией физических свойств фаз (таких как вязкость, плотность), а также соотношения объемов фаз и величины капелек эмульсии. [c.417]


    При адсорбции из растворов ад сорбционное пространство всегда заполнено конденсированной фазой, состав которой отличается от состава равновесного раствора в соответствии с константой равновесия избирательной адсорбции. Плотность конденсированной фазы близка к плотности жидкости, поэтому диффузия адсорбированных молекул при адсорбции из растворов крц-близка к диффузии компонента в внутридиффузионной ки-жидкости, причем такая аналогия, нетики адсорбции при линей-видимо, существует при всех соот- ной изотерме и различных зна-ношениях количеств адсорбирован- гениях ного вещества.  [c.119]

    Важной, определяющей скорость процесса стадией этой реакции для большого Числа металлов является стадия восстановления [уравнение (20)]. Скорость ее протекания связана с теплотой адсорбции водорода для конкретного металла. При прочной адсорбции плотность тока обмена о велика, а при слабой — низка. Некоторые данные представлены в табл. 8. Для металлов со значительными тепло- [c.93]

    Закономерности внутридиффузионной кинетики адсорбции смесей веществ определяются ролью перекрестных эффектов при переносе адсорбированных веществ вследствие высоких концентраций компонентов раствора в адсорбционном пространстве пористого материала. В соответствии с принципами термодинамики необратимых процессов при переносе в поле действия сил адсорбции плотности потоков компонентов смеси необходимо задавать в виде [5] [c.139]

    При медленной скорости адсорбции плотность потока вещества определяется скоростью самого адсорбционного процесса, поскольку диффузия происходит достаточно быстро (по сравнению с адсорбцией) для того, чтобы поддержать у поверхности капли постоянную концентрацию Сд. [c.622]

    Увеличение катодного потенциала изменяет заряд поверхности, а следовательно, и условия адсорбции на ней. В зависимости от природы деполяризатора это увеличивают или уменьшает скорость электрохимической редокси-реакции. При значительных отклонениях от нулевой точки (большая величина ф-потенциала) поверхностная концентрация деполяризатора становится ничтожно малой и реакция электровосстановления может прекратиться. Поэтому кроме предельной диффузионной плотности тока должна существовать также предельная адсорбционная плотность тока. [c.449]

    При этом атомарный (или ионный) водород, предварительно адсорбированный на катализаторе в непосредственной близости от реагирующей молекулы углеводорода, входит в состав переходного комплекса и далее, после перераспределения электронной плотности, регенерируется уже в молекулярном виде. Наличие поляризованного (и даже ионного) водорода на поверхности металлов в условиях реакции подтверждается работами различных авторов [129—131]. Так, после анализа экспериментальных данных, полученных при изучении адсорбции водорода на Pt, Ni и других металлах в условиях глубокого вакуума, сделан вывод [130] о существовании двух основных видов хемосорбции водорода слабой (обратимой) и прочной (необратимой). Слабо хемосорбированный водород находится, как правило, в молекулярной форме и несет при этом положительный заряд (М —Hj). При прочной хемосорбции водород диссоциирован и заряжен отрицательно (М+—Н-). При анализе состояния водорода в гидридах различных металлов [131] сделан вывод, что в гидридах большей части переходных металлов водород находится в двух формах Н+ и Н при этом форма (М+—Н ) является основной. [c.231]


    Если в адсорбции участвует электроотрицательное вещество, то под воздействием двойного электрического слоя (за счет электростатического отталкивания) уменьшается плотность электронов вблизи металлической поверхности. Это уменьшение, в свою очередь, снижает скорость дальнейшего процесса адсорбции и энергию адсорбционных связей. [c.185]

    Помимо величины адсорбции и силы связи между молекулами адсорбата и адсорбента определенное влияние на эффективность противоизносного действия присадок оказывают также характер ориентации молекул в адсорбированном слое и плотность упаковки последнего. Считается, что молекулы ПАВ могут ориентироваться в граничном слое не только перпендикулярно, но и параллельно поверхности адсорбента. К числу таких ПАВ относятся и мно- [c.257]

    Анализируя результаты, представленные в табл. 6.3 и на рис. 6.13, можно предположить, что при адсорбции на металлах соединений, содержащих группы НОг и ЗОз, происходит перераспределение электронной плотности — электроны этих групп становятся частью электронного газа металла. Хемосорбционные процессы этих соединений в значительной степени усиливаются на анодных участках (ОПП от 30 до 90%, анодного действия). Если на металле присутствуют положительно и отрицательно заряженные участки, такие соединения будут адсорбироваться и образовывать [c.299]

    Метод анализа, примененный Горным бюро, основывался на перегонке, адсорбции и спектроскопии в ультрафиолетовой области. Сланцевый бензин вначале промывался разбавленными кислотой и щелочью для удаления смоляных кислот и оснований. Нейтральный бензин перегонялся затем на полупроцентные фракции по объему. Для каждой фракции определялись температура кипения, плотность, коэффициент преломления, содержание серы и азота, кроме того, проводился анализ углеводородов адсорбцией на силикагеле и по поглощению в ультрафиолетовой области спектра. [c.67]

    Его дезактивирующее действие выражается в создании пространственных затруднений при адсорбции углеводородов на активных центрах контакта. При значительных количествах сульфатной серы на носителе происходят фазовые превращения, обусловленные переходом определённого количества оксида алюминия в сульфат, плотность которого в 1,5 раза ниже. Эти переходы сопровождаются перестройкой структуры носителя и уменьшением размера транспортных пор, -и это снижает механическую прочность катализатора и ухудшает условия массообмена. [c.55]

    При адсорбции часто происходит образование водородной связи между молекулой адсорбата и соответствующими группами или ионами на поверхности адсорбента. Так, при адсорбции молекул воды, спиртов, эфиров, аминов и т. п. на адсорбентах, поверхность которых покрыта гидроксильными группами, например на силикагеле (высокополимерной кремнекислоте), в дополнение к неспецифическим дисперсионным, ориентационным и индукционным взаимодействиям происходит образование молекулярных комплексов с водородной связью. Такие более специфические взаимодействия проявляются также при адсорбции и других молекул с периферическим сосредоточением электронной плотности, например имеющих л-электронные связи, на поверхностях, [c.438]

    Введенная Гиббсом величина представляет избыток числа молей компонента г в объеме поверхностного слоя с площадью 3=1 по сравнению с числом его молей в том же объеме, если бы смежные фазы встречались у поверхности раздела без изменения их плотности. Эту величину мы будем называть абсолютной величиной гиббсовской адсорбции (часто ее называют короче—гиббсовской адсорбцией) или даже просто адсорбцией компонента / у данной поверхности.  [c.468]

    Особенности распределения электронного заряда в молекулах адсорбата и на поверхности адсорбента (пониженная или повышенная электронная плотность) проявляются при адсорбции на полупроводниках. В этих случаях проявляются специфические взаимодействия донорно-акцепторного типа, по своей природе близкие к рассмотренным выше специфическим взаимодействиям на гидроксилированных и ионных поверхностях. Часто эти взаимодействия переходят в еще более специфические и сильные с образованием поверхностных хемосорбционных комплексов. [c.500]

    Разделение эмульсий. Проблема разделения эмульсий имеет большое значение во многих отраслях промышленности химической, нефтеперерабатывающей, фармацевтической, металлообрабатывающей, кожевенной и др. Состав эмульсий может быть самым разнообразным. Наиболее часто встречаются на практике эмульсии типа масло—вода или какая-либо другая жидкость, причем в зависимости от концентрации компонентов возможна инверсия фаз дисперсная фаза в результате коалесценции капель становится сплошной, а сплошная — дисперсной. Стабильность эмульсии зависит от многих факторов фазового соотношения и различия плотностей фаз, концентрации часто присутствующих в эмульсиях электролитов, химической структуры внешней и внутренней фаз, величины электростатических сил, возникающих вследствие химической реакции или адсорбции ионов, и др. [c.281]


    Пример 15. Водород должен очищаться от примеси метана, содержащейся в количестве 0,0309 мол. доли, адсорбцией активированным углем при давлении 1 МПа и температуре 25 °С. Насыпная плотность сорбента 450 кг/м , порозность слоя 0,4. Изотерма адсорбции описывается уравнением [c.68]

    Расход водорода на десорбцию. Средний массовый расход газа после адсорбции (см. пример 18) равен 529 кг/ч. Так как плотность газа на стадии десорбции в 10 раз меньше, то при одной и той же скорости газа массовый расход будет в 10 раз меньше. Следовательно, расход водорода на десорбцию для аппарата диаметром 1,2 м составит 529-0,1-21,9/16 = 72,4 кг/ч (где [c.73]

    По табл. IX.2 выбираем для адсорбции активный уголь марки АГ-3 с насыпной плотностью р = = 500 кг/м . Равновесные данные по адсорбции бензола из воздуха на угле АГ-3 приведены в табл. 1Х.1. [c.154]

    V — колебательная частота связи, удерживающей молекулу в месте локализации. Множитель 1/(1—0,,) получается из-за выбранного здесь вида процесса перескока (молекула может совершать прыжок в любое место, свободное или занятое если место локализации занято, молекула претерпевает изотропное рассеяние и продолжает совершать прыжки, пока не найдет свободного места) в отличие от процесса Хилла (молекула может совершать прыжки только иа свободные места). При выводе формул (3.86) предполагалось отсутствие заметной многослойной адсорбции. Плотность поверхностного потока оказывается обратно пропорциональной радиусу, тогда как плотность газофазного [c.88]

    D И Г, поскольку флокулирующая способность характеризуется не общим количеством адсорбированных макромолекул (определяемых величиной Г), а количеством макромолекул, участвующих в создании мостичных связей между двумя и более частицами дисперсной фазы. Величина D зависит прежде всего от концентрации и размеров образующихся флокул, что, в свою очередь, зависит от расстояния между частицами дисперсной фазы, природы и концентрации локализованных центров адсорбции, плотности сегментов макромолекул в адсорбционном слое, подвижности макромолекул, от эффективной степени сольватации функциональных групп макромолекул на поверхности (или в непосредственной близости от нее) частиц дисперсной фазы, а также от целого ряда других трудноконтролируемых факторов [37]. Для катионных сополимеров АА, а именно статистических сополимеров АА с гидрохлоридом диметиламиноэтилметакрилата (ГХ ДМАЭМА), также изучена зависимость скорости седиментации от состава сополимера-флокулянта [32]. [c.179]

    При изучении кинетики дейтеролиза и дейтерообмена циклопропана и метилциклопропана на напыленных пленках Р1, Рс1, N1, Ре, КЬ и показано [86], что энергия активации реакции дейтеролиза на Р1, Рс1, N1 и Ре равна соответственно 46,0, 60,7, 31,4 и 96 кДж/моль. Изучение кинетики и распределения продуктов обеих реакций привело к выводу, что на всех катализаторах в результате первичной адсорбции образуется я-связанный переходный комплекс, в котором далее происходит перераспределение электронной плотности с раскрытием трехчленного цикла и образованием сг-связанного 1,3-ди-адсорбировапного переходного состояния [c.103]

    Естественно, сказанным не ограничиваются все факторы, могущие влиять на селективность протекания Сз-дегидроцпклизации алканов. Не исключено, что на предпочтительную адсорбцию конформации Б по сравнению с конформацией А в условиях проточного метода влияют и различия электронных плотностей у первичных (С-1, С-7) и вторичных (С-2, С-6) углеродных атомов в молекуле н-гептана. Возможно также, что при адсорбции некоторый вклад вносят различия в ван-дер-ваальсовых объемах адсорбирующихся частей молекулы (СНз-группа в случае конформации Б и СНо-группа для конформации А). Однако на данном этапе исследования нам представляется, что наибольшую роль в различной селективности Сз-дегидроциклизации по направлениям 1 я 2, ио-видимому, играют факторы, связанные с различным характером покрытия поверхности катализатора реагентами. [c.218]

    Согласно протонному механизму, указанные комплексы преимущественно образуются за счет С-атомов с минимальным отрицательным зарядом, т. е. вторичных атомов С. В то же время гидрид-ионный механизм характерен для С-атомов с максимальной электронной плотностью, т. е. для первичных атомов. В соответствии с развиваемыми взглядами, изменение направления реакции связано с изменением зарядов металла при увеличении давления водорода и соответственно его адсорбции усиливаются электроноакцепторные свойства металла и его способность вытеснять прогон при образовании моноадсорбированного комплекса. В связи с этим с ростом давления водорода увеличивается доля молекул октана, реагирующих по протонному механизму в реакцию вступают вторичные атомы углерода с последующим образованием дизамещенных циклов — 1-метил-2-этилциклопентана и о-ксилола. [c.235]

    С повышением адсорбции присадок на металле. Например, высокая теплота адсорбции 4-этиллиридина и стеариш>вой кислоты обусловливает достаточно высокую эффективность их противоизносного действия при умеренных режимах трения на машине трения шар по диску (табл. 5.1). Полагают, что более высокая теплота адсорбции 4-этилпиридина по сравнению с пиридином и 2-этилпиридином объясняется образованием более прочной поверхностной пленки вследствие электронодонорного эффекта метильной группы, обусловливающего сдвиг электронной плотности к азоту. Если молекула адсорбата содержит в своем составе химически активные группы, отличающиеся повышенной полярностью или поляризуемостью в силовом поле металла, то величина адсорбции повышается. Так, более высокая теплота адсорбции стеариновой кислоты на стали по сравнению со спиртами объясняется интенсивным взаимодействием между карбоксильной группой и поверхностью металла, вплоть до образования химической связи. Это и определяет более высокие противоизносные свойства стеариновой кислоты по сравнению со спиртами. [c.257]

    По данным ИКч пектроскопии, при введении щелочных металлов в состав алюмоплатинового катализатора наблюдается уменьщение частоты полосы поглощения адсорбированного оксида углерода, что свидетельствует об увеличении электронной плотности на платине и об увеличении прочности адсорбции оксида углерода. [c.48]

    Молекулярные силы, вызывающие отклонения свойств реальных газов от идеальных законов, действуют и при адсорбции. Это в основном силы электрокинетические—так называемые дисперсионные силы, вызываемые согласованным движением электронов в сближающихся молекулах. Вследствие движения электронов даже молекулы с симметричным (в среднем) распределением электронной плотности обладают флуктуирующими (колеблющимися по направлению) отклонениями этой плотности от средней, т. е. флуктуирующими диполями, квадруполями и т. д. При сближении молекул движения этих флуктуирующих диполей, квадру-полеп и т. д. разных молекул перестают быть независимыми, что и вызывает притяжение. Эти силы называются дисперсионными потому, что флуктуирующие диполи вызывают явление [c.437]

    Причиной молекулярной ассоциации в водных растворах и многих жидкостях часто является возникновение водородной связи между соприкасающимися полярными частями молекул, содержащих, например, гидроксильные группы (см. стр. 164). Такая ассоциация проявляется также и при адсорбции на адсорбентах, содержащих на поверхности гидроксильные группы, например при адсорбции воды, спиртов, аммиака, аминов и т. п. на поверхностях гидроокисей, т. е. на гидроксплированных поверхностях силикагелей, алюмогелен, алюмосил икатных катализаторов и т. п. адсорбентов. Поверхность силикагеля покрыта гидроксильными группами, связанными с атомами кремния кремнекислородного остова. Вследствие того что электронная -оболочка атома кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности кремнезема таково, что отрицательный заряд сильно смеш.ен к атому кислорода, так что образуется диполь с центром положительного заряда у атома водорода, размеры которого невелики. Часто молекулы адсорбата, обладающие резко смеш,енной к периферии электронной плотностью или неподеленными электронными парами (например, атомы кислорода в молекулах воды, спиртов или эфиров), образуют дополнительно к рассмотренным выше взаимодействиям водородные [c.496]

    Монтмориллонит и вермикулит — удобные модельные объекты для определения плотности адсорбированной воды по экспериментальным величинам адсорбции и соответствующим из — менениям толщины межслоевой области Ас1. Исходя из значений Ас и геометрической удельной поверхности, легко определить внутрислоевой сорбционный объем о, а по нему-и величине адсорбции а — плотность сорбированной воды. Осо — бенно удобен для таких определений вермикулит, который об — ладает совершенной кристаллической структурой и, как следствие, дает узкие интенсивные рефлексы на дифрактограммах Для него характерна незначительная внешняя поверхность кристаллитов и на изотермах сорбции обнаруживаются четкие перегибы, соответствующие переходу от однослойного гидрата к двухслойному. [c.33]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    Найдем коэффициент массопередачи при этой скорости газа. Десорбция проводится при давлении, в 10 раз меньшем давления адсорбции. Поэтому плотность газа при десорбции можно считать в десять раз меньшей, а коэффициент диффузии — в десять раз большим, чем при адсорбции. Следовательно, имеем Ру = = 0,08263 кг/м , Dy = 0,735 mV . Расчет внутреннего коэффициента массоотдачи по уравнениям (III.83) и (III.85) дает Рх = Рп = 0,749 см/с. Определив из уравнений (111.82) и (III.91) внешний коэффициент массоотдачи фу = 7,73 см/с) и поправку для учета продольного перемешивания (Рдрод = 2,98 см/с), находим коэффициент массопередачи при скорости газа 0,213 м/с (/Су = 0,556 см/с). Следовательно, при 1/7 = 0,75 общее число единиц переноса для всего слоя равно  [c.73]

    Рассмотрим атом Ni. На поверхности грани ( OI) кристалла N1 (кубическая гранецентрированная решетка) координационнсе число равно 8, а не 12, как в объеме твердого тела, и становится еозможной адсорбция путем образования координационной связи с молекулой газа. Конфигурация Ni неспаренными электронгми благоприятствует диссоциативной адсорбции Н—Н или R—Н, а высокая плотность таких свободных валентностей делает переходные металлы гораздо более активными, чем полупроводящие окислы (разд. П. 2. А). [c.32]

    Эти хемосорбционные связи в большей или меньшей степени поля-ризовзны, и тот факт, что водород образует положительные, а этилен — отрицательные адсорбционные слои на N1 , можно было бы истолковать как указание на существование адсорбции акцепторного или донорного типа [14], как на полупроводниках но в этом случае ввиду высокой плотности электронов и дырок эффекты, связанные с потенциальным барьером, гораздо слабее. [c.33]


Смотреть страницы где упоминается термин Адсорбция плотность: [c.320]    [c.452]    [c.88]    [c.127]    [c.217]    [c.34]    [c.34]    [c.35]    [c.67]    [c.76]    [c.455]    [c.213]   
Химическая термодинамика (1963) -- [ c.514 ]

Газовая хроматография в практике (1964) -- [ c.32 ]




ПОИСК







© 2025 chem21.info Реклама на сайте