Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий каталитическая активность

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    Нитрометан является также хорошим растворителем для безводного хлористого алюминия, который в таких растворах обладает особенно высокой каталитической активностью. Работать с такими растворами надо очень осторожно, так как часто неожиданно может развиваться реакция взрывообразного характера [153]. [c.317]

    Влияние степени декатионирования и деалюминирования морденита на каталитическую активность в реакции изомеризации парафиновых углеводородов. Декатионированные формы морденитов можно получить прямым обменом на протон или через аммонийную форму. Прямой обмен ионов натрия на протоны происходит в процессе обработки морденита сильной неорганической кислотой одновременно удаляются ионы алюминия. Второй путь получения декатионированной формы - обработка водными растворами аммонийных солей. [c.61]

    Аморфные алюмосиликаты обладают ионнообменными свой — стмами и для придания каталитической активности обрабатывают их раствором сернокислого алюминия для замещения катионов N3 на [c.109]

    Сигнализатор представляет собой стационарный автоматический прибор, служащий для непрерывного определения в воздухе производственных помещений паров (газов), температура воспламенения которых не превышает 650 °С, и для сигнализации при содержании этих веществ в количестве от 10—60% от нижнего предела воспламенения. Датчик СВК-ЗМ-1 имеет взрывобезопасное исполнение (ВЗП-В4А) его можно устанавливать во взрывоопасных помещениях всех классов. Сигнализатор выдает сигнал не позже чем через 30 с после появления концентрации, равной его чувствительности или превышающей ее. Принцип работы сигнализатора основан на определении теплового эффекта сгорания горючих газов и паров, а также их смесей на каталитически активной окиси алюминия. [c.261]

    Каталитическая активность хлорированного окснда алюминия. Хлорированный т -оксид алюминия способен изомеризовать н-бутан в отсутствие платины и в отсутствие водорода (табл. 2.13). Замена водорода гелием в качестве газа-носителя в реакции изомеризации не изменила начальной изомеризующей активности катализатора. Наиболее глубоко изомеризация н-бутана протекала в отсутствие газа-носителя. Присутствие платины в катализаторе несколько снижает его активность в реакции изомеризации н-бутана. Исследования поверхности у- и т -оксида алюминия до и после хлорирования четыреххлористым углеродом различными физико-химическими методами позволили прийти к ряду заключений, которые в свою очередь привели к определенным выводам о природе активности хлорированного т -оксида алюминия. [c.72]


    Активность окиси хрома в отношении изомеризации и отсутствие активности у окислов двух ближайших соседей хрома по периоду (ванадия и марганца) соответствует первому максимуму на графике зависимости каталитической активности окислов металлов четвертого периода от положения их в ряду в реакциях изотопного обмена молекулярного водорода и дейтерия, дегидрирования (пропана и циклогексана) и диспропорционирования циклогексена [22, 94]. Разница заключается в том, что при переходе от хрома к ванадию или марганцу каталитическая активность окислов в перечисленных выше процессах снижается, а в изомеризации она исчезает совсем. Своеобразие реакции изомеризации по сравнению с изотопным обменом и дегидрированием проявляется также в том, что следующие два максимума активности, отвечающие окислам кобальта и цинка, в реакции изомеризации не воспроизводятся, вместо них наблюдается лишь один небольшой максимум на окиси железа, которая сама по себе малоактивна и используется только вместе с окисью алюминия. Каталитическая активность окислов всех остальных металлов четвертого периода от меди до мышьяка в реакции изомеризации не проявляется. [c.28]

    Установлено [639], что кислотность деалюминированных мор-д(нигов практически линейно уменьшается с понижением содержания алюминия. Каталитическая активность в реакции крекинга н-гексана симбатно зависит от кислотности образцов и существенно увеличивается с уменьшением содержания натрия при постоянном содержании в них алюминия. [c.52]

    Наличие заряженных ионов алюминия на новерхности цео — лита (центры Бренстеда) и обусловливает кислотные свойства и, следовательно, его каталитическую активность. [c.113]

    ИК-спектроскопией адсорбированного аммиака и пиридина установлено усиление апротонной кислотности и образование центров протонной кислотности в результате хлорирования т -оксида алюминия четыреххлористым углеродом. Исследования масс-спектров продуктов десорбции с поверхности образцов -у- и tj-оксидов алюминия до и после хлорирования и электронная оптическая спектроскопия адсорбированных состояний некоторых оснований позволили установить, что причиной принципиальной разницы в каталитической активности хлорированных tj- и 7-оксидов алюминия в низкотемпературной изомеризации парафиновых углеводородов являются различия в свойствах поверхности прокаленных при 500 °С оксидов алюминия, в том числе в количестве и расположении гидроксильных групп, обусловленных особенностями кристаллической структуры 7 - и 7-оксидов алюминия [90]. Хлорирование поверхности оксида алюминия, сопровождающееся выделением хлороводорода и диоксида углерода, усиливает кислотность апротонного и протонного типа. Бренстедовская кислотность обусловлена хемосорбированнымНС . [c.72]

    Электрическая схема блока датчика представляет собой измерительный четырехплечий мост. Чувствительные элементы выполнены в виде цилиндров из окиси алюминия с резьбой, по которой уложена платиновая нить, служащая в качестве нагревателя и термометра сопротивления. Чтобы окись алюминия была каталитически активной, ее пропитывают раствором хлористого палладия, который при обработке восстанавливается до металлического с мелкозернистой структурой. [c.261]

    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]

    Для повышения каталитической активности в систему необходимо вводить добавки, увеличивающие степень ионизации хлорида алюминия, а следовательно, и скорость полимеризации изобутилена. [c.330]

    Влияние соединений меди на окисление очищенных крекинг-бензинов исследовано Даунингом [84]. Вальтере [82] показал, что каталитическая активность медных сплавов пропорциональна содержанию в них меди. Педерсен [85].изучал влияние концентрации меди на химическую стабильность бензинов термического крекинга после сернокислотной очистки. Опубликованы результаты исследования влияния таких металлов, как сталь, медь, латунь, свинец, олово, алюминий и цинк, на бензины, различающиеся по химической стабильности [86, 87]. [c.243]


    Алюмосиликатный катализатор крекинга, полученный активацией сернокислым алюминием, содержит значительное количество железа, внесенного на стадиях мокрой обработки. Оно отлагается на поверхности катализатора в каталитически активной форме, в результате чего показатели крекинга ухудшаются. Шарики после прокаливания нередко имеют различную окраску — от светло-розовой при содержании железа 0,07% до ярко-оранжевой (0,1% железа). Такой катализатор обладает повышенной коксообразующей и дегидрирующей способностью выход бензина снижается почти на 10%, выход кокса увеличивается примерно до 15% и содержание водорода в газе увеличивается почти в 3 раза. [c.21]

    Окись алюминия является стабильным катализатором — в отличие от алюмосиликата и фторированной окиси алюминия она слабо катализирует реакции крекинга и полимеризации и не дезактивируется за счет этих процессов. Каталитическая активность окиси алюминия связана с ее строением. Используя различную гидроокись алюминия, ее дегидратацией при разных температурах получают семь модификаций окиси алюминия (Х-, х-, у-, 6-, т)-, 6- и а) [14]  [c.146]

    Для приготовления никель-алюминиевого сплава сначала необходимо расплавить алюминий и некоторое время выдержать его при температуре 900 - 1200°С для удаления содержащихся в нем газов и солей, после чего добавляют никель. Сплавление алюминия с никелем сопровождается большим выделением тепла, за счет чего температура повышается почти до 1900°С. Для приготовления сплава лзч-ше всего лрименять высокочастотную печь, которая обеспечивает автоматичаское перемешивание сплава. Особое внимание долкно быть обращено на правильный выбор условий охлаждения сплава. При медленном остывании образуется мелкокристаллическая структура сплава, что способствует получению (после удаления алюминия) каталитически активного металла в высокодисперсном состоянии. Быстрое ке охлаждение благоприятствует образованию крупнокристаллической структур сплаьа. [c.24]

    Полиэтилен линейного типа с высокой степенью кристалличности и повышенными величинами плотности, прочности, жесткости, теплостойкости получают в присутствии металлорганических катализаторов. Процесс полимеризации осуществляется при низком давлении, не превышающем нескольких атмосфер, и низкой температуре (до 70°С). В качестве катализатора чаще всего применяют алкилы алюминия, например триэтилалюминий А1(С2Н5)з, триизобутилалюминий А1(мзо-С4Н9)з. Сока-тализаторами, образующими с алкилами алюминия каталитически активные комплексы, обычно являются хлориды металлов переменной валентности, в частности, четыреххлористый титан. В отличие от процесса получения полиэтилена высокого давления полимеризация, как правило, осуществляется не в газовой фазе, а в среде углеводородных растворителей. [c.40]

    Однако большинство работ с окисью алюминия было предпринято с целью выяснения природы каталитически активных центров в дегидратированной окиси алюминия. Каталитическая активность окиси алюминия возрастает при обработке фтористоводородной кислотой. Так, Облад и др. [319] обнаружили высокую активность в реакции изомеризации пентенов-1 и -2. Вебб [3391 исследовал влияние обработки НР на адсорбцию МНз окисью алюминия, причем никаких различий в адсорбционной емкости обнаружено не было. Однако при данной температуре аммиак легче десорбировался с необработанного образца. Вероятно, обработка приводила к сильному увеличению кислотности адсорбционных центров. Исследование ИК-спектров показало отсутствие ионов МН и наличие на поверхности только молекул КНз, что указывает на связывание молекул аммиака льюисовскими, а не бренстедовски-ми центрами. [c.270]

    Оба метода активирования испытаны в том виде, в каком они применялись с целью получения активных контактов для обесцвечивания смазочных масел. Так как активная поверхность алюмосиликатных катализаторов, но-видимому, мало зависела от наблюдающегося в природе соотношения между основными компонентами глины — оксидами кремния, алюминия и железа, а также учитывая установленное С. В. Лебедевым влияние на каталитическую активность алюмосиликатов теплового активирования, следовало ожидать, что значительную роль в формировании активной новерхности катализатора будут играть режимы процессов активации и последующего процесса сушки активированной глины. Однако подобрать оптимальный режим активации для каждого образца глины отдельно практически не представлялось возможным, поэтому все исследованные образцы глин активировались серной кислотой, а часть глип — также и соляной кислотой. Влияние всех факторов процесса активации еш формирование каталитической активности глиегы детально изучено на образцах наиболее активных Г.ЕИЕЕ. [c.84]

    Советские ученые иа основании собственных представлений о явлениях катализа, исходные позиции которых определены Н. Д. Зелинским [51, дали несколько ва11иа1[тов общей теории катализа алюмосиликатами. Схемы С. Н. Обрядчикова 163, 64] созданы на базе наблюдающейся связи между каталитической активностью и обменной способностью алюмосиликатов не Ю. А. Битепажу 165]. Б. Л. Молдавский использовал представления об алюмосиликатах как активных комплексах, несущих электрический заряд [66] А. Н. Титона рассматривала алюмосиликаты как пермутитовые кислоты, имеющие под1 ижный водородный атом гидроксильной группы алюминия 167]. 13. Н. Грязновым, В. В. Коробовым, А. В. Фростом 127] и [c.159]

    Сигнализатор состоит из датчика ДТХ-103У4, блока питания и сигнализации БПС-103У4 и линии связи между ними, длина ко-тороц может достигать 500 м. Принцип действия сигнализатора основан на измерении теплового эффекта окисления горючих газов и паров на каталитически активной окиси алюминия. [c.262]

    Показано [155, 156], что использование для приготовления алюмоплатинового катализатора оксида алюминия с бидисперсным распределением размера пор способствует значительному росту каталитической активности, селективности и стабильности катализатора в реакции Сб-дегидроциклизации алканов. Синтезированные на основе бидисперсного оксида алюминия алюмоплати-иовые катализаторы хорощо зарекомендовали себя в реакциях каталитического риформинга индивидуальных [c.243]

Рис. II.3. Окись алюминия (из изопропилата), прокаленная при различных температурах (Л. Бассери, Диссертация, Университет в Лилле, 1965). о —удельная поверхность, измеренная методом БЭТ б — каталитическая активность по отноше-НИЮ к изомеризации циклогексена в — кислотность, измеренная по методу Бенеси г — количество воды, потерянное при прокаливании. Рис. II.3. <a href="/info/39309">Окись алюминия</a> (из изопропилата), прокаленная при <a href="/info/133412">различных температурах</a> (Л. Бассери, Диссертация, Университет в Лилле, 1965). о —<a href="/info/3771">удельная поверхность</a>, <a href="/info/3778">измеренная методом</a> БЭТ б — <a href="/info/3231">каталитическая активность</a> по <a href="/info/2600">отноше</a>-НИЮ к <a href="/info/178173">изомеризации циклогексена</a> в — кислотность, измеренная по методу Бенеси г — <a href="/info/66550">количество воды</a>, потерянное при прокаливании.
    Влияние воды. Промотирование водой реакции изомеризации предельных углеводородов при применении в качестве катализаторов бромистого пли хлористого алюминия было установлено ранее [43]. Сначала думали, что действие воды состоит просто в образовании галоидводорода, однако позже было показано, что вода образует гидроксиалюминийгалоиды, которые сами являются активными катализаторами. При применении слишком большого количества воды каталитическая активность уничтожается. [c.19]

    Наши исследования о взаимодействии фтороводорода с гидроксидом алюминия бемитной модификации указывают также на рост каталитической активности платинированного фторированного у-оксида алюминия в реакции изомеризации и-пентана до массовой доли фтора 5%, из чего следует, что если при больших количествах фтора и образуется фаза AIF3, то она не является каталитически активной в реакций изомеризации парафиновых углеводородов [19]. Количественная оценка усиления изомеризующих свойств у-оксида алюминия при введении в его состав фтора была произведена на примере реакции изомеризации о-ксилола (рис. 2.1) при увеличении содержания фтора в 36 раз скорость реакции возрастала в 65 раз. На примере реакции гидрирования циклогексена было показано, что при введении в оксид алюминия фтора наряду с изо-меризующими возрастали и гидрирующие свойства противоположное действие оказывало введение в оксид алюминия ионов натрия [19]  [c.45]

    В литературе имеются весьма противоречивые данные о влиянии условии термообработки алюмоплатиновых катализаторов на их активность в реакции изомеризации, что связано с различными способами их приготовления и испытания в связи с зткм зтот вопрос бьш специально изучен. Гидроксид алюминия (бемит), получаемый синтетически, содержит до 80% воды. После сушки при 110-130 °С содержание воды уменьшается до =6,5%. Для получения каталитически активного у-оксида алюминия он должен быть подвергнут прокаливанию при определенной температуре. Результаты испытания в реакции изомеризации н-пентана платиновых катализаторов, приготовленных на основе гидроксида алюминия, содержащего фтор и прокаленного при различных температурах, показали, что с увеличением температуры прокаливания от 130 до 650 °С их каталитическая активность проходит через максимум, который соответствует температуре 500 °С (табл. 2.4). По технологии приготовления катализатора оксид алюминия после прокаливания подвергается гидратации при погружении в водный раствор НгРсС] отсюда вытекает необходимость вторичной термической обработки катализатора для удаления из него воды. [c.50]

    Однако в результате изучения обмена дейтерием между алюмо-силикатными катализаторами и двумя изомерными бутанами было сделано заключение о том, что кислота, от которой зависит каталитическая активность, является кислотой Льюиса [283]. (Денфорте предложил катализатор, вследствие особенностей своего строения Обладающий одновременно свойствами кислоты Льюиса и кислоты Бренстеда [284]). Следует предположить, что структурные изменения, которые становятся возможными благодаря присутствию двуокиси кремния, приводят к появлению атомов алюминия с электронными пробелами. Координационное число алюминия изменяется здесь от 4 до 6. Устойчивые комплексы карбоний-ионов можно представить следующим образом. [c.336]

    Изучая нричр ны каталитической активности флоридина, Гайер [49] установил, что активной составной частью флоридина является алюмосиликат, а содержащиеся в глине силикаты кальция, магния и железа не активны. Исходя из этого, (.н приготовил синтетический алюмосиликат путем осаждения оксида алюминия (до 1 % ) на силикагеле, который вызывал значительную полимеризацию пропилена при 350 °С. В случае полимеризации изобутилена синтетический алюмосиликат ведет себя так яге, как и активированный флоридин [50]. [c.49]

    Синтетические цеолиты как катализаторы начали изучать сравнительно недавно, и пока неясна природа их каталитической активности. Известно, что каталитически малоактивными или неактивными являются цеолиты, содержащие одновалентные ионы металлов. При замене же их на двухвалентные каталитическая активность возрастает, меняются некоторые структурные характеристики.цеолита. Каталитическая активность цеолитов типа резко возрастает с увеличением соотношения 3102 А12О3 — изменение соотношения атомов кремния и алюминия в решетке цеолита влияет на свойства каталитически активных центров. [c.99]

    Каталитическая активность окиси алюминия существенно зависит также от наличия на ее поверхности воды, щелочей, галогенов и минеральных кислот. При увеличении количества хемосорбиро-ванной воды на поверхности АЬОз ее активность падает [17]. С повышением температуры предварительной термообработки катализатора от 550 до 800 °С степень превращения бутена-1 в бу-тены-2 растет с 9 до 82%. Нанесение на окись алюминия КОН (или NaOH) приводит к большей селективности образования цис-бутена-2 из бутена-1. Однако степень превращения бутена-1 на таких катализаторах меньше, чем на чистой окиси алюминия (см. табл. 42). [c.147]

    Поскольку каталитическую активность связывали с поверхностными гидроксильными группами, природу гидроксильных групп на А12О3 изучали при помощи ИК-спектроскопии [27]. На поверхности окиси алюминия были идентифицированы гидроксильные группы трех типов, и оказалось, что связи групп ОН с поверхностью А1гОз носят преимущественно ионный характер. Гидроксильные группы легко обменивают водород, но скорость обмена значительно ниже, чем при изомеризации бутена-1 на том же катализаторе. [c.152]


Смотреть страницы где упоминается термин Алюминий каталитическая активность: [c.132]    [c.328]    [c.328]    [c.125]    [c.113]    [c.252]    [c.322]    [c.44]    [c.341]    [c.303]    [c.244]    [c.38]    [c.53]    [c.212]    [c.338]    [c.10]    [c.93]    [c.97]    [c.146]   
Структура металических катализов (1978) -- [ c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Активность каталитическая

Алюминий активная



© 2025 chem21.info Реклама на сайте