Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носители синтеза

    Растворение на носителе Синтез с использованием пропитки [c.50]

    Приготовление твердого носителя, синтез стационарной фазы, спо- об ее нанесения на твердый носитель и заполнение колонки см. в главе 1 первого раздела. [c.73]

    В качестве катализаторов используются медные соли на носителях. Синтез осуществляется при 250 °С и выше. Для получения дихлорэтана из этилена, хлористого водорода и кислорода в промышленных условиях необходимы большие капитальные вложения, чем для синтеза дихлорэтана из этилена и хлора. Несмотря на то что при оксихлорировании этилена выход дихлорэтана в расчете на оба исходных продукта превышает 90—95%, он все же несколько ниже, чем при присоединении элементарного хлора к этилену. Способ оксихлорирования целесообразно использовать в районах, располагающих дешевым этиленом и хлористым водородом, выделяющимся в качестве побочного продукта в различных процессах, или в районах, где удаление хлористого водорода со сточными водами невозможно. [c.23]


    Способы приготовления и составы катализаторов сильно отличались. Синтез велся в одну ступень без циркуляции. Температура синтеза 200° и максимальная 225°, да вление 10 ат, состав синтез-газа 1,25 Нг 1,0 СО с 12% инертных компонентов. Объемная скорость составляла 105—ПО объемов на объем катализатора в час, т. е. была примерно такой же, как и при синтезе над кобальтовым Катализатором. Использованные для испытаний катализаторы могут быть разделены на катализаторы на носителе и на катализаторы без носителя. Катализаторы первого типа аналогичны кобальтовым с той разницей, что на носитель, например кизельгур, наносится вместо кобальта железо. Они имеют значительно меньший насыпной вес, чем катализаторы без носителя. [c.113]

    В реакции изомеризации парафиновых углеводородов наиболее медленной стадией является перегруппировка промежуточных соединений на кислотных центрах носителя, поэтому при синтезе катализатора необходимо придать носителю сильные кислотные свойства. Роль металла сводится к осуществлению первичного акта дегидрирования молекулы парафинового углеводорода с образованием олефина и протекания реакции гидрирования промежуточных соединений, что обеспечивает стабильность каталитической системы. Немаловажным моментом в синтезе катализатора изомеризации является подбор правильного соотношения между концентрацией металла и кислотностью носителя - это определяет не только активность, но и селективность его действия и стабильность в процессе изомеризации. [c.42]

    Из опыта, накопленного в области синтеза катализаторов риформинга, известно, что высокая стабильность в процессах, проводимых в присутствии водорода, достигается, когда носителем служит оксид алюминия. Однако 7-оксид алюминия без промоторов не обладает кислотностью, позволяющей осуществлять реакции перегруппировки углеродного скелета парафиновых углеводородов. При синтезе катализатора высокотемпературной изомеризации в оксид алюминия вводится фтор [19]. [c.43]

    Блестяще подтвердилось научное предвидение С. В. Лебедева, содержащееся в его выступлении на сессии Академии Наук СССР в 1932 г. Синтез каучуков— источник бесконечного многообразия. Теория не кладет границ этому многообразию. А так как каждый новый каучук является носителем своей оригинальной шкалы свойств, то резиновая промышленность, пользуясь наряду с натуральным, также и синтетическими каучуками получит недостающую ей сейчас широкую свободу в выборе нужных V, свойств . [c.8]


    Б. А. Казанский, И. Б. Лосик, Н. Д. Зелинский [101] изучали окись алюминия в роли носителя окиси хрома, так как было известно, что окись алюминия является прекрасным носителем для катализаторов, применяющихся при гидрогенизации и дегидрогенизации в качестве промотора для синтеза аммиака на никелевом катализаторе Н. Д. Зелинского и др. Исходя из этого, был приготовлен ряд катализаторов с различным содержанием обоих окислов, испытанный на фракциях синтеза. [c.288]

    В процессе гидратации происходит постепенный унос фосфорной кислоты с поверхности носителя, и через 400—500 ч катализатор теряет активность. Для удлинения этого срока рекомендовано в процессе синтеза подпитывать катализатор фосфорной кислотой. Однако и в этом случае катализатор требуется со временем заменять, так как на его поверхности появляются смолистые отложе-ния, а носитель становится чрезмерно хрупким. Свежий катализатор готовят пропиткой носителя 60—65%-ной фосфорной кислотой с последующей сушкой при 100°С. Он содержит 35% свободной фосфорной кислоты. [c.192]

    Газофазный синтез винилацетата осуществляют с гетерогенным катализатором (Р(1 на 8Юо, АЬОз или на алюмосиликате с добавкой ацетата натрия), в котором роль медных солей выполняет носитель, способствующий окислению Р(1 в двухвалентную форму  [c.452]

    Синтез проводят с оксидами меди и висмута, нанесенными на пористый носитель, при 85—90°С и 0,1—0,6 МПа. Способ имеет значение главным образом для получения бутандиола-1,4, но теперь появились более экономичные способы производства этого продукта (стр. 453). [c.588]

    Дальнейшее совершенствование отечественных катализаторов гидроочистки газировалось на переходе к пропиточной технологии нанесения аки вных метал.пов на носитель, основным структурным компонентом которых служит оксид алюминия. Основой послужили результаты исследований распределения гидрирующей и гидрообессеривающей активности Al-Ni-Mo системы по типам присутствующих в ней оксидных соединений - предшественников активных структур, возникающих после сульфидирования, а также анализ мирового опыта в области синтеза носителей и катализаторов гидроочистки. [c.177]

    Для поиска возможных маршрутов химического синтеза необходимо использовать ряд соображений, позволяющих предсказать ре кционную способность химических соединений. При этом учитывается, что носителями тех или иных видов реакционной способности являются определенные фрагменты структуры молекулы. [c.36]

    С точки зрения функционально-информационной, или блочной вопросно-ответной, структуры ФР блоки вопросов соответствуют атрибутам, а блоки ответов — характеристикам в нотации Рг (4.1). Например, ФР химическая реакция может содержать следующие атрибуты реагенты, продукты, катализатор, теплота реакции, условие протекания реакции. Некоторым атрибутам может соответствовать только одна характеристика. Например, характеристика, соответствующая атрибуту катализатор для ФР химический синтез аммиака может быть заполнена понятием оксид железа . В ряде случаев каждому атрибуту может соответствовать набор характеристик. Например, атрибуту катализатор могут соответствовать характеристики носитель , активный компонент , наполнители , отравляющие вещества . [c.119]

    Обычно пористую основу пропитывают раствором, содержащим не активные компоненты катализатора, а соединения, которые переходят в эти компоненты при соответствующей обработке. Чаще всего применяют соли, анионы которых можно легко удалить в процессе термообработки нитраты, карбонаты, ацетаты и т.д. [76]. Для синтеза металлических катализаторов вначале получают на носителях их окислы, которые затем восстанавливают (чаще всего водородом) до металла. [c.127]

    Отдельные представители плавленых катализаторов, такие, как катализаторы синтеза и окисления аммиака, получили широкое распространение, другие, например, металлокерамические контакты, только начинают находить применение. В целом, однако, их меньше используют в промышленности, чем осажденные, смешанные контактные массы и катализаторы на носителях [3]. Выпускают 2 типа плавленых катализаторов металлические и окисные [2, 3, 166—169]. Технология приготовления их сравнительно проста и сводится обычно к следующим операциям приготовление шихты нужного состава расплавление компонентов охлаждение расплава дробление массы до требуемых размеров. [c.157]

    Активная окись алюминия — сырье для синтеза пористого корунда и дисперсных высокотемпературных носителей (индекс 02—022). Выпускается в виде двух модификаций с монодисперсной и бидисперсной пористой структурой  [c.390]

    Синтез на полимершх носителях. Так же как и в случае полипептидов, синтез олигонуклеотидов может быть осуществлен ступенчатым удлинением цепн, ковалентно привязанной одним из концов (5 илн 3 ) к полимерному носителю. Синтез олигонуклеотидов на полимере начал развиваться в 60-х годах усилиями ряда групп Ф. Крамера (ФРГ) и Г. Кораны с сотр. (США), 3. А. Шаба-ровой, М. А. Прокофьева с сотр. (СССР). Такой подход принципиально более эффективен, чем синтез в растворе, так как существенно облегчается отделение продукта от исходных веществ, что приводит к сокращению времени синтеза. Кроме того, все операции легко могут быть автоматизированы (первые автоматические системы были предложены М. Гайтом и М. Карузерсом). Принципиальная схема синтеза на полимерном носителе выглядит следующим образом  [c.365]


    К проблемам макромолекулярното катализа тесно примыкают и проблемы, связанные с использованием полимеров в качестве носителей. Синтез и использование полимеров-носителей различных физиологически и биологически активных групп — это сравнительно новая обширная область. Для того, чтобы путем химической реакции прикрепить к полимерным носителям соответствующую функциональную группу или физиологически активную молекулу, например пенициллин или другой антибиотик, нужно решить очень много сложных проблем, которые далеко не тривиальны и с которыми не сталкиваются в химии низкомолекулярных веществ. В частности, по-видимому, далеко не безразлично, как будут расположены эти группы, не будет ли изменяться их эффективная концентрация. Прочность их соединения с полимерной цепочкой также должна учитываться. Очень важно, какова будет структура этих модифицированных макромолекул, в частности, будут ли они свернуты или развернуты, а если развернуты, то в какой момент и в какой форме и как это может сказаться па экранировании физиологически активной группы [c.77]

    Видимо, лучшими катализаторами являются уксуснокислый цинк и уксуснокислый кадмий, нанесенные на активированный уголь определенной марки (не все активные угли являются пригодными носителями). Синтез винилацетата осуществляется при 170—240° С. Процесс начи нают при 170° и по мере падения активности катализатора температуру в контактном аппарате постепенно повышают до 240° С. [c.148]

    Важным условием хорошего течения синтеза винилацетата является качество и состав катализатора. Реакция катализируется уксуснокислым кадмием, уксуснокислым цинком или фосфатом любого из этих металлов, нанесенным на пористый носитель — силикагель, древесный и активированный уголь или активированный глинозем. Видидю, лучшими катализаторами являются уксуснокислый цинк и уксуснокислый кадмий, нанесенные на активированный у оль определенной марки (не все активные угли являются пригодными носителями). Синтез винилацетата осуществляется при 170—240° С. Процесс начинают при 170° и по мере Ьадения активности катализатора температуру в контактном аппарате постепенно повышают до 240° С. [c.154]

    Целевым назначением процесса, разработанного в Германии (бывшей ГДР), является получение из дистиллятных, преимущественно керосиновых и дизельных фракций жидких нормальных парафинов высокой степени чистоты и низкозастывающих денор— мализатов — компонентов зимних и арктических сортов реактивных и дизельных топлив. Получаемые в процессе "Парекс" парафины используются как сырье для производства белково-витаминных концентратов, моющих средств, поверхностно-активных веществ и др/гих продуктов нефтехимического синтеза. Сырьем процесса является прямогонный керосиновый дистиллят широкого или узкого фракционного состава (в зависимости от требований, предъявляемых к продуктам), который предварительно подвергается гидроочистке. В качестве адсорбента используется цеолит типа цеосорб 5АМ (типа СаА). Используемый адсорбент — цеолит, обладающий молекулярно-ситовым эффектом, избирательно адсорбирует н-алканы из смесей их с углеводородами изо- или циклического строения. Характерной особенностью процесса "Па — реке" является проведение адсорбции в среде циркулирующего во, ородсодержащего газа, являющегося газом-носителем сырья. Применение циркулирующего газа-носителя препятствует быс — [c.269]

    В основе синтеза лежит идея сочетания алюмоплатинового катализатора с катализатором типа Фриделя - Крафтса. В качестве носителя используется 7-оксид алюминия с массовой долей платины до 1%. Перед сублимацией хлорида алюминия алюмоплатиновый катализатор подвергается обработке водородом при 500-650 °С с целью дегидроксилирова-ния поверхности оксвда алюминия и восстановления платины до металлической. Нанесение хлорида алюминия проводится при 180 °С в количестве до 75% к массе платинированного оксида алюминия. Избыток хлорида алюминия удаляется нагреванием при 200 °С. Предполагается, что на поверхности платинированного оксида алюм1шия происходит взаимодействие гидроксильных групп с хлоридом алюмшия с выделением НС1  [c.66]

    Катализаторы низкотемпературной изомеризации, получаемые обработкой платинированного оксида алюминия органическими хлорсодержащими соединениями, разработаны фирмой British Petroleum и во ВНИИнефтехиме [85, 86]. Носителем для синтеза катализатора служит т -оксид алюминия, который должен отвечать определенным требованиям к фазовому составу, наличию примесей и состоянию поверхности — величине и степени гидроксилирования. [c.66]

    Оксо-синтез—реакция между олефинами, водородом и окисью углерода, проводимая с целью получения окисленных соединений, главным образом альдегидов, которые впоследствии можно гидрировать в спирты. При этом применяются температура 150—205 °С и давление 150—300 ат катализатором служит кобальт (в первоначальном процессе использовали твердый катализатор Фишера— Тропша). Активным агентом является дикобальтоктакарбонил [Со(С04) з. в установке с неподвижным слоем твердого катализатора сырьем может Служить жидкий гептен, который подается с объемной скоростью 0,4 ч . В случае применения пасты ее прокачивают через реактор с объемной скоростью 1,3—3 тогда как объемная скорость газа составляет 250 Катализатором является 2,5%-ный нафтенат кобальта на носителе. Порядок величины константы скорости реакции в жидкой фазе к= =0,02—0,07 мин при температуре 110 °С и давлении около 200 ат. В настоящее время опубликованы обзоры по оксо-синте- [c.330]

    Катализатор содержит 20—40% никеля (считая на N 0) огнеупорный носитель, состоящий из осажденных А12О3, СгаОэ и 10—40% (от общего веса катализатора) связующего вещества — ииз-кокремнеземистого гидравлического цемента. На таких катализаторах при паровой конверсии углеводородов с температурой кипения 3(3—170° С получают синтез газа, содержащий большое количество метана при температуре 400—700 (450—650° С), давлении 7—35 атм, и отношении водяного пара к углеводороду [c.61]

    В присутствии гидрирующего железного катализатора из СО и Нг при 200°С и 2 МПа получена смесь алифатических спиртов — синолсинтез. Введение в эти катализаторы церия или ванадия и осаждение активных компонентов на носителе позволило увеличить выход спиртов — так называемый оксилсинтез. В продуктах оксилсинтеза содержится 55% спиртов, в том числе 10% этилового, 7% пропилового, 6% бутилового, по 4—5% амилового и гексилового, по 5—7% смесей спиртов С -Сз, Сэ—Сю, Си- i2, i3—С 8. Ниже приведены теплоты АЯ (в кДж) и константы равновесия синтеза К°р спиртов Сг и выше из СО и Нг  [c.327]

    Плавленые, скелетные и прочие катализатбры. К числу плав- леных катализаторов прежде всего относятся металлические катализаторы ненанесенного типа. Отдельные представители группы плавленых катализаторов, как, например, катализаторы синтеза и окисления аммиака, получили широкое распространение. Другие катализаторы — металлокерамические — только начинают находить применение. В целом, однако, этот класс катализаторов в настоящее время менее распространен, чем осажденные катализаторй и катализаторы на носителях.  [c.185]

    Относительно недавно в качестве носителей стали использовать специальным образом приготовленную керамику. Применяют керамику на основе а-окиси алюминия (корунда), окиси циркония, силиката циркония (циркона), карборунда, динаса, муллита. Керамические носители инертны, температуростойки и могут изготовляться с диаметром пор 2000—3000 А. Возможность получения широко- и малонористых носителей особенно важна при синтезе катализаторов для получения целевых продуктов, являющихся промежуточными в системе последовательных необратимых реакций, например в реакциях окисления. Характеристики основных керамических носителей даны в работе [32]. [c.187]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    Па раздельном осуществлении реакций роста и вытеснения алкильных групп основан двухстадийный метод алюмп-нийорганического синтеза а-олефинов. В реактор роста цсхит вводят триэтилалюмииий и этилен, поддерживая температуру 100— 130 С и давление 9 МПа. Полученный продукт направляют в реактор вытеснения, где в атмосфере этилена происходят регенерация триэтилалюминия и образование а-олефинов. Этот процесс проводят термическим (при 200—300 "С) или каталитическим способом в присутствии никеля (диспергированный или на носителях. Недостатком процесса является рециркуляция большого [c.313]

    Синтез карбоновых кислот из олефинов и СО можно осуществить в газовой фазе при катализе фосфорной кислотой на носителях в жестких условиях a300° и 20—30 МПа. Побочно происходят образование слол ных эфиров и полимеризация олефина, вследствие чего требуется многократный избыток СО по отношению к олефину. [c.544]

    Носители катализатора. Активные компоненты катализатора необходимо диспергировать на носителе прежде всего по экономическим причинам для повышения эффективности использования единицы массы серебра. Другая причина для на-иесеипя катализатора — необходимость ограничить скорость тепловыделения па единицу объема. По оценкам автора, в работающие в США установки синтеза окисн этилена загружено в виде катализаторов от 300 до 600 т серебра. [c.234]

    В последние годы все большее применение для синтеза катализаторов находпт метод золь —гель. Сначала получают золь, обычно с частицами размером менее 200 А, суспендированными в жидкости. Концентрация твердых веществ в этих золях чаще всего низка, но производится коллоидный оксид кремния, содержащий 40 масс. % SIO2. Регулируя pH золя, а следовательно, и заряд поверхности частиц, можно добиться образования геля [17]. При этом частицы золя слипаются, образуя непрерывную жесткую сетку с исключительно однородным распределением компонентов. В поры геля можно ввести растворы различных катионов, как при пропитке обычного носителя. Чрезвычайно важна методика удаления воды из геля, так как при этом может измениться его микроструктура. Данный вопрос рассмотрен в разд. УП.Б. [c.21]

    Различные модификации и разновидности оксида алюминия широко применяются для приготовления катализаторов [1271. Используемый в качестве носителя бифункциональны.х катализаторов риформинга, промотированный хлором или фтором ok hj алюминия играет важную роль в катализе, поскольку на нем протекают кис-лотно-каталнзируемые реакции. Поэтому большое значение имеют физико-химические свойства оксида алюминия, а также содержание в нем примесей. Регулированиесвойств окснда алюминия достигается за счет изменения методов и условий синтеза исходной гидроокиси и ее последующей обработки (промывки, формовки, сушки и прокаливания). [c.63]

    Н3РО4 на носителях, кремневольфрамовая кислота НдЗО, (суспензия в жидкости). фосфаты Са и С(1 (синтез в газовой фазе) [c.8]

    Машины, применяемые для крупного и мелкого измельчения, называют дробилками, для тонкого — мельницами. Операции крупного дробления необходимы при производстве ряда плавленых окисных катализаторов (например, ванадиевый катализатор для производства фталевого ангидрида, исходный окисно-железный катализатор синтеза аммиака), при подготовке крупнокускового сырья к переработке (например, для дробления силикат-глыбы при производстве алюмоеиликатных катализаторов и носителей) и т. д. Наиболее часто для этих целей применяют щековые дробилки и дробилки ударного действия — молотковые, дезинтеграторы, дис-мембраторы. [c.257]

    Опубликованные данные о процессе производства изопрена фирмы Кигагау весьма скудны. Синтез ДМД осуществляется в жидкой фазе под давлением в присутствии кислотного катализатора. На второй стадии ДМД подвергается каталитическому расщеплению в присутствии водяного пара на катализаторе типа фосфорная кислота на носителе . Особенностью катализатора фирмы Кигагау является то, что до употребления он прокаливается при 700—1100 °С. По предварительным (до пуска промышленной установки) данным фирмы конверсия ДМД на этом катализаторе составляет 80—90% при температуре не выше 200 °С. В результате тщательного учета потребления водяного пара на каждой операции его общий расход по расчету не должен превышать 8 т на 1 т изопрена. В 1972—1973 гг. была осуществлена промышленная реализация метода на заводе в г. Касима с годовой мощностью по изопрену 30 тыс. т. [c.366]


Смотреть страницы где упоминается термин Носители синтеза: [c.17]    [c.17]    [c.46]    [c.361]    [c.20]    [c.98]    [c.311]    [c.129]    [c.308]    [c.94]    [c.181]    [c.324]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.451 , c.503 ]




ПОИСК







© 2025 chem21.info Реклама на сайте