Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной электрический слой влияние адсорбции

    Импульсный гальваностатический метод используется также для изучения строения двойного электрического слоя и адсорбции веществ, которые могут окисляться или восстанавливаться на поверхности электрода. При концентрациях органического вещества <10" моль/л и 1>100 А/м величина п, рассчитанная из переходного времени на хронопотенциограмме, равна пРГ, где Г — адсорбция органического вещества. Однако в ходе восстановления (или окисления) адсорбированных частиц их убыль пополняется за счет диффузии вещества из объема раствора. Влияние диффузии на хронопотенциограмму определяется видом зависимости между приэлектродной концентрацией органического вещества и величиной адсорбции его на электроде, т. е. изотермой адсорбции. Поэтому поправку на диффузию по уравнению (42.6) проводить нельзя. Кроме того, необходимо учитывать последовательность, в которой вступают в электрохимическую реакцию заранее адсорбированные и диффундирующие из раствора частицы. Адсорбцию деполяризатора, накопленного предварительно на поверхности электрода, рассчитывают по соотношению [c.215]


    Итак, если реагирующие вещества и продукты реакции не адсорбируются специфически на электроде, то влияние природы металла проявляется только через изменение строения двойного электрического слоя. Влияние природы металла на скорость стадии разряда — ионизации обусловлено как изменением строения двойного слоя, так и различием в энергиях адсорбции реагирующих веществ и продуктов реакции на разных металлах. Что же касается работы выхода электрона, то она не входит непосредственно в уравнения электрохимической кинетики. [c.275]

    В книге рассматриваются электродные процессы, осложненные приэлектродными химическими реакциями и адсорбционными явлениями. В полярографии подобным процессам соответствуют кинетические и каталитические волны. Особое внимание уделено механизму и кинетике процессов, включающих реакцию протонизации. Такого рода электродные цроцессы характерны для электровосстановления органических веществ. Рассмотрено влияние строений двойного электрического слоя и адсорбции компонентов реакции на кинетику электродных процессов. Показано, как из полярографических данных могут быть вычислены константы скорости быстрых протолитических реакций. [c.2]

    При наличии соотношения (III.237) уравнения (III.241) и (III.242) приводят к уравнениям (III.85) или (III.103). Это может рассматриваться, как указание на возможность происхождения логарифмической и степенной изотерм за счет влияния заряжения поверхности (этот термин можно здесь понимать в смысле образования двойного электрического слоя при адсорбции). Однако уравнение (III.241) наблюдалось в работе [637] лишь при малых покрытиях поверхности окиси цинка. Зависимость (III.241) наблюдал также Э. X. Еникеев для адсорбции кислорода на двуокиси марганца [999], а зависимость (III.241) —для адсорбции кислорода на закиси никеля [256]. Как отмечает С. 3. Рогинский [29], зависимость (111.241) характерна для деплетивной адсорбции, а зависимость (III.242)—для кумулятивной адсорбции. [c.129]

    На основании данных по адсорбции Ру [131] и Tu [132] были найдены [107, 109] константы скорости гетерогенных реакций и к.2- Заряд полярографически активного комплекса - -2 также подтвержден [107, 109, 129, 130] анализом влияния на каталитический ток двойного электрического слоя и адсорбции лиганда в зависимости от концентрации фонового электролита и потенциала электрода. В отличие от этого для полярографически активного комплекса в системе о-фенилендиамин найден [108] заряд [c.284]


    Электродные реакции комплексов металлов широко используют в промышленности и технике (гидроэлектрометаллургия, гальваностегия, химические источники тока), они определяют скорость растворения и коррозию металлов и, кроме того, составляют основу ряда электроаналитических методов. Наряду с большим практическим значением эта группа электродных реакций представляет значительный интерес для проблем электрохимической кинетики, поскольку переносу электронов в электрохимических стадиях всегда предшествует та или иная реорганизация координационной сферы исходных комплексов. Заключение о ее характере обычно делают на основании количественных характеристик электродных реакций комплексов металлов и их электрохимических и возможных химических стадий. При этом, естественно, учитывается влияние процессов массопереноса, потенциала и материала электрода, строения двойного электрического слоя, процессов адсорбции и других факторов на скорость суммарного электродного процесса. [c.5]

Рис. 20. Схема образования двойного электрического слоя на поверхности металла и его изменение под влиянием адсорбции кислорода Рис. 20. Схема <a href="/info/72517">образования двойного электрического слоя</a> на <a href="/info/140386">поверхности металла</a> и его изменение под <a href="/info/9078">влиянием адсорбции</a> кислорода
    Из уравнения (535) следует, что г] уменьшается с уменьшением pH среды и что оно зависит от tpi, т. е. строения двойного электрического слоя. Последнее обстоятельство объясняет влияние адсорбции различных веществ на величину перенапряжения водорода на катоде. [c.254]

    Современная теория двойного электрического слоя использует теорию Гуи — Чепмена для описания диффузий части этого слоя. В первоначальном виде теория Гуи — Чепмена ие учитывала наличия слоя Гельмгольца и поэтому ее допущения не позволяли правильно описать электрические явления, на которые существенное влияние оказывает плотная, непосредственно прилегающая к межфазной поверхности часть слоя. Пренебрежение размерами иоиов приводит к тому, что не учитывается минимальная толщина слоя, и это в свою очередь вызывает большие ошибки при расчете параметров двойного электрического слоя. Теория Гуи — Чепмена, учитывая только концентрацию и заряд нонов электролитов, не объясняет различного действия ионов разной природы, связанного со специфической адсорбцией их на межфазной поверхности. [c.60]

    Поверхность твердого вещества всегда заряжена, хотя часто по совершенно разным причинам благодаря тому, что она образована ионами, входящими в состав твердого вещества, вследствие ориентированной адсорбции дипольных молекул или ионов, или же, наоборот, вследствие, ухода с нее ионов одного знака в окружающую среду (раствор), или, наконец, в результате эмиссии или присоединения электронов под влиянием тех или иных условий, включая все виды воздействий, вызывающих появление статического электричества. Чистая поверхность слюды, например, заряжена положительно, так как она образована ионами К+, а поверхность каолинита, построенная из ионов кислорода или гидроксила — отрицательно. Адсорбция противоположно заряженных ионов может нейтрализовать заряд поверхности или изменить его знак. При адсорбции кислорода на металлах образуется полярная связь М — О, причем кислородная поверхность приобретает отрицательный заряд, а примыкающий слой атомов металла — положительный. Адсорбция воды на металлах вызывает противоположный эффект на поверхности образуется двойной электрический слой, обращенный к окружающей среде слоем не отрицательных, а положительных зарядов. [c.113]

    Двойной слой на границе раствор —металл создается электрическими зарядами, находящимися на металле, и ионами противоположного знака противоионами), ориентированными у поверхности электрода. В формировании ионной обкладки двойного слоя принимают участие как электростатические силы, под влиянием которых противоионы подходят к поверхности электрода, так и силы теплового (молекулярного) движения, в результате действия которых двойной слой приобретает размытое, диффузное строение. Кроме того, в создании двойного электрического слоя на границе металл —раствор существенную роль играет эффект специфической адсорбции поверхностно-активных ионов и молекул, которые могут содержаться в электролите. Теория двойного электрического слоя сложилась на основе работ Гельмгольца, Штерна, А. И. Фрумкина и др. [c.473]

    Адсорбированные органические вещества оказывают сильное влияние на структуру двойного электрического слоя на платине. На рис. 77 приведена зависимость адсорбции ионов S0 и Na+ от потенциала на Pt/Pt-электроде в подкисленном растворе сульфата натрия и в [c.136]


    Адсорбированные органические вещества оказывают сильное влияние на структуру двойного электрического слоя на платине. На рис. 77 приведена зависимость адсорбции ионов 50Г и Ыа" от потенциала на Р1/Р1-электроде в подкисленном растворе сульфата натрия и в том же растворе на электроде, адсорбировавшем метанол. В присутствии метанола адсорбция анионов 50Г снижается в широком интервале потенциалов. После окисления адсорбированного метанола она достигает того же значения, которое наблюдалось в отсутствие метанола. Адсорбция катионов Ыа возрастает при адсорбции метанола. Таким образом, т. н. 3. сильно смещается в положительную сторону. Зависимость т. н. 3. от 0 на платине удовлетворительно описывается рассмотренной моделью двух параллельных конденсаторов. [c.144]

    При интерпретации наблюдаемого ускорения процесса в ряду вода — метанол — этанол необходимо учитывать следующее 1) изменение строения двойного электрического слоя (изменение т. н. з. и емкости двойного слоя) 2) изменение энергии адсорбции атомарного водорода в результате конкуренции с различными молекулами растворителя, обладающими неодинаковой энергией связи с поверхностью электрода 3) изменение константы скорости реакции в результате влияния растворителя на высоту стандартного барьера стадии разряда — ионизации (при Си = oi ii, см. рис. 125). [c.290]

    Таким образом, влияние потенциала электрода на адсорбцию органических веществ должно проявляться через зависимость кинетических параметров процессов накопления и удаления органических частиц на поверхности от адсорбции на ней водорода и кислорода и скачка потенциала в двойном электрическом слое. [c.109]

    Обмен частиц между фазами происходит под влиянием разности их химических потенциалов в жидкой и твердой фазах. Очевидно, что в обмене ионов между адсорбентом и раствором могут участвовать только подвижные противоионы двойного слоя. Таким образом, ионный обмен является вторичной адсорбцией, проявляющейся при наличии двойного электрического слоя. Обмен ионов между внешней обкладкой ДЭС и раствором происходит постоянно под действием теплового движения при этом обмениваются ионы как одного вида (например, на К ), так и ионы разной природы, но с тем же знаком заряда. Ионообменная адсорбция специфична и в значительной мере зависит от природы твердой фазы и адсорбируемых электролитов. [c.339]

    Наибольшей диффузностью двойной слой обладает вблизи точки нулевого заряда. Метод измерения емкости двойного слоя позволяет исследовать изменения, происходящие в двойном электрическом слое, в частности кинетику адсорбции поверхностно активных веществ, деформацию ионов под влиянием электрического поля, изменение толщины двойного слоя при адсорбции атомов и молекул. Сравнительное изучение поведения ряда металлов в водных растворах показало, что строение ионного двойного слоя относительно мало зависит от природы металла. Вместе с тем определение значения емкости двойного слоя помогает судить о строении и истинной поверхности металлического электрода. Измерения емкости в разбавленных растворах позволили, например, непосредственно проверить на опыте теорию диффузионного строения двойного слоя и определить величину потенциала l3], создаваемого частью двойного слоя, находящейся на расстоянии одного ионного радиуса от поверхности электрода. [c.225]

    В последнее время был получен обширный экспериментальный материал по электрохимическим и химическим свойствам хемосорбционных слоев на металлах. При этом были использованы измерения адсорбционных потенциалов, применены радиоактивные индикаторы и другие методы, позволяющие определить влияние адсорбционных слоев на кинетику электродных процессов. Так, например, было установлено, что адсорбция йода на платине сопровождается значительным проникновением его в глубь металла. Поскольку связь между металлом и адсорбированными атомами имеет дипольный характер, образование атомных слоев приводит к нарушению строения двойного электрического слоя вплоть до изменения знака потенциала. Характерно также заметное снижение емкости двойного слоя, вызванное созданием адсорбционных слоев. [c.348]

    Специфика ионной адсорбции заключается и в том, что обычно адсорбируются частицы, способные поляризоваться на поверхностях, состоящих из полярных молекул или из ионов. Поэтому ионную адсорбцию часто называют полярной. Микроучастки поверхности адсорбента, несущие заряд, должны, как правило, адсорбировать противоположно заряженные ионы. Однако ионы электролита, имеющие противоположный знак заряда по отношению к зарядам на поверхности адсорбента, не адсорбируются, в общепринятом понимании, но вследствие наличия сил электростатического притяжения остаются вблизи адсорбированных ионов, образуя на поверхности адсорбента так называемый двойной электрический слой (подробнее см. раздел V). Влияние заряда твердой поверхности на ионную адсорбцию сформулировано во втором правиле Пескова — Фаянса  [c.188]

    В заключение следует отметить, что для изучения кинетики химических реакций, предшествующих собственно электродному акту, и влияния на них различных факторов все же наиболее удобным оказался классический метод. Преимущества классического метода — его универсальность, экспериментальная простота, легкость интерпретации получаемых данных, достаточная точность определяемых величин, а также возможность сравнительно несложного учета факторов, влияющих на кинетику приэлектродных реакций, — адсорбции компонентов реакции и строения двойного электрического слоя. Другие же рассмотренные здесь методы являются ценным дополнением к классическому. [c.325]

    Механизм электровосстановления комплексов металла через предварительную адсорбцию их на поверхности электрода был рассмотрен Е. Лайонсом. Он допускает, что во внутреннюю координационную сферу восстанавливающегося комплекса входит молекула воды или другой лиганд, адсорбированный на поверхности металлического электрода, играющий роль мостика между электродом и центральным ионом металла. Войдя в двойной электрический слой, комплексный ион претерпевает деформацию. По достижении достаточного потенциала сложный ион разрывается, при этом катион металла под влиянием электрического поля входит в сферу влияния электронов кристаллической решетки осадка, а освободившиеся простые анионы вытесняются из двойного слоя в раствор. При этом при соответствующем потенциале не исключена возможность выхода электрона из катода на адсорбированный диполь и его разряд в жидкой фазе (туннельный эффект). [c.399]

    В предлагаемой вниманию читателя книге известного американского электрохимика профессора Нью-йоркского университета П. Делахея автор, не претендуя на исчерпывающее изложение фактического материала в области электрохимической кинетики, в первую очередь стремится показать на ряде примеров значение, которое имеют для течения электродных процессов строение двойного слоя и явления адсорбции. В зарубежной литературе такая попытка делается впервые. Этому вопросу посвящена вторая, в сущности говоря, центральная часть книги. В первой части, имеющей до некоторой степени вводный характер, излагаются основы теории двойного электрического слоя и адсорбции на электродах, необходимые для понимания влияния этих факторов на кинетику электрохимических процессов. Такой подход накладывает на книгу профессора Делахея индивидуальный отпечаток и делает ее, в частности, ценным и необходимым дополнением к фундаментальной монографии по электрохимической кинетике К- Феттера, выщедщей недавно в русском переводе. [c.5]

    Изменение работы выхода, сопровождающее адсорбцию на поверхности металла, оказывает влияние на теплоту адсорбции. При образовании дипольного слоя, отрицательная сторона которого обращена наружу, работа перемещения электрона из точки в объеме металла в область, где атом оказывается адсорбированным, определяется в соответствии со сказанным в разделе III величиной (еДф) эв. Но вследствие возрастания значения Дф с адсорбцией соответственно будет увеличиваться и работа перенесения электрона. Если же наружу обращена положительная сторона двойного слоя, как, например, в случае катионной адсорбции, то еДф представляет собой работу, затраченную на пе-ренесение электрона из точки вне металла на поверхность с уменьшающимся сродством к электрону. Следовательно, независимо от знака двойного электрического слоя, теплота адсорбции (включающая теплоту образования связи, т. е. начальную теплоту — ДЯо и изменение работы выхода) уменьшается с заполнением. Согласно этому [c.142]

    Штерн попытался учесть влияние специфической адсорбции на электрический потенциал, обусловленной действием ковалентных сил дополнительно к электростатическим силам. Так как радиус действия сил такой адсорбции соизмерим с размером ионов, это дает основание учитывать их только для иоиов, входящих в плотный слой Гельмгольца. Как видно из рис. И. 13, плотность поверхностного заряда противоионов можно разделить на две части плотность заряда обусловленного монопонным слоем, представляющим собой слой Гельмгольца, и плотность заряда диффузного слоя Гуи. Общая поверхностная плотность заряда двойного электрического слоя равна сумме поверхностиых плотностей зарядов плотного и диффузного слоев  [c.60]

    Наряду с адсорбцией ионов, вызываемой электростатическими силами, может иметь место специфическая для каждого сорта частиц адсорбция, вызываемая силами Ван дер Ваальса или химическими силами. Проявление последних приводит к адсорбции ионов на одноименно заряженной поверхности, а также к адсорбции органических веществ молекулярного типа. При этом влияние анионов может наблюдаться не только на восходящей ветви электрокапиллярной кривой (электростатические силы), но и на нисходящей (химические силы). Аналогичный эффект оказывают катионы. Соответственно максимум электрокапиллярной кривой смещается в электроотрицательную (действие анионов) или электроположительную (действие катионов) сторону. Так как работа адсорбции положительна (процесс совершается самопроизвольно), поверхностная энергия адсорбента уменьшается, т. е. уменьшается а. В присутствии поверхностноактивных веществ молекулярного типа смещение максимума не наблюдается, но величина о заметно снижается. Смещение потенциала электрода в положительную или отрицательную сторону до значений, при которых электростатические силы начинают преобладать над силами специфической адсорбции, приводит к прекращению действия поверхностно-активных веществ, вследствие их вытеснения из двойного электрического слоя, и электрокапиллярная кривая сливается с кривой, полученной в отсутствие поверхностно-активных веществ. Соответствующие потенциалы называются положительным и отрицательным потенциалами десорбции (е .с и бдес) и ограничивают область потенциалов, внутри которой происходит адсорбция поверхностно-активных веществ (от бдес до бдес). [c.100]

    На процесс коагуляции существенное влияние оказывает солевой состав воды. Анионы слабых кислот обусловливают емкоси, буфера, способствуя гидролизу коагулянта. Катионы могут изменять заряд коллоидных частиц. Например, в жестких водах отрицательно заряженные коллоиды за счет адсорбции ионов кальция и магния могут приобрести положительный заряд. При значениях рН>7 этот заряд может нейтрализоваться ионами 804 из сернокислого алюминия, а ион алюминия будет полностью гидролизоваться до Л (ОН)з. Доза коагулянта в этом случае будет меньше, чем при коагуляции глинистой взвеси с отрицательно заряженными частицами. Следовательно, ион-партнер 504 оказывает суще ственное влияние на процесс коагуляции в водах с повышенной жесткостью. С добавлением в воду коагулянта у частиц происходит сжатие двойного электрического слоя, способствующее сближению их на такое расстояние, где проявляются межмолекулярные силы притяжения, и частицы укрупняются. [c.143]

    Итак, теория и эксперимент показывают, что работа выхода электрона из металла в раствор при заданном электродном потенциале Е не зависит от природы металла. Учитывая этот результат, становится физически понятным, почему и в неравновесных условиях при = onst влияние природы металла на скорость стадии разряда — ионизации может проявляться через энергию специфической адсорбции веществ О и R, через строение двойного электрического слоя, но не через работу выхода электрона. Для экспериментальной проверки этих выводов можно воспользоваться или уравнением для тока разряда, вытекающим из (45.21), [c.272]

    Хемосорбция органических веществ на электродах из металлов группы платины приводит к существеиному изменению структуры двойного электрического слоя. Ввиду необратимости адсорбции органических соединений характер нх влияния на адсорбцию ионов в большой мере может определяться последовательностью адсорбционных процессов. Типичным примером в этом отношении являются данные по совместной адсорбции органических ча-стиц и Вг"-анионов на платиновом электроде в интервале Ег = = 0,0-ь0,6 В в системе 0,1 М СНзОН—0,01 н. КВг— н. Н2304. Установлено отсутствие влияния на величину адсорбции предварительно адсорбированных органических частиц иди анионов Вг" (исходные заполнения близки к предельным) последующего введения в раствор ионов Вг или метанола. Это обусловлено в [c.115]

    Реакция электровосстановления анионов на отрицательно заряженной поверхности электрода удобна для выяснения закономерностей влияния природы металла на скорость стадии разряда — ионизации. Согласно уравнениям теории замедленного разряда влияние природы металла на скорость этой стадии определяется двумя факторами а) энергией адсорбции реагирующих частиц и продуктов реакции go и g ) и б) строением двойного электрического слоя (ifi-no-тенциалом). Так как величины go и gn [c.238]

    Советским электрохимикам удалось создать тонкую экспериментальную методику исследования электродных процессов оо-строение поляризационных кривых в стационарных и нестационарных условиях, метод с использованием переменных токов, ос-циллографический метод, позволяющий установить временную зависимость потенциала электрода при пропускании тока постоянной силы, метод меченых атомов и др. Новые инструментальные методы раскрыли перед исследавателями более широкие горизонты. Так, было показано, что основным фактором, определяющим возникновение скачка потенциала на границе между металлом и раствором, является двойной электрический слой из зарядов металла и ионов раствора. Было найдено, что на условия появления и величину скачка потенциала между металлом и раствором большое влияние оказывает адсорбция и ориентация дипольных молекул. Сопоставление данных, полученных при изучении электрокапиллярных я влений, пролило яркий свет на роль поверхностно активных и коллоидных веществ, адсорбирующихся на поверхности электродов. [c.3]

    Ионообменные процессы в горных породах имеют существенное значение как при их формировании, так и при разработках. Влияние ионообменных процессов существенно и при упрочнении горных пород в массиве. Например, под влиянием соприкосновения глин с электролитами может меняться дисперсность глинистых растворов (см. гл. XVIII, 4). Кроме того, процесс адсорбции, в частности избирательной адсорбции, ионов электролитов изменяет двойной электрический слой, ионное окружение частиц, размеры гидратных оболочек частиц, а следовательно, и структурно-меха нические свойства массива. [c.218]

    Важная особенность влияния на строение двойного электрического слоя сильно адсорбирующихся ионов заключается в том, что в этом случае может наблюдаться не только падение, но и рост (pd- и -потенциалов это происходит, если высокий адсорбционный потенциал присущ ко ион у вводимого электролита (см. рис. VII—4). С другой стороны, сильно адсорбирующиеся противоионы способны вызвать .перезарядку поверхности после того как с повышением концентрации добавляемого электролита заряд адсорбционной части слоя противоионов станет равен заряду поверхности, адсорбционные взаимодействия могут привести к дополнительной, сверхэкви-валентной адсорбции противоионов, так что фй-потенциал изменит знак одновременно с ним изменит знак и электрокинетический потенциал. Действительно, изучение электрокинетических явлений, например измерение скорости электрофореза, показывает, что по мере увеличения концентрации электролита происходит падение -потенциала, и при некотором значении концентрации, называемом изоэлектрической точкой, электрокинетический потенциал становится равным нулю (рис. VII—20, кривая /) никаких электрокинетических явлений при этом [c.208]

    Сведения о строении двойного электрического слоя и природе ряда коллоидно-химических процессов, происходящих при взаимодействии ионов с границей раздела фаз, дает изучение электрокапиллярных явлений, т. е. влияния заряда межфазной поверхности на поверхностное натяжение. Эти явления наиболее подробно рассматриваются в курсах электрохимии здесь же будут приведены только те основные закономерности электрокапиллярных явлений, которые существенно необходимы при рассмотрении коллоидно-химических явлений специфики адсорбции анионных и катионных ПАВ, особенностей зародыше-обра13ова1Н1Ия. новой фазы (с. 273) (И проявления эфф>екта Ребиндер а в условиях. 3 а,ряженной поверхности (см. 342). [c.214]

    Поскольку далее предполагается, что в пространстве между поверхностью металла и внутренней плоскостью Гельмгольца, а также между двумя плоскостями Гельмгольца нет зарядов, то падение потенциала здесь линейное и двойной электрический слой имеет строение, показанное на рис. 43. На рисунке видно, что потенциал нулевого заряда определяется величиной г[)% а не = как это вытекало из теории Штерна. Поскольку [г1 ]>[ ф°], то и сдвиг точки нулевого заряда при переходе от одного аниона к другому в этом случае будет больше. Теория двойного электрического слоя Грэма, позволяющая учитывать влияние заряда электрода на величину специфической адсорбции, была рассмотрена Деванатха-ном, который представлял двойной слой эквивалентным последовательному соединению трех конденсаторов, слагаемых из 1) электростатической емкости пространства между металлом и внутренней плоскостью Гельмгольца, 2) электростатической емкости пространства между двумя плоскостями Гельмгольца и 3) — емкости диффузного слоя. При этом две последние емкости должны быть исправлены с учетом изменения специфической адсорбции в зависимости от заряда поверхности. Последнее предположение давало объяснение кривым дифференциальной емкости, измеренным в водных растворах галогенидов калия. Кроме того, расчет сдвига точки нулевого заряда, основанный на этой теории, находился в согласии с экспериментальными результатами. Так как емкости всех трех конденсаторов определяются из опытных данных, то теория Деванатхана носит в конечном итоге полуэмпирический характер. Эта теория, кроме того, исходит из того, что общая интегральная емкость плотного слоя не зависит от заряда электрода. [c.232]

    Большоё влияние на коррозионный процесс оказывает адсорбция катионов и особенно анионов соли на поверхности корродирующего металла. При этом происходит изменение строения двойного электрического слоя или нарушение пассивной пленки, что влияет на протекание электродных процессов и, следовательно, на скорость коррозии. [c.27]


Смотреть страницы где упоминается термин Двойной электрический слой влияние адсорбции: [c.304]    [c.167]    [c.358]    [c.21]    [c.373]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция влияние двойного слоя

Адсорбция и двойной слой

Влияние адсорбции органических веществ на емкость двойного электрического слоя

Влияние специфической адсорбции ионов на поверхностное натяжение и емкость двойного электрического слоя

Двойной электрический

Двойной электрический слои

Двойной электрический слой



© 2025 chem21.info Реклама на сайте