Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной электрический слой кинетика электродных реакций

    Таким образом, импеданс электрохимических систем является источником информации о свойствах этих си стем, и поэтому его детальное изучение позволяет более полно судить о кинетике электродных реакций и строении двойного электри еского слоя. Задача имеет два аспекта — электрохимический и электротехнический. Сущность электрохимического аспекта состоит в рассмотрении проводимости электрода в переменном токе малой амплитуды. При этом импеданс электрода может быть выражен через электрический аналог, т. е. более или менее сложную эквивалентную схему. [c.319]


    Возникновение скачка потенциала обусловлено обменом заряженными частицами между двумя фазами. При этом на границе их раздела возникает двойной электрический слой. Строение его отражается на скорости электродной реакции и поэтому учитывается при изучении кинетики электродных процессов. [c.98]

    В книге рассмотрены основные понятия электрохимии и современные методы исследования кинетики электродных процессов. Описаны классические и релаксационные методики изучения электродной поляризации. Представлены специальные и вспомогательные приборы, применяемые в электрохимических исследованиях. Уделено внимание особенностям лабораторного эксперимента. В задачах установлены закономерности фарадеевских реакций, электропроводности растворов, чисел переноса, э. д, с. элементов, электрокапиллярных явлений и строения двойного электрического слоя, диффузионной кинетики и полярографии, механизма образования на электродах новой фазы, пассивности и коррозии металлов. [c.2]

    В предыдущих разделах был выяснен физический смысл электродного потенциала, показана его связь со скачками потенциала на границах раздела фаз, рассмотрены условия возникновения скачка потенциала на границе электрод — электролит (основной составной части электродного потенциала) и разобрана зависимость его величины от состава раствора. При обсуждении механизма возникновения скачка потенциала на границе электрод — электролит было отмечено, что главной причиной его появления является обмен ионами между металлом электрода и раствором. Этот процесс протекает вначале (т. е. в момент создания контакта между металлом и раствором) в неэквивалентных количествах, что приводит к появлению зарядов разного знака по обе стороны границы раздела фаз и к появлению двойного электрического слоя. Однако ни структура последнего, ни распределение зарядов по обе стороны межфазной границы там не рассматривались. Строение двойного электрического слоя не имеет принципиального значения для величины равновесного электродного потенциала, который определяется изменением свободной энергии соответствующей электрохимической реакции. В то же время строение двойного электрического слоя играет важную роль в кинетике электродных процессов, включая и кинетику обмена ионами в равновесных условиях, определяя интенсивность этого обмена (величину тока обмена Г). Теория строения двойного электрического слоя служит поэтому как бы переходным звеном между электродным равновесием и электродной кинетикой. [c.227]


    Строение двойного электрического слоя (д. э. с.) имеет большое значение в кинетике электродных процессов. Равновесные потенциалы не зависят от строения д. э. с. Это объясняется тем, что равновесные электродные потенциалы определяются химическими потенциалами атомов металла в глубине электрода и ионов металла в глубине раствора электролита. Скорость электрохимической реакции, ее механизм и влияние на нее различных факторов зависят от строения двойного электрического слоя. Двойной электрический слой может образоваться при обмене ионами между электродом и раствором электролита. Если химический потенциал ионов в растворе электролита больше, чем атомов в металле, то выделившиеся на поверхности электрода ионы притягивают к себе анионы из раствора. Одной обкладкой д. э.с. служат положительные заряды со стороны металла, другой обкладкой — отрицательные заряды анионов со стороны раствора. Наоборот, если химический потенциал атомов в металле больше химического потенциала его ионов в растворе, то. перешедшие из металла в раствор ионы притянутся к его поверхности избыточными электронами. При этом также об- разуется двойной электрический слой, но с противоположным расположением заряда. Обкладка д. э. с. со стороны металла заряжена отрицательно (избыточные электроны), а со стороны раствора электролита — положительно (катионы). [c.299]

    В книге рассматриваются электродные процессы, протекающие с участием комплексов металлов в условиях равновесия и при наличии внешнего поляризующего тока. Описаны основные электрохимические методы, используемые при определении состава и констант устойчивости одноядерных комплексов металлов. Рассматривается кинетика электродных процессов, протекающих с участием комплексов металлов в условиях диффузионного контроля, при медленном протекании электрохимической стадии и при наличии медленных предшествующих химических реакций в растворе. Обсуждается механизм стадий разряда и ионизации, в которых участвуют комплексы металлов, а также влияние строения двойного электрического слоя на скорости реакций восстановления комплексов металлов. Одна из глав посвящена стационарным и нестационарным методам исследования кинетики электродных процессов. [c.2]

    При изучении термодинамики электрохимических процессов достаточно знать, что изменение энергии электрохимического элемента полностью определяется химическими реакциями на электродах. Однако при изучении кинетических закономерностей необходимо также знать механизм электродных процессов. Изменения в строении двойного электрического слоя на электродах, которые не сказываются на равновесных значениях электродных потенциалов, влияют на скорости электрохимических реакций. Поэтому при изучении кинетики электродных процессов очень важно знать потенциалы нулевого заряда, а также молекулярное строение границы электрод — раствор. [c.536]

    Строение двойного электрического слоя не имеет значения для величины обратимого электродного потенциала, которая определяется изменением изобарно-изотермического потенциала соответствующей электрохимической реакции. В то же время строение двойного электрического слоя играет важную роль в кинетике электродных процессов, в том числе и в кинетике обмена ионами в равновесных условиях, характеризуя интенсивность этого обмена (величину тока обмена о). [c.157]

    Следует иметь в виду, что суммарный ток, регистрируемый прибором при электролизе, складывается из фарадеевского тока (электрохимической реакции) и емкостного тока — заряжания двойного электрического слоя. Чувствительность метода, используемого при изучении кинетики электродных реакций, определяется не величи- [c.299]

    Изучение кинетики адсорбции поверхностно активных веществ при достаточной скорости электродной реакции показывает, что концентрирование различных веществ на электродах, а значит, и состояние адсорбционного слоя очень сильно зависят от конкретных условий электролиза, свойств металла и раствора и, следовательно, от строения двойного электрического слоя (потенциала ионного слоя). [c.354]

    В электрохимической кинетике описание электродных процессов неразрывно связано с представлениями о строении двойного электрического слоя. Течение реакции на электроде, например, сопровождается прохождением заряженной частицы (иона или электрона) через двойной электрический слой либо из объема раствора к электроду, либо в обратном направлении. При этом заряженная частица будет испытывать влияние поля двойного слоя. В случае же термодинамического описания процесса важно не само строение двойного электрического слоя, а общий скачок потенциала, который может быть одним и тем же при разном строении двойного элект-рического слоя. [c.230]


    Известно (см. гл. I), что возникновение емкости в цепи переменного тока приводит к сдвигу фаз между током и напряжением на 90°. При электрохимическом процессе этот сдвиг будет меньше из-за отставания кинетики электродной реакции от практически мгновенного заряжания двойного слоя. Учитывая физические закономерности для переменного тока, такую систему можно заменить электрически эквивалентной схемой (э. э. с.) из емкости и омического сопротивления, включенных либо последовательно, либо параллельно. Такая э. э. с. ведет себя в переменном токе подобно изучаемому электроду. Это дает возможность описать поведение электрода с помощью электротехнических формул. [c.271]

    В заключение следует отметить, что для изучения кинетики химических реакций, предшествующих собственно электродному акту, и влияния на них различных факторов все же наиболее удобным оказался классический метод. Преимущества классического метода — его универсальность, экспериментальная простота, легкость интерпретации получаемых данных, достаточная точность определяемых величин, а также возможность сравнительно несложного учета факторов, влияющих на кинетику приэлектродных реакций, — адсорбции компонентов реакции и строения двойного электрического слоя. Другие же рассмотренные здесь методы являются ценным дополнением к классическому. [c.325]

    Двойной электрический слой (ДЭС), возникающий на любой межфазной границе, определяет большинство равновесных свойств этой границы (поверхностное натяжение, потенциал, заряд, емкость и др.) и в значительной степени кинетику электродных реакций. Поэтому теория равновесного ДЭС системы металл-электролит лежит в основе почти всех разделов электрохимии гальваностегии и гальванопластики, коррозии и пассивности металлов, адсорбции и катализа и др. [c.245]

    На кинетику электродных реакций, а также на величину кинетических токов оказывает влияние и строение двойного электрического слоя. Это обусловлено тем, что скорость переноса электрона зависит от величины скачка потенциала между электродом и центром разряжающейся частицы, находящейся в плоскости двойного электрического слоя. При повышении концентрации фонового электролита значение у)/]-потенциала уменьшается и величина эффективного скачка потенциала в плотной части двойного слоя возрастает. При этом Еуг смещается к менее отрицательным потенциалам. Для нейтральных молекул это смещение равно изменению величины У1/]-потенциала  [c.473]

    Одной из основных задач теоретической химии и, в частности, физической органической химии является установление механизма реакций и оценка реакционной способности в ряду сходно построенных соединений. Среди различных типов химических реакций особое место занимают электрохимические процессы. Они, как известно, протекают в пределах тонкого слоя на границе раздела электрод—раствор и в общем случае включают в себя ряд стадий стадию доставки электрохимически активной формы в зону реакции (диффузия, предшествующие химические реакции), взаимодействие с поверхностью электрода (адсорбция, ориентация реакционного центра по отношению к поверхности электрода и т. п.), стадию переноса заряда, последующие химические и электрохимические превращения первичных продуктов электродной реакции и т. д. Строгий анализ столь сложного процесса встречает большие затруднения и пока вряд ли возможен. Однако при благоприятных условиях удается существенно упростить процесс и получить информацию об отдельных его стадиях. Значительный прогресс достигнут в понимании роли предшествующих реакций протонизации, в представлениях о механизме и кинетике каталитических реакций, адсорбции, о влиянии строения двойного электрического слоя на кинетику электродных процессов. Однако имеется сравнительно мало данных о процессах с последующими химическими стадиями. Между тем влияние этих реакций на кинетику процесса в целом и природу образующихся стабильных продуктов трудно переоценить. Более того, невозможно глубокое понимание механизма электродного процесса без учета химизма и кинетики последующих реакций. [c.138]

    В книге рассматриваются электродные процессы, осложненные приэлектродными химическими реакциями и адсорбционными явлениями. В полярографии подобным процессам соответствуют кинетические и каталитические волны. Особое внимание уделено механизму и кинетике процессов, включающих реакцию протонизации. Такого рода электродные цроцессы характерны для электровосстановления органических веществ. Рассмотрено влияние строений двойного электрического слоя и адсорбции компонентов реакции на кинетику электродных процессов. Показано, как из полярографических данных могут быть вычислены константы скорости быстрых протолитических реакций. [c.2]

    В начале этой главы уже говорилось, что на связь между кинетикой электродных процессов и строением двойного электрического слоя было указано Фрумкиным еще в 1933 году. С тех пор этот вопрос интенсивно исследовался Фрумкиным и его школой, и только приблизительно с 1958 года внимание других исследователей было обращено на эту особенно важную проблему кинетики электродных процессов. Разумеется существовала некоторая неосведомленность о связи между кинетикой электродных процессов и строением двойного слоя, но часто совершенно неоправданно считалось, что вопрос этот не существенен в том случае, когда имеется избыток индифферентного электролита. Могут быть рассмотрены четыре основных случая, соответствующих следующим условиям наличие специфической адсорбции индифферентного электролита или реагирующего вещества в отдельности или вместе с продуктом реакции. Для всех четырех случаев количественная интерпретация невозможна. Прогресс был относительно медленным даже для случаев, когда не наблюдалось специфической адсорбции, так как не было де-таль.та представлений и точных данных о двойном слое. [c.17]

    Выше мы предполагали, что при протекании электрохимической реакции лимитирующей является либо стадия массопереноса, либо стадия разряда—ионизации. В реальных условиях кинетика электродных процессов всегда в той или иной степени зависит от скорости обеих этих стадий. В связи с этим рассмотрим протекание электрохимической реакции (А) в условиях смешанной кинетики, когда ф определяется одновременно и скоростью массопереноса веществ Ох и Red, и скоростью перехода электронов через границу электрод/растВор. Отличие см от i и I M от i связано только с тем, что в условиях смешанной кинетики (токи i и i<. ) концентрации веществ Ох и Red на обращенной к раствору границе ионного двойного слоя и не равны сЬж. и fted- Если толщина двойного электрического слоя значительно меньше толщины диффузионного слоя, то в стационарных условиях можно использовать следующие приближенные формулы  [c.220]

    Проблема строения двойного электрического слоя (ДС), как известно, представляет исключительный интерес для коллоидной химии и электрохимии. Хотя эти две науки имеют общие интересы в изучении ДС, подход к изучению его в электрохимии и коллоидной химии несколько различается. Это различие порождается, во-первых, различными объектами исследования (для электрохимии — это электрод в электролите, для коллоидной химии — это дисперсная частица) и различными целями исследования (для электрохимии — это кинетика электродных реакций, д.тгя коллоидной химии — это главным об ра-зом проблема устойчивости). Различие объектов и целей исследования порождает и различие в методике исследований и в параметрах, при которых ведется исследование. [c.98]

    Особенные трудности возникают при исследованиях границы твердый электрод — электролит. Эти трудности связаны с тем, что неоднородность твердой поверхности и недостаточная гладкость ее вносят вклад в частотную зависимость импеданса, вклад, часто неопределенный. В связи с этим обычно идут по пути выбора условий, в которых электрическая эквивалентная схема была бы возможно более простой. Это приводит к тому, что в электрохимии задачи исследования двойного электрического слоя и изучения кинетики электродных реакций обычно решаются раздельно. [c.27]

    У всех электродных реакций есть общие черты, составляющие их отличие от обычных химических процессов. Электродная реакция окисления или восстановления совершается в плотной части двойного слоя. Реагирующая частица подвергается действию электрического поля очень большой напряженности, меняющего ее энергетическое состояние. Естественно, что общие черты кинетики электродных реакций, в частности восстановления водорода, должны быть связаны со своеобразной обстановкой на поверхности электрода, обусловленной наличием двойного электрического слоя. [c.425]

    Однако, как это подчеркивает Фрумкин [118], скорость реакций электронного перехода определяется не только положением нулевой точки металла электрода, от которого в первом приближении зависит адсорбируемость органических молекул и строение двойного электрического слоя, но и общим потенциалом электрода, измеренным по отношению к некоторому постоянному электроду сравнения. Поэтому при описании кинетики электродных процессов следует учитывать как удаление потенциала электрода от потенциала нулевого заряда, так и величину потенциала относительно независимого электрода сравнения. Вопрос о значении точек металла электрода в уравнениях электрохимической кинетики в последнее время подробно разобран в уже упомянутой работе Фрумкина [118]. [c.42]

    Параллельное изучение кинетики и макрокинетики процессов электрохимического окислительного синтеза методом химического баланса всех образующихся продуктов в широком интервале физико-химических и электрохимических параметров систем и процессов позволяет на основе полученных экспериментальных результатов установить связь между строением двойного электрического слоя, характером хемосорбированных на электроде первичных частиц и эффективностью заданной электродной реакции в сложном электрохимическом процессе. [c.132]

    Генерация активных частиц на поверхности электрода при высоких потенциалах может происходить путем адсорбционного взаимодействия с компонентами химической среды или через разряд и хемосорбцию разрядившихся частиц, как правило, радикального характера. В этом случае, как это показано в разделе 1 настоящей статьи, в обычные закономерности классической электрохимической кинетики, связывающей структуру двойного электрического слоя со скоростью электродной реакции (1), включается влияние усложнившейся поверхности раздела электрод/раствор за счет хемосорбированных частиц дипольного характера [32]. Благодаря меньшему влиянию электрического поля на снижение энергии активации в электродных реакциях при такой структуре скачка потенциалов резко уменьшается коэффициент переноса, увеличивается перенапряжение таких процессов, как выделение кислорода, и в то же время появляется возможность возникновения электродных реакций, требующих высокого значения потенциала. В то же время общие законы разряда частиц на электроде остаются неизменными, хотя в уравнения кинетики включаются дополнитель- [c.166]

    Электродный процесс включает ряд стадий в простейшем случае это подача деполяризатора к электроду, собственно электрохимическая реакция — перенос электронов, отвод продуктов реакции от поверхности электрода. Электродные процессы с участием органических веществ обычно включают также химические стадии — чаще всего протонизацию, а также другие химические реакции, протекающие как до, так и после собственно электрохимической стадии. На отдельные стадии электродного процесса существенное влияние оказывают адсорбционные явления на границе электрод —раствор, а также строение двойного электрического слоя, возникающего на этой границе. В этой главе рассматривается кинетика отдельных стадий электродного процесса, которые оказывают влияние на его общую скорость. Последнее находит свое отражение в высоте, форме и положении по отношению к оси потенциалов полярографической волны.  [c.14]

    Однако электрохимические процессы в полярографии органических соединений определяются не только реакционной способностью молекулы, но и специфическими электрохимическими факторами. В электродную реакцию вступает частица, которая в двойном электрическом слое находится в адсорбированном состоянии или деформирована в электрическом поле, напряжение которого в приэлектродном слое достигает 10 — 10 В/см, поэтому условия равновесия и кинетики реакций на поверхности электрода и в объеме раствора неодинаковы. Часто необходимым условием для электровосстановления частицы при данном потенциале является ее предварительная протонизация, которая облегчается ад- [c.102]

    При полярографировании растворов не очень слабых кислот на фоне нейтральных солей обычно наблюдается волна разряда ионов водорода. Изучению электрохимического восстановления ионов водорода посвящено большое число работ на его примере Фрумкин разработал теорию замедленного разряда, которая легла в основу современных представлений о кинетике электродных процессов, а также сформулировал основные положения влияния на эти процессы строения двойного электрического слоя [1]. Кинетика электрохимической реакции и особенно механизм следующих за этой реакцией стадий, приводящих к образованию молекулярного водорода, был предметом многочисленных долголетних дискуссий. [c.261]

    В последнее время особое внимание проявляется к проблемам электрохимической кинетики, которые являются центральными при осуществлении любых электродных реакций. Теоретические обобщения и выводы электрохимической кинетики все более широко применяются не только при изучении теоретических закономерностей электрохимии, но и в электрохимической технологии. Результаты теоретических исследований позволяют, в частности, глубже осознать связь между явлениями, которые протекают при возникновении двойного электрического слоя на границе фаз, и теми глубокими изменениями вещества, которые наблюдаются на электродах при пропускании тока. [c.6]

    Первым и наиболее важным из них является молекулярнаядиффузия. При равновесном потенциале электрода концентрация растворенных веществ во всех точках раствора за пределами двойного электрического слоя одинакова. При пропускании тока вблизи электрода это условие нарушается, так как одни вещества вступают в электродную реакцию, другие образуются в результате реакции. Возникает разница в концентрациях (или точнее в активностях) растворенных веществ вблизи электрода и в объеме раствора, что приводит к диффузии разряжающегося вещества из объема раствора к электроду, а продуктов реакции — от электрода в объем раствора. Так как концентрационные изменения всегда сопутствуют электрохимическому процессу, то молекулярная диффузия происходит во всех электродных реакциях, тогда как другие способы массопереноса могут накладываться на процесс молекулярной диффузии или отсутствовать вовсе. Именно поэтому рассматриваемый раздел называют диффузионной кинетикой. [c.157]

    Влияние строения двойного электрического слоя на кинетику электродного процесса впервые количественно было рассмотрено А. Н. Фрумкиным [1] на примере реакции разряда ионов водорода. Фрумкин показал также необходимость учета адсорбции реагирующих частиц на электроде. Возможность влияния адсорбции органических соединений на ход кривых зависимости силы тока (/) от потенциала (Е) отметил П. Герасименко [2] еще в 1929 г. Впервые на связь между адсорбцией органических веществ и кинетикой их электрохимического восстановления указал Л. И. Антропов [3, 4]. Роль поверхности катода и адсорбции восстанавливающегося вещества при электрохимическом восстановлении ароматических нитросоединений была рассмотрена в работах Н. А. Изгарышева и М. Я. Фиошина [5, 6]. [c.23]

    Влияние строения двойного слоя на кинетику электрохимических процессов впервые было принято во внимание А. Н. Фрумкиным при построении теории замедленного разряда и водородного перенапряжения [7, 8, 551]. В дальнейшем представления Фрумкина были плодотворно использованы им и его сотрудниками для объяснения явлений при электрохимическом восстановлении кислорода [552], анионов [463—466, 551—559] и ряда нейтральных веш еств. В последнее время идеи Фрумкина получили широкое распространение среди электрохимиков (см., например, [420,560-562]) появился ряд работ, в которых было рассмотрено влияние строения двойного слоя на электродные процессы, ограниченные скоростью предшествующих химических реакций [563—569]. Строение двойного электрического слоя и его влияние на кинетику электродных процессов изложены в ряде обзоров, из которых в первую очередь следует отметить прекрасные обзоры Б. Б. Дамаскина [570], Р. Парсонса [571], а также Г. Нюрнберга и М. Штак-кельберга [572]. [c.135]

    Наибольший интерес представляют главы, в которых обсуждается влияние строения двойного электрического слоя, адсорбции ионов и нейтральных молекул, адсорбции и хемосорбцпи реагирующих веществ и продуктов реакции на кинетику электродных процессов. [c.4]

    Кинетика ряда простых реакций изменения заряда ионов, которые не сопровождаются перераспределением химических связей и протекают в адиабатических условиях, не зависит от природы электродного материала после введения соответствующих поправок на различие в строении двойного электрического слоя 73. Следовательно, такие реакции могут рассматриваться как яеэлектрокаталитические. Однако исследование кинетики реакций такого типа, механизм которых считается хорошо известным, позволяет получить ряд данных, необходимых для понимания механизма электрокаталитических реакций на тех же электродах. [c.114]

    Однако только после Октябрьской революции в пашей стране широко и всесторонне развивается теоретическая и прикладная электрохимия, занимающ ая сегодня в ряде разделов ведущее положение в мировой науке. Советским ученым принадлежат широко известные труды в области электрохимической кинетики, исследование механизма и особенностей реакции выделения водорода, выделения и ионизации кислорода, выяснение связи между скоростью. электродной реакции и строением двойного электрического слоя и многие другие. В нашей страг(е плодотворно развивается электрохимическая теория коррозии и пассивности, внесен большой вклад в теорию электроосаждепия металлов. [c.62]


Смотреть страницы где упоминается термин Двойной электрический слой кинетика электродных реакций: [c.148]    [c.148]    [c.148]    [c.343]    [c.126]    [c.237]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.51 , c.166 , c.171 , c.214 , c.217 , c.219 , c.236 , c.241 , c.257 , c.325 ]




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Двойной электрический слой влияние на кинетику электродной реакции

Кинетика электродных реакций

Реакции в слое

Электродные кинетика

Электродные реакции



© 2025 chem21.info Реклама на сайте