Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные короткие

    В заключение коротко остановимся на вычислении ошибок тнтрования в методах осаждения. Их вычисляют так же, как ошибки титрования в методах кислотно-основного титрования. Предположим, Ад+-ион титруют с индикатором, чувствительность которого к этому иону отвечает концентрации а, выраженной в грамм-эквивалентах на 1 л. Если объем раствора в конце титрования (в мл) равен V, то число грамм-эквивалентов Ag+ будет равно аУ/ 000. Можно принять, что это число эквивалентов Аё и отвечает ошибке титрования. Если первоначальный объем титруемого раствора составлял V мл и имел нормальность Ы, то общее число эквивалентов Ag которое было оттитровано, равно Л У/100. Отсюда ошибка титрования в процентах равна  [c.329]


    Взаимодействие иона гидроксония с глюкозидной связью приводит к ее возбуждению и ослаблению. Происходит разрыв кислородного мостика с образованием иона карбония. Вследствие своей малой устойчивости ион карбония быстро реагирует с водой, образуя ОН-группу и генерируя протон. Протон с водой вновь образует ион гидроксония. Существенное влияние на скорость гидролиза оказывает плотность упаковки макромолекул целлюлозы (так как процесс гетерогенный). Например, целлюлозные волокна гидролизуются со значительно меньшей скоростью, чем целлюлоза, находящаяся в растворенном состоянии, где все глюкозидные ОН-группы доступны разрушающему действию гидролизующего агента (процесс гомогенный). Гидролиз целлюлозы протекает постепенно, приводя к продуктам со все более короткими молекулярными цепями, вплоть до Р-О-глюкозы. Последовательность стадий гидролитического распада целлюлозной молекулы выражается следующей схемой  [c.296]

    Согласно [2151, отрицательные ионы, образующиеся на короткое время при возбуждении колебаний О2 и N0 электронным ударом, находятся вес-стояниях Оа (Х П), К0 ( 2 ) и НО"( Д). (См. далее обзор [507].) [c.177]

    Ни физическая теория Вольта, ни химическая теория Нернста не могли дать непротиворечивого описания возникновения разности потенциалов на концах электрохимической цепи. В результате этого в электрохимии возникли две проблемы проблема Вольта и проблема абсолютного скачка потенциала. Прежде чем перейти к рассмотрению этих двух проблем, коротко остановимся на некоторых общих соотношениях и на методах определения вольта-потенциалов, а также работ выхода электронов ( ) и ионов ( Х< или из различных фаз. Работа выхода иона из раствора в воздух представляет собой реальную энергию сольватации. Она отличается от химического потенциала иона на работу преодоления поверхностного потенциала  [c.96]

    Принцип действия первого из них заключается в том, что образовавшиеся в ионном источнике ионы коротким электрическим импульсом выталкиваются из него и, пройдя ускоряющую разность потенциалов V, образуют пакет ионов, попадающий в пространство дрейфа (его длина L может составлять до 3 м). Ионы с разными т/е после прохождения ускоряющего поля приобретают различные скорости (см. уравнение (4.2.1), (4.2.5)) и поэтому достигают находящегося в конце пространства дрейфа коллектора ионов через разное время г  [c.92]

    Описанная картина обмена ионов между металлом и раствором была экспериментально подтверждена с помощью радиоактивных индикаторов. Металлический висмут, содержавший радиоактивный изотоп, был помещен в раствор соли висмута, не содержащего радиоактивного изотопа. Спустя короткое время обнаруживалась радиоактивность раствора. Затем металлический висмут, не содержащий радиоактивного изотопа, помещался в раствор соли висмута, содержащий радиоактивный изотоп. Через некоторое время обнаруживалась радиоактивность металлического висмута. [c.320]


    Распределение более коротких заместителей может быть найдено, исходя из распределения интенсивностей пиков ионов (М—Н)+, соответствующих ядрам с оставшимися заместителями после отщепления наиболее длинной цепи. [c.206]

    Часто, ввиду трудностей качественного и особенно количественного изучения промежуточных активных продуктов (атомов, радикалов, ионов и других частиц, коротко живущих и присутствующих в зоне реакций, как правило, в очень малых концентрациях), вынуждены ограничиваться изучением скорости брутто-реакции и построением закона валовой кинетики. Этому закону далее можно привести в соответствие множество различных более или менее вероятных механизмов реакции. Порой отыскание механизма, находящегося в однозначном соответствии с довольно быстро устанавливаемым на опыте кинетическим уравнением для суммарной скорости, требует десятков лет усилий многих исследователей, как это [c.213]

    Как мы уже усвоили, электрохимическая теория корро аии связывает процесс коррозии с работой целой сети коротко-замкнутых гальванических элементов на поверхности металла. Ионы металла переходят в раствор на анодных участках в количестве химически эквивалентном реакции, протекающей на катодных участках. На анодных участках идет следующая реакция  [c.99]

    На приборе МХ-1303 снижение уровня фона до такой же величины достигалось за более короткий промежуток времени, благодаря следующим факторам отсутствие в системе смазки, малое расстояние мел<ду диафрагмой и ионизационной камерой, возможность прогрева всей системы напуска и ионного источника до 350° С. Борьба с адсорбционной памятью облегчалась также более совершенной конструкцией высоковакуумных ловушек и наличием высоковакуумных вентилей. [c.49]

    Если все боковые цепи короткие (например, метильные), то разрыв по а-связи преобладает над распадом по р-связи. Максимальный пик для полиметилбензолов обычно соответствует нонам (М—15)+. В случае полиэтилбензолов наблюдаются два конкурирующих процесса, приводящие к образованию примерно равных количеств ионов (М—15) " и (М—29)+ преимущественное количество каждого из них зависит от строения изомеров. [c.76]

    Прежде чем перейти к рассмотрению этих двух проблем, коротко остановимся на некоторых общих соотношениях и на методах определения вольта-потенциалов, а также работ выхода электронов ( , ) и ионов ( А,м или р>.( )) из различных фаз. [c.98]

    Значения парциальных констант скорости димеризации в растворах диметилсульфоксида анион-радикалов этилового эфира коричной кислоты и образуемых ими ионных пар с катионами К (А. П. Коротков и Л. Н. Некрасов) [c.252]

    Любая поверхность твердого инертного вещества (графит, платина, нержавеющая сталь и т. п.), находящегося в растворе ионов окислителя и восстановителя, приобретает заряд, зависящий от природы и концентрации ионов. На этом принципе основан способ определения окислительно восстановительной способности системы, для чего пользуются платиновым электродом (рис. 90). Он представляет собой короткий отрезок платиновой проволоки /, впаянный в стеклянную трубку 2. Платиновая проволока, выступающая из стекла всего на 0,5 мм, опущенная в раствор, приобретает заряд, который определяется сравнением с каким-либо стандартным электродом. Для этой цели чаще всего используется хлоридсеребряный электрод. [c.342]

    Несмотря на низкую селективность, катионные процессы широко применяются в промышленности для синтеза олигомеров олефинов. Обычно получается смесь продуктов олигомеризации, например димеры изобутилена (2,2,4-триметилпентены), тримеры и тетрамёры пропилена, пропиленбутиленовые димеры (изогеп-тены) и олигомеры различных олефинов. Распространенность кислотного катализа обусловлена в основном дешевизной технологических процессов. Низкая селективность в реакциях димеризации на кислотных катализаторах связана со стабильностью карбониевых ионов. Коротко поясним это. [c.165]

    Актинильная группировка атомов входит в состав как катионных, так и анионных комплексов, имеющих форму бипирамиды (гекса-, Р1ента- и тетрагональной). На вертикальной оси бипирамиды расположена группировка ОЭО с короткими расстояниями (1эо, а расстояния между атомами актиноида и другими атомами в экваториальной плоскости более длинные. Поэтому такие комплексы можно трактовать как содержащие группировку ЭОа с прочными связями ЭО, к которой присоединены за счет более слабого взаимодействия другие атомы или их группировки. Так, например, (J02(N0з)2 бНзО (желтые кристаллы, ..имеет островную структуру, состоит из ионов иОг(ОН2) и N03. [c.653]

    Реакция с иодидом и л-толуолсульфонатом спустя короткое время останавливается вследствие того, что катион катализатора образует ионную пару с этими анионами [4]. Этот недостаток можно преодолеть двумя способами либо используя большее количество катализатора, либо заменяя в ходе реакции несколько раз водную фазу на свежий раствор цианида. Наряду с простыми алкил- и бензилцианидами были получены и более сложные [74, 75, 967, 1268, 1324, 1441]. Из этих синтезов наиболее интересно получение ароилцианидов [76]  [c.121]


    Полярная головка фосфолипидной молекулы состоит из фосфатной и аминной групп, соединенных короткой углеводородной цепочкой (СН2)г (рис. 9.1). Аминная группа заряжена положительно, а фосфатная — отрицательно, т. е. головка фосфолипидных молекул обладает довольно значительным электрическим дипольным моментом, который и обусловливает их Гидрофильность. Отметим, что определенный вклад в суммарный дипольный момент головки вносят также группы С = 0 [425]. Головки большинства фосфолипидов могут диссоциировать на ионы, приобретая при этом, помимо дипольного момента, электрический заряд — обычно отрицательный. [c.148]

    Гальванический элемент с коротко замкнутыми электродами действует только внутри очень небольшого пространства, например вокруг какого-либо другого металла, находящегося в следовых количествах на металлическом изделии. Металл с более низким стандартным по-тенниалом растворяется, а на втором металле ионы разряжаются. [c.94]

    Ион ы карбония не стабильны и способны распадаться иа молекулу (лефина и ион карбония с более короткой углеродной цепью. Кро ле того, оии могут отнимать водород в виде гидрид-иона от дру] их нейтральных молекул, также превращая их в ионы карбония, Благодаря этому развивается ионно-цепной процесс расщепления парафинов  [c.41]

    Э и же условия ведут к нежелательной деструкции алкильных груп и побочному образованию алкилбензолов с более короткой алки.1Ьпой группой. Так, при реакции с проиилеиом иобочио получается этилбензол, с этиленом — толуол и т. д. Особенно заметна такая деструкция ири алкилировании алкилгалогепидами и олефинами с достаточно длинной углеродной цепью. Реакция, вероятно, происходит иа стадии расщепления иона карбония, образовавшегося нз алкилирующего агента  [c.247]

    Развитие фотохимии и радиационной химии породили такие методы, как импульсный фотолиз и импульсный радиолиз. Данные методы основаны на получении мощного светового потока нли жесткого излучения за короткий промежуток времени, которые воздействуют на химическую систему и приводят к созданию больщих концентраций реакционноспособных молекул. Отличие от релаксационных методов заключается в том, что под действием мощных световых, рентгеновских или у-излучений происходят коренные изменения системы, а не просто небольщой сдвиг равновесия. Импульсные методы исследования щироко применяются в излучении механизмов химических и физических процессов в химии, физике и биологии. При помощи метода импульсного фотолиза можно изучать такие реакционносп особные частицы, как свободные радикалы, ион-радикалы, ионы, а также различные промежуточные продукты и состояния, образующиеся в ходе фотохимических превращений. [c.155]

    Следующая температурная ступень (250—300° С) не дает существенного вклада в спектр. Однако для интервала 300—350° С характерно значительное увеличение интенсивности основных групп пиков с массовыми числами выше 100, характеризующих появление фрагментов алкилбензтиазолов и алкилтиофенов, при этом алкильный радикал содержит не более четырех атомов углерода. В масс-спектре этой ступени имеются ионы с массами выше 200, однако их интенсивность очень мала. При 350° С основную часть алифатических заместителей конденсированных ядер составляют короткие цепочки нормального строения (главным образом метан, этан, пропан и в меньшей мере бутан и пентан). После 380° С начинается общая деструкция асфальтенов. [c.230]

    Было показано, что энергетически наиболее благоприятны условия образования вторичного пропилового и третичного бутилового карбоний-ионов поэтому образование углеводородов i и при каталитическом крекинге очень невелико, и газ этого процесса является тяжелым (преобладают углеводороды и С4). Молекулы парафиновых углеводородов способны расщепляться одновремешю по нескольким звеньям цепи, и преобладающими продуктами разложения являются углеводороды от С , до С, количество фракций Сю — С,5 относительно невелико, и легкие газойлевые фракции каталитического крекинга в основном представляют собой алкилароматические углеводороды, содержащие один или два цикла с короткими боковыми цепями. [c.155]

    Рассчитайте э. д. с. цепи, состоящей из железного и свинцового электро дов, погруженных в раствор, содержащий ионы Ре + и РЬ " с одинаковой актив ностью. Какой электрод будет корродировать при коротком замыкании я гейки  [c.388]

    Возможны переходы с несвязывающей атомарной орбитали на молекулярную орбиталь с большей энергией переходы и п- о. Полосы п->л -переходе в наблюдаются в ближней УФ и видимой областях спектра и часто называются -полосами. Полосы п а -переходов наблюдаются в дальней, а иногда и в ближней УФ-областях. Переходы п- л являются запрещенными и их интенсивности значительно ниже интенсивностей переходов л я и я уст (коэффициент поглощения для разрешенных переходов 10 и более, для запрещенных — меньше 10 ). В УФ-области в вакууме наблюдаются переходы с орбитали в основном состоянии на одну из орбиталей с очень высокой энергией, приводящие к образованию молекулярных ионов. Метод эмпирической идентиф икадии я->л -и п л -переходов основан на их поведении при растворении вещества в различных растворителях. Для л я -переходов при увеличении полярности растворителя наблюдается (хотя и не всегда) сдвиг /С-полосы поглощения в длинноволновую часть спектра. Исключением является обратный сдвиг Я -полосы поглощения для некоторых ароматических молекул (смещение полосы поглощения в длинноволновую часть спектра называют батохромным сдвигом, в коротковолновую часть — гипсохромным). Для п я -переходов при увеличении полярности растворителя наблюдается гипсохром-ный сдвиг соответствующей -полосы поглощения, причем сдвиг на гораздо большую величину, чем для /С-полос. В табл. 1 показано влияние растворителей на спектр окиси мезитила. Обычный батохромный сдвиг полос, обусловленных я- -л -переходами, вызван взаимодействием с растворителем, которое несколько увеличивает свободу движения электронов в молекуле. Однако при л л -переходах изменения в распределении электронов более значительны, соответственно увеличиваются изменения в расположении ядер. Согласно принципу Франка — Кондона, процесс перехода в новое электронное состояние происходит за 10 с за это время ядра не успевают изменить своего взаимного расположения, поэтому наблюдаемый переход происходит при более коротких длинах волн, когда ядра еще не успели занять своего нового положения. [c.9]

    В масс-спектрометрии чаще всего используется метод электронного удара. Процессы диссоциативной ионизации, протекающие в масс-спектрометре, приводят к образованию набора осколков, характеризующих псходную молекулу. Регистрация образующихся положительных ионов позволяет в очень короткое время получить картину, создание которой ранее требовало колоссальной и кропотливой работы. Изучение вещества методом разложения его па составные части с последующей идентификацией этих частей — путь, хорошо [c.3]

    В кристаллической решетке криолита (ЗЫаР-А1Рз) ионы алюминия и фтора связаны более короткими связями, чем ионы натрия и фтора среднее расстояние между ионами алюминия и фтора равно, 8 А, а между ионами натрия и фтора —2,4 А. При расплавлении в криолите в первую очередь будут нарушаться более длинные, менее прочные связи, поэтому электропроводность электролита будет снижаться при возрастании в нем содержания А1Рз. [c.496]

    Взаимодействие между маргапиовокислын калием и щавелевой кислотой является одним из процессов, которые идут с образованием промежуточных соединений, причем такой более сложный путь оказывается более коротким . Анионы перманганата лишь очень медленно реагируют с ионами щавелевой кислоты непосредственно. Если раствор марганцовокислого калия освободить от следов взвешенной двуокиси марганца, которая обычно присутствует в этом растворе, то реакция со щавелевой кислотой идет очень медленно даже при нагревании. [c.379]

    К раствору соли хрома(1П), подкисленному разб. H2SO4, добавляют немного твердого пероксодисульфата калия и раствор короткое время кипятят. Вследствие образования иона дихромата раствор окрашивается в оранжевый цвет  [c.623]

    Рассмотрим теперь некоторые простейшие примеры, когда уравнения диффузионной кинетики могут быть точно решены. Существенное упрощение достигается, если отсутствуют миграция и конвекция, а диффузия происходит в стационарных условиях, т. е. в условиях, если распределение концентрации у поверхности электрода не зависит от времени йс1(И = 0. Миграцию можно исключить, если добавить в раствор избыток посторонней соли, ионы которой не участвуют в электродном процессе. Такой электролит называется индифферентным электролитом или электролитом фона. Чем ьыше концентрация фонового электролита, тем меньше сопротивление раствора и тем меньше при заданном I омическое падение потенциала в растворе, приводящее к явлениям миграции. Чтобы исключить влияние размешивания электролита, можно, например, проводить опыты, используя небольшие плотности тока в течение коротких промежутков времени, что позволяет избежать разогрева электролита и размешивания его при случайных вибрациях ячейки и т. п. [c.162]

    Особенностью протекания органических реакций является то, что ионы, столь характерные для неорганических реакций, возникают лишь в момент прёвращения реагентов и имеют скрытый характер. По этой причине их называют скрытыми ионами, или криптоионами. При этом для органической среды, в отличие от водной, более характерно образование не изолированных ионов, а ионных контактных пар и их ассоциатов. Если же в ряде случаев под влиянием сольватации ионная пара и разделяется, го в силу высокой энергии образующиеся сольватированные катионы и анионы чрезвычайно реакционноспособны и поэтому существуют в течение короткого промежуч ка времени. [c.37]

    Одно из последних занятий является зачетным. Каиедому студенту (индив идуально) предлагается тема короткого и простого эксперимента. Студент должен продумать (спланировать) будущую работу, собрать прибор, получить числовые данны е по проведенной реакции или синтезировать вещество и определить -его свойства (плотность, температура плавления и т. п.) и составить отчет. Примерные темы зачетных заданий изучить влияние ионной силы на pH раствора кислоты, определить число молекул воды в кристаллогидрате, синтезировать заданное соединение и изучить его, определить продукты электролиза н т. п. [c.10]

    Полученная кривая вероятности распределения ионов в зависимости от расстояния оказалась более сложной, чем у Бьеррума. На кривой распределения есть не только минимум, как у Бьеррума, но и максимум, которого нет на кривой распределения Бьеррума. Такую форму кривой распределения Фуосс объясняет тем, что в растворе есть не только ионные пары на близких расстояниях друг к другу — короткие пары , но и ионные пары на больших расстояниях между иойами — длинные пары , а часть иоиов находится на промежуточных расстояниях. [c.120]


Смотреть страницы где упоминается термин Ионные короткие: [c.556]    [c.348]    [c.446]    [c.438]    [c.122]    [c.73]    [c.228]    [c.348]    [c.128]    [c.49]    [c.268]    [c.319]    [c.151]   
Электрохимия растворов издание второе (1966) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Ионные атмосферы короткие, определение

Ионные пары короткие

Коротких

Коротков



© 2025 chem21.info Реклама на сайте