Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иодид титрование перманганатом

    Разработаны непрямые методы определения ряда веществ, основанные на их окислении взятым в избытке КМПО4 в щелочной среде и титровании неизрасходованного КМпО раствором формиата. Таким путем определяют [5f гипофосфит-, фосфит-, ИОДИД-, иодат-, роданид-ионы. Гипофосфит и фосфит окисляются перманганатом в щелочной среде до фосфата, иодид и иодат — да перйодата, роданид — до цианата и сульфата. Иодид можно определять в присутствии бромида и хлорида. [c.15]


    В подобных кулонометрах с успехом может быть использован анодный процесс окисления, например иодида до иода и титрование последнего тиосульфатом, ванадила до ванадата в сернокислой средс и титрование солью Мора, серебряного анода до Ag+ и титрование галогенидом, или же катодный процесс восстановления, например соединения трех-ва лентного железа до двухвалентного и титрование перманганатом, воды до ОН -ионов и титрование их какой-либо кислотой и т. д. [c.212]

    Метод Штамма заключается в добавлении избытка перманганата в сильнощелочной среде в присутствии иона бария, образующего манганат бария. Избыток перманганата определяют титрованием формиатом натрия. Метод применим, в частности, для Окисления иодида до перйодата, фосфита или гипофосфита до фосфата, цианида до цианата, тиоцианата до циа-ната и сульфата, формиата или формальдегида до карбоната. [c.410]

    Перманганат калия, 0,025 н. раствор. Растворяют 3,16 г перманганата калия в воде и разбавляют раствор до объема 1 л (см. примечание 4). Отбирают 250 мл этого раствора, разбавляют водой до 1 и определяют титр полученного раствора. Для этого растворяют 50 мг (точную навеску) трехокиси мышьяка, высушенной при 105 °С в 10 мл 20%-ного раствора гидроокиси натрия, добавляют 100 мл воды, 10 мл концентрированной соляной кислоты, 1 каплю 0,05%-ного раствора иодида калия и титруют холодный раствор перманганатом калия. В начале и в коице титрования перманганат вводят медленно. Вовремя титрования энергично перемешивают раствор. [c.107]

    Прямое титрование перманганатом. Прежде всего, перманганат пригоден для определения всех указанных выше исходных веществ, а именно — иодида, мышьяка (HI), оксалата, железа (П) и гексацианоферрата (И). [c.409]

    Уиллард и Холл предпочитают сразу осаждать гидроокись кобальта (III), применяя для этого перборат или перекись водорода в сильнощелочной среде, или восстанавливать зеленый комплекс кобальта (III), полученный в бикарбонатном растворе, избытком двухвалентного железа, который определяется обратным титрованием перманганатом калия. Тот же зеленый комплекс можно использовать непосредственно для иодометрического определения, просто добавляя иодид и кислоту к раствору после разрушения избытка перекиси водорода [c.458]

    Реакции (5.120) — (5.122) описывают титрование иодид-ионов перманганатом калия в кислой среде. [c.130]

    При титровании целого ряда веществ в уксусной кислоте можно использовать также такие сравнительно новые титранты, как монохлорид иода или тетраацетат свинца. Определение иодида в присутствии хлорида и бромида проводят титрованием в среде уксусной кислоты раствором СЮг в качестве титранта. В серии окислительно-восстановип ельных титрований в среде уксусной кислоты некоторых окислителей (бром, хромовая кислота, перманганат калия, монохлорид иода, бромат калия и иодат калия) были апробированы в качестве титрантов такие соединения, как дитионат натрия, ацетат ванадила, три-хлорид мышьяка или хлорид олова(II). [c.348]


    Скорость реакций увеличиваете с нагреванием раствора увеличение температуры на 10° обычно приводит к увеличению скорости реакции в 2—3 раза. Поэтому в ряде случаев (там, где это требуется и где это возможно) применяют нагревание титруемого раствора например перед титрованием перманганатом раствор щавелевой кислоты нагревают почти до кипения. Нагревать раствор бихромата с иодидом калия и соляной кислотой для ускорения реакции очевидно нельзя, так как при этом улетучится образующийся при реакции иод и следовательно дальнейшее титрование тиосульфата будет неверным. [c.331]

    Перманганат следует перед добавлением комплексона восстановить обычным способом соляной кислотой. Образовавшаяся марганцевая соль, однако, после прибавления комплексона окис- ляется хроматом в комплексонат марганца. Поскольку хромат легко восстанавливается иодидом, то мешающее влияние марганца при правильном проведении титрования минимальное. Однако иодометрическое определение хромата ни при каких обстоятельствах нельзя проводить в присутствии кобальта. Если прибавить к раствору хромата и соли кобальта (И) комплексон, тотчас наступает окисление кобальта до комплексоната кобальта (П1), который не восстанавливается иодидом, и поэтому результаты получаются пониженными. Следующим недостатком этого метода, как уже упоминалось, является собственная окраска комплексоната хрома, который при больших концентрациях затрудняет распознавание конца титрования. Аналогичным образом мешает фиолетовый комплексонат кобальта. Метод можно применять для определения хрома в сталях, не содержащих кобальта. [c.133]

    ЗИН. — Серная кислота концентрированная. — Соляная кислота, 2 н. раствор. — Красный фосфор сухой. — Бром. — Иод в порошке. — Серная кислота, 2 н. и 70%-ный растворы. — Едкий натр, 0,5 н. титрованный раствор. — Нитрат серебра, 0,1 н. раствор. — Хлорид кальция, 1 и. раствор. — Хлорид натрия, 0,5 н. раствор. — Фторид натрия, 0,5 н. раствор. — Бромид натрия, 0,5 н. раствор — Иодид натрия, 0,5 и. раствор. — Бихромат калия, 1 н. раствор. — Перманганат калия, 0,5 и. раствор. — Нитрит калия, 0,5 н. раствор. — Иодат калия, 0,5 н. раствор, — Хлорид лития, 2 я. раствор. Хлорная вода, — Бромная вода. — Раствор крахмала. —Растворы метилового оранжевого, лакмуса и фенолфталеина. [c.307]

    На рис. 45 цифрой 4 показана соединительная склянка, расположенная между исследуемым раствором и электродом сравнения. На первый взгляд может показаться, что введение такой склянки делает установку недостаточно компактной и что удобнее пользоваться, например, Н-образными сосудами, рекомендованными для полярографических определений в одном колене такого сосуда находится исследуемый раствор, в другом — непосредственно электрод сравнения, а горизонтальная соединительная трубка заполняется агаровым гелем или перегораживается перегородкой из пористого стекла. От подобных конструкций следует безоговорочно отказаться непосредственное соединение обоих растворов, даже через агаровый гель, недопустимо, так как приводит к их быстрому загрязнению и делает невозможным определение таких ионов, которые могут реагировать с ионами электрода сравнения, т. е. с хлорид-ионами при каломельных полуэлементах или хлорид- и иодид-ионами при меркур-иодидных электродах сравнения. Между тем амперометрическое титрование часто применяется для определения именно таких элементов — серебра, свинца, таллия, железа (П1), перманганата и т. д. Поэтому применение промежуточного сосуда, заполненного раствором индифферентной соли (лучше всего нитратом калия или аммония), совершенно необходимо. [c.140]

    К окислительно-восстановительным методам относится титрование иодида различными окислителями — иодатом, церием (IV), перманганатом — и титрование свободного иода восстановителями, например, тиосульфатом и фениларсоновой кислотой. [c.216]

    Стехиометрия взаимодействия между титрантом и определяемым компонентом — другое важное условие использования реакции в объемном анализе — может быть нарушена, если в системе возможно протекание и индуцированных реакций. Таковыми являются реакции, которые в измеримой степени протекают в системе под влиянием другого взаимодействия. Например, окисление 80з иодом до 80Г одновременно индуцирует окисление 50з" кислородом воздуха при окислении иодида ванадатом так же происходит окисление I" кислородом воздуха. Типичный для перманганатометрии пример индуцированной реакции наблюдается при титровании Ре (II) МпО в присутствии хлоридов. В этом случае получаются завышенное результаты, так как основная реакция индуцирует окисление С1" перманганатом, который расходуется в большом количестве, по сравнению с эквивалентным для Ре(II), [c.291]


    Уравнение (21-1) выражает свойства раствора, находящегося в равновесии с твердым иодом. Такая полуреакция имеет место, например, в конце титрования иодида окислителем типа перманганата, когда концентрация ионов иодида становится сравнительно низкой. В начале же титрования, а также в большинстве косвенных определений, когда иодид содержится в избытке, происходит следующая полуреакция  [c.432]

    Установка по мышьяковистому ангидриду. Непосредственное титрование мышьяка (III) перманганатом в слабокислых растворах не дает удовлетворительных результатов, потому что реакция не проходит в стехиометрических отношениях. Но если прибавить в небольшом количестве иодид калия или иодат калия, реакция идет нормально с образованием мышьяка (V) и марганца (П) . Следующий ход работы приводит к получению очень точных результатов, совпадающих с получаемыми при применении оксалата натрия (отклонения не превышают 1 на 3000). [c.216]

    Установка другими методами. Титр растворов перманганата можно удовлетворительно устанавливать потенциометрическим титрованием чистого иодида калия в разбавленном растворе серной кислоты (не слабее 0,13 н,). [c.217]

    Иодиды можно определять в разбавленном сернокислом растворе смеси галогенидов потенциометрическим титрованием раствором перманганата [c.818]

    Составьте уравнения реакций, происходящих при титрованиях перманганатом а) до Мп в присутствии пирофосфата [см. уравнение (19-8)] б) НзАзОз до H3ASO4 в растворе серной кислоты в) иодида до I I, I N и H3 O H2I соответственно. [c.411]

    Во второй части этой книги описывается титрование перманганатом окиси азота, нитритов, кальция после осаждения его в виде оксалата, иодидов в виде I li, железа (II), двуокиси марганца обратным титрованием щавелевой кислоты, марганца (II), молибдена (V), селена (IV) и теллура (IV), фосфористой кислоты обратным титрованием, фосфорноватистой кислоты обратным титрованием, титана (III) и ванадия (IV). [c.555]

    В среде безводной уксусной кислоты при использовании в качестве титрантов брома, хромовой кислоты, перманганата калия или трихлорида титана проводят титрование мышьяка, сурьмы, ртути, селена, железа, титана, таллия, бромидов, иодидов, иода и пероксида водорода, а также органических соединений, таких, как резорцин, гидрохинон, бренцкатехин, тетра-хл оргидрохинон, п-хинон, тетрахлорхинон, л-аминофенол или дифениламин. Точку эквивалентности определяют потенциометрическим методом. [c.348]

    Титрование проводили на фоне нитрата калия. Равновесный потенциал системы 12/21 составляет на этом фоне +0,58 в, а системы [Ре(СЫ)бР /[Ре(СН)б] равен +0,45 в. Следовательно, элементарный иод на фоне нитрата калия является окислителем по отношению к ферроцианиду (в кислых растворах, наоборот, фер-зицианид окисляет иодид, так как реальный потенциал системы Ре(СЫ)бР /[Ре(СЫ)б] " смещается в кислых растворах в сторону положительных значений до +0,76 в). Если титрование проводится раствором иода, а в титруе юм растворе находится ферроциа-нид, то кривая титрования при небольшом напряжении (5—10 мв) имеет до точки эквивалентности такой же ход, как в случае титрования ферроцианида перманганатом. Но после конечной точки ток резко возрастет, так как пара 12/21 идеально обратима и минимального напряжения достаточно для обеспечения катодного и анодного процессов — восстановления иода до иодида и окисления иодида до иода (рис. 40, кривая 2). Следовательно, титрование с двумя индикаторными электродами с использованием двух обратимых систем вполне возможно. [c.106]

    В случае некоторых редоксиметрических титрований реагент имеет весьма интенсивную окраску, и уже небольшой избыток титранта вызывает появление в титруемом растворе характерного окрашивания. Если окраска реагента настолько интенсивна, что появление окрашивания обнаруживается в пределах скачка кривой титрования, реагент одновременно может служить индикатором. Так, в перманганатометрическом титровании используется интенсивно фиолетовая окраска перманганат-ионов. Интенсивную окраску имеет также раствор иода в водном растворе иодида калия. Поэтому при титровании таким раствором иногда тоже можно обойтись без индикатора (обычно все же титруют в присутствии крахмала). В интенсивно желтый цвет окрашены растворы церия (IV), и некоторые цериметрические титрования тоже могут быть осуществлены без применения индикаторов. [c.199]

    Мешающие вещества. Вместе с хлоридами титруются броми-ды и иодиды. Их можно определить отдельно соответствующими методами и содержание их вычесть из результатов титрования. Сульфит-, тиосульфат-, сульфид-, роданид- и цианид-ионы, мешающие определению, следует предварительно окислить кипяче нием с пероксидом водорода в щелочной среде. Органические ве щества в большой концентрации мешают определению. Их сле-> дует предварительно удалить, как описано в разд. 7.14.7.1, или окислить перманганатом калия в щелочной среде с последующим восстановлением пероксидом водорода и отфильтровыванием осадка водного диоксида марганца. Мешает железо(III) в концентрациях, превышающих 10 мг/л его следует связать добав-лением нескольких капель 5 %-ного раствора фосфата натрия. Мешают ионы цинка, свинца, алюминия, никеля и хрома(III) в концентрациях, превышающих 100 мг/л, а хромат ионы в концентрациях выше 2 мг/л. [c.224]

    Для определения рения используются алкалиметрическое титрование рениевой кислоты, окислительно-восстановительное и комплексоиетрическое титрования, а также титриметрические методы, основанные на образовании труднорастворимых соединений. При окислительно-восстаповительном титровании в качестве восстановителей используют иодиды, сульфат железа(П), хлорид олова(П), в качестве окислителей — перманганат и бихромат калия, сульфат церия(1У). Использование метода спектрофотометрического титрования перренат-иона раствором Зп(П) в присутствии комплексообразующих лигандов позволяет повысить чувствительность и избирательность определения рения. Методы потенциометрического и амперометрического титрования рассмотрены на стр. 146 и 148. [c.81]

    Ионы Hg(I) и Hg II) могут быть оттитрованы хлоридом, бромидом, иодидом, роданидом [584, 586, 1042, 1326], молибдатом 1743], арсенитом [484], сульфидом [584]. Ионы Hg(I) хорошо титруются веществами-окислителями, например перманганатом [584, 805]. Выполнен ряд работ по потенциометрическому титрованию ртути ЭДТА [703, 853, 854] и другими комплексонами [1100, 1101, 1173]. Для определения Hg(II) в присутствии галогенидов рекомендуется потенциометрическое титрование ее тиоацетамидом в щелочном растворе комплексона III с использованием нас. к. э. и Ag2S-элeктpoдa [598]. , [c.102]

    Серебро можно осадить в виде роданида титрованным раство-poMi NH4S N, отделить осадок и оттитровать избыток роданида перманганатом калия [453] или сульфатом церия (IV) [1032]. После осаждения AgJ стандартным раствором иодида калия избыток последнего оттитровывают перманганатом калия в присутствии силоксена в качестве хемилюминесцентного индикатора [835а]. [c.83]

    После осаждения кальция в виде оксалата его определяют и косвенным и о д о ме т р ич е с к и м методом [1190,1259,1595, 1668] осадок оксалата растворяют в кислоте, прибавляют избыток перманганата калия и иодида калия, выделившийся иод оттитровывают. В качестве титранта можно использовать тиосульфат натрия [1190, 1482], тиосульфат [1668J или гидросульфит калия [1259]. После растворения оксалата кальция в кислоте и прибавления избытка раствора e(S04)2 также возможно иодо-метрическое титрование [1410]. Иодометрия может быть использована для определения избытка иопов гидроксония после растворения оксалата кальция в известном объеме соляной кислоты [1494]. [c.70]

    Пристли, Себорн и Сельман [3] использовали 0,05-м. раствор перманганата калия для раздельного титрования 0,0002 моля двойной соли сульфата аммония и железа (в разбавленной серной кислоте), иодида калия и сульфита натрия, растворенных в одинаковых объемах (20 мл). Полученные величины теплот реакций показывают, что реакция окисления сульфита натрия значительно более экзотермична из всех изученных ими реакций. На основании их результатов можно подсчитать, что теплота реакции между перманганатом калия и сульфитом натрия больше чем 60 ккал/моль. Теплоты двух других реакций приблизительно равны 35 ккал/моль. Теплота нейтрализации сильной кислоты (хлористоводородной) сильным основанием (гидроокисью натрия) составляет —13 ккал/моль, т. е. потенциальные возможности получения очень точных результатов при использовании вышеописанных окислительно-восстановительных систем очевидны. [c.63]

    В описанных случаях создание надлежащей кислотности фона необходимо для протекания химической реакции в растворе, электродный же процесс восстановления элементарного иода или окисления иодид-иона до иода почти не зависит от кислотности среды. Иначе обстоит дело при восстановлении на платиновом электроде кислородсодержаших анионов — перманганата, бихромата и ванадата, имеющих большое применение в практике амперометрического титрования. Восстановление этих анионов на платиновом электроде происходит необратимо. Это значит, что если в растворе присутствуют одновременно окисленная и восстановленная ормы, например СГ2О7 и Сг , то непрерывной катодно-анодной [c.74]

    Располагая стандартизированным раствором перманганата калия, можно принять следующий порядок работ. Сначала готовят раствор тиосульфата натрия и устанавливают нормальную концентрацию титрованием иода, выделенного из раствора иодида калия определенным объемом раствора перманганата калия. Затем готовят раствор иода и устанавливают нормальную концентрацию его по КааЗгОд. Имея оба рабочих раствора, определяют количество какого-либо восстановителя. [c.315]

    В другую коническую колбу налейте из бюретки 40 мл раствора перманганата калия, прибавьте 15 мл 2 и. серной кислоты и 2 г иодида калия, перемешайте, оставьте смесь на 3—5 мин. После этого разбавьте смесь 100 мл воды, прибавьте 3 мл крахмала и оттитруйте раст -вором тиосульфата натрия. Расход тиосульфата натрия на титрование (без участия нитрита) обозначьте через Уг- Объем раствора тиосульфата натрия, эквивалентный взятому объему раствора нитрита, будет равен 1 2 — Уу. Зная, что молярная масса эквивалента NaN02 равна /2 молярной массы, вычислите титр тиосульфата натрия по нитриту натрия  [c.321]

    Для определения перекисных кислот сначала проводят титрование сульфатом церия (IV) с целью удаления перекиси водорода, которая может сопутствовать кислотам, а затем уже иодометрическим методом определяют собственно перекпспые кислоты. Этот метод дает более надежные результаты, чем классический метод Д Анса и Фрея основанный на применении перманганата. Невозможность добавления иодида калия сразу же по достижении конечной точки по перманганату ведет к появлению интенсивной красно-пурпурной окраски, что связано с взаимодействием (или Мп ) с перекисной кислотой. Ди- [c.450]

    Ход определения. К отобранной порции сточной воды прибавляют такой объем 0,1 н. раствора перманганата, чтобы он примерно в 2 раза превышал объем, требуемый для окисления всех окисляемых перманганатом веществ, и 10 iitz раствора едкого натра. Закрывают колбу притертой пробкой и оставляют на 24 ч при комнатной температуре. Затем приливают 25 мл серной кислоты и дают постоять еще 2 ч. Избыток перманганата определяют одним из следующих способов а) прибавляют 1 г иодида калия и титруют раствором тиосульфата, добавляя раствор крахмала к концу титрования б) приливают раствор соли Мора до обесцвечивания анализируемого раствора и еще сверх того приблизительно такое же количество затем титруют раствором перманганата до появления розовой окраски. [c.44]

    Установкатитрапо перманганату калия. Титр раствора тиосульфата натрия удобнее всего устанавливать по титрованному раствору перманганата калия. Если соблюдать простые меры предосторожности, то титр, полученный таким способом, не будет отличаться более чем на 0,05% от полученного путем установки по очищенному иоду, проведенной в самых лучших условиях Раствор перманганата должен быть установлен по оксалату натрия, как описано выше (стр. 214), и его реакцию с иодидом калия нужно проводить на рассеянном свету. Под действием прямого солнечного света кислород воздуха реагирует с иодистоводородной кислотой, выделяя заметные количества свободного иода. [c.226]

    Точные результаты получаются при определении хрома методом, основанным на восстановлении хромата иодистоводородной кислотой и титровании выделяющегося при этом иода раствором тиосульфата натрия. Этот метод, однако, не получил такого широкого распространения, как метод, описанный в разделе Титрование сульфатом железа (II) и перманганатом , так как железо, медь, мышьяк, ванадий и молибден, которые в состоянии высшей валентности выделяют иод в кислых растворах иодида калия, должны отсутствовать. [c.597]

    Навеска смеси чистых перманганата калия и хромата калия 0,2400 г обработана иодидом калия в кислой среде. На титрование выделившегося иода было израсходовано 23,62 мл 0,2540 н. NaaSaOs. Определите процентное содержание хрома и марганца в смеси. [c.172]


Смотреть страницы где упоминается термин Иодид титрование перманганатом: [c.95]    [c.173]    [c.434]    [c.492]    [c.98]    [c.434]    [c.216]    [c.226]    [c.392]    [c.393]    [c.39]    [c.132]   
Химический анализ (1966) -- [ c.409 ]




ПОИСК





Смотрите так же термины и статьи:

Иодиды

Перманганаты

Титрование перманганатом



© 2025 chem21.info Реклама на сайте