Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидрирование с с дегидроциклизацией

    С целью выяснения роли алкенов и водорода в процессе Сб-дегидроциклизации и изомеризации алканов исследованы [125] превращения 3-метилпентана, а также З-метилпентена-1, цис- и транс- изомеров 3-метилпен-тена-2 на платиновой черни при температуре 300—390 °С Е1 токе Нг и Не при ( азличном содержании Нг в газе-носителе. Выявлено четкое влияние концентрации Нг в газе-носителе на превращения (Сз-циклизация, скелетная изомеризация, образование метилциклопентана и бензола) 3-метилпентана и изомерных алкенов. Полагают [125], что скелетная изомеризация должна проходить через промежуточный поверхностный комплекс, общий для 3-метилпентана и 3-метилпентенов. Этому комплексу соответствует полугидрированное поверхностное состояние углеводорода, адсорбированного на двух центрах. При малом содержании Нг возникает сильное взаимодействие между углеводородом и металлом с образованием кратных связей углерод—платина, что приводит к образованию З-метилпентена-1 из 3-метилпентана и. к частичному покрытию поверхности катализатора коксом. При больших количествах Нг преобладает слабое взаимодействие, увеличивается время жизни промежуточного комплекса и протекают характерные реакции дегидрирование алкана с образованием 3-метилпентена, Сз-де- [c.229]


    Дегидрирование проводили на катализаторе-палладий на активированном угле. На этом катализаторе мы остановились потому, что он совсем не вызывает дегидроциклизацию парафиновых углеводородов, как это показано Б. А. Казанским и X. И. Арешидзе [16], а реакция гидрогенолиза. циклопентановых уг.теводородов протекает сравнительно в меньшей степени, чем на платиновом катализаторе. [c.176]

    Механизм отравления Pt-катализатора в ходе превращений 3-метилпентана исследован с помощью изотопных методов [117]. Показано, что в ходе протекания реакций Сз-дегидроциклизации и изомеризации происходит необратимое удерживание части молекул углеводорода на катализаторе, следствием чего является селективное отравление активной поверхности катализатора. Предполагают, что реакции Сз-дегидроциклизации и изомеризации алканов протекают на участках поверхности Pt-черни, представляющих собой определенную геометрическую комбинацию атомов металла. При этом из участия в реакциях дегидроциклизации — изомеризации выводится весь активный центр, если этому предшествует хотя бы частичное блокирование атомов в ансамбле. В то же время реакция дегидрирования может успешно протекать на оставшейся незанятой части ансамбля. В соответствии с этим на рис. 42 изображены возможная схема хемосорбции 3-метилпентана при его Сз-дегидроциклизации и схема хемосорбции метилциклопентана при гидрогенолизе на грани Pt (111) [118]. Таким образом становится очевидным определенное сходство в строении промежуточных комплексов реакций Сз-дегидроциклизации алканов, гидрогенолиза циклопентанов и изомеризации алканов [63, 82, 101, 118]. [c.224]

    Г. Д. Гальперн [21] показал, что в процессе дегидрирования сураханского бензина (фракции 185—195°) над платиновым катализатором при 300—310° не происходит ни дегидроциклизация алканов, ни гидрогенолиз пятичленных цикланов. Побочные реакции, искажающие конечные результаты, не имеют места в случае дегидрогенизации лигроиновых фракций. [c.165]

    Что такое дегидрирование , дегидроциклизация , изомеризация  [c.461]

    Продукты превращения, получаемые при каталитическом крекинге углеводородного сырья, показывают, что комплекс реакций, протекающих в присутствии алюмосиликатных катализаторов, принципиально отличается от реакций чисто термического расщепления. Наряду с основными реакциями распада интенсивно протекают специфические вторичные реакции — изомеризация, перенос водорода, дегидрирование, дегидроциклизация, позволяющие получить высококачественные бензиновые фракции и специфический состав газа. [c.81]


    Можно отметить, что схема практически не отличается от схемы установки риформинга компании Шеврон (см. рис. 41). Нагретое сырье проходит гидроочистку бензинов в реакторе Р-1, и, подогреваясь в многосекционной печи 5, последовательно проходит реакторы риформинга Р-2, Р-3, Р-4, где протекают реакции дегидрирования, дегидроциклизации, гидрокрекинга. Между реакторами предусмотрен подогрев сырья, так как реакции дегидрирования сопровождаются поглощением тепла. По выходе из последнего реактора катализат с растворен- [c.244]

    Ароматизация происходит в результате дегидрирования, дегидроциклизации, дегидратации, изомеризации, конденсации и др. или является следствием нескольких процессов. Ее часто осуществляют в условиях катализа платиной, палладием, оксидами металлов. Так, ацетилен и его соединения превращаются в соответствующие замещенные бензолы, например  [c.49]

    Для полного дегидрирования гексагидроароматических углеводородов достаточно однократное их проведение на высокоактивном платинированном угле, в то время как дегидроциклизацией н-октана на таком же катализаторе при трехкратном пропускании этого углеводорода образуется лишь 12% ароматических углеводородов, как это показано Б. А. Казанским и А. Ф. Платэ [4],. [c.175]

    По мере углефикации, за счет реакций дегидрирования, дегидроциклизации и конденсации увеличивается, как указыва- [c.103]

    Процесс ароматизации, как уже указывалось, слагается из ряда реакций, главнейшими из которых являются дегидрирование, дегидроциклизация и деструктивная гидрогенизация. Первые две реакции характеризуются отрицательным тепловым эффектом, а последняя реакция — положительным суммирующий тепловой эффект процесса будет определяться соотношением глубины отдельных приведенных выше реакций. [c.302]

    При каталитическом риформинге углеводороды нефтяных фракций претерпевают значительные превращения, в результате которых образуются ароматические углеводороды. Это—дегидрирование шестичленных нафтеновых углеводородов, дегидроизомеризация алкилированных пятичленных нафтенов и дегидроциклизация парафиновых углеводородов одновременно протекают реакции расщепления и деалкилирования ароматических углеводородов, а также их уплотнения, которые приводят к отложению кокса на поверхности катализатора. Для предотвращения закоксовывания катализатора и гидрирования образующихся при крекинге непредельных углеводородов в реакторе поддерживается давление водорода 3—4 МПа при получении высокооктанового бензина и 2 МПа — при получении индивидуальных ароматических углеводородов. [c.41]

    Окись хрома катализирует ряд процессов, среди которых наиболее важны гидрирование олефинов [63, 64], дегидрирование, дегидроциклизация и ароматизация алканов [65]. Кроме того, окись хрома каталитически активна в реакциях дегидратации спиртов [31] и окисления, например, углеводородов и окиси углерода [66], но в этом случае ее активность относительно мала. [c.66]

    Обобщение изложенного позволяет прийти к следующим предварительным заключениям о воздействии серы на платиновый катализатор 1) сера ослабляет активность платины, что ведет к подавлению реакций гидрогенолиза, дегидрирования, дегидроциклизации углеводородов 2) сера увеличивает стабильность катализатора как в отношении активности, так и селективности. По [c.139]

    В дальнейшем для более глубокого понимания механизма дегидроциклизации алканов в присутствии оксидных катализаторов был использован [21] кинетический изотопный метод, с помощью которого удалось исключить из приведенной выше схемы ряд стадий (2, 3, 6, 10). Так, в опытах со смесями н-гексан — циклогексан- С удельная радиоактивность циклогексана не уменьшалась, т. е. из гексана не образуется нерадиоактивный циклогексан. Это означает, что последний не является промежуточным продуктом в процессе ароматизации н-гексана. В то же время в опытах со смесями гексан — гексен- С в катализате обнаружено заметное уменьшение мольной радиоактивности гексена, что, очевидно, вызвано разбавлением меченого олефина нерадиоактивным гексеном, образующимся при дегидрировании гексана. Полученный бензол обладал большей мольной радиоактивностью, чем непрореагировавший гексен, что говорит об образовании бензола через гексен [147]. Существенным фактом является появление в катализате меченых гексадиенов (из гемсена- С). Опыты по арома- [c.238]

    Значительная часть обзора посвящена описанию синтезов носителей катализаторов, катализаторов на их основе, катализаторов крекинга, гидрирования и дегидрирования, дегидроциклизации, алкилирования и полимеризации и др. В обзоре приведены материалы по изучению физических свойств катализаторов и каталитической активности и селективности. [c.2]

    Дегидрирование, дегидроциклизация, крекинг [c.392]

    Химические методы переработки нефти — это сложная цепь химических процессов — расщепления, изомеризации, дегидрирования, дегидроциклизации (ароматизации). При переработке нефти используют также процессы алкилирования, димеризации и др. Во всех этих процессах образуется много газообразных продуктов (парафинов и олефинов), а также ароматических соединений, которые используют в качестве сырья для промышленности основного органического синтеза. Первичной химической переработкой нефти занята специальная отрасль промышленности — нефтехимическая промышленность. Прямым окислением выделенных низших парафинов (пропана, бутана) получают соответствующие [c.135]


    Химические методы переработки нефти — это сложная цепь химических процессов — расщепления, изомеризации, дегидрирования, дегидроциклизации (ароматизации). При переработке нефти используют также процессы алкилирования, димеризации и др. Во всех этих процессах образуется много газообразных продуктов (парафинов и олефинов), а также ароматических соединений, которые используют в качестве сырья для промышленности основного орга- [c.144]

    Таким образом, можно констатировать, что при каталитических превращениях углеводородов со средним размером кольца происходят две независимые реакции трансаннулярная дегидроциклизация и прямой гидрогенолиз цикла. Направленность первой реакции определяется конформационными особенностями исходного циклоалкана. Образующиеся бициклические углеводороды претерпевают ряд последующих реакций, в том числе дегидрирование, гидрогенолиз, изомеризацию. С увеличе- [c.159]

    Между А., нефтяными смолами и нефтяными маслами существует генетич. связь. При переходе от масел к смолам и А. увеличивается кол-во конденсиров. циклов, гетероато-моа величина мол. массы, уменьшается отношение Н/С. Термополиконденсация А. приводит сначала к образованию карбенов, затем карбоидов (см. Битумы нефтяные) и кокса. При термополиконденсации смол или висбрекинге гудронов происходит дегидрирование, дегидроциклизация и деалкилирование, вследствие чего образуются вторичные А., характеризующиеся высокой степенью ароматичности. В условиях мягкого гидрогеиолиза А. превращаются в смо-ло- и маслообразные в-ва. [c.211]

    Бензол и многие его гомологи содержатся в нефтях различного происхождения, а также в коксовых газах и каменноугольной смоле. Преимущественно из последней они и выделяются в промышленных масштабах. Для покрытия все возрастающих потребностей в этих углеводородах в настояндее время все в больших масштабах осуществляют дегидрирование, дегидроциклизацию, дегидроизомеризацию или высокотемпературный крекинг алифатических или алициклическнх углеводородов нефти до аренов. Для получения алкилбензолов существует ряд синтетических методов. [c.260]

    Для процессов дегидрирования, дегидроциклизации и дегидроконденсации окись алюминия используют главным образом в составе сложных алюмохромовых или алюмомолибде-новы.х катализаторов или в составе катализатора da (Р04)2 — AljOg, dO — AI3OS [860— 864, 870]. Активированная окись алюминия применяется и самостоятельно при взаимодействии диенов с нитрилами с образованием производных пиридина и выделением Нг. Реакция идет при температуре 400° С, но выход продукта при этом невысокий [842—847]. [c.120]

    Дегидроароматиэация парафинов (параллельно с изомеризацией, гидрокрекингом, дегидрированием, дегидроциклизацией) [c.1134]

    К реакциям окислительно-восстановительного типа относят процессы одноэлектронного переноса, приводящие к возиикно-вению адсорбированных катион- и анион-радикалов, а также многочисленные реакции с участием молекулярного водорода и кислорода, такие, как гидрирование — дегидрирование, дегидроциклизация, окисление органических соединений, окисление [c.53]

    Традиционно повышение стабильности и коксоустойчивости катализаторов связывают с разработкой контактов, содержащих новые модификаторы или отличающиеся способом их приготовления. В качестве модификаторов были предложены к использованию многие элементы, но наиболее широко описаны такие элементы, как рений, олово, германий, иридий, сера. Введение модификаторов приводит не только к снижению скорости дезактивации катализаторов, но и к повышению селективности реакций дегидрирования, дегидроциклизации и изомеризации, с одной стороны, и подавлению реакций гидрокрекинга, с другой стороны. [c.139]

    Каталитический риформинг. На заводах Советского Союза наиболее распространены установки риформинга со стационарным слоем катализатора при межрегенерационном ци1 е 0,5-1 год и более. Эта схема сходна со схемой установки риформинга американской компании "Шеврон". Нагретое сырье проходит гидроочистку бензинов и подогреваясь в многосекционной печи последовательно направляется в три реактора риформинга, где проходят реакции дегидрирования, дегидроциклизации и гидрокрекинга. Между реакторами предусмотрен подогрев сырья, так как реакции дегидрирования поглощают тепло. При выходе из последнего реактора катализат с растворенными углеводородными газами через сепараторы высокого и низкого давления подается на стабилизацию в колонну, где продукты реакции разделяются на катализат с заданным давлением паров, сжиженный газ и сухой углеводородный газ. На установках имеется также оборудование для промотирова-ния катализатора хлором в циклах реакции и регенерации и для регулирования влажности в системе риформинга. Типы различных установок риформинга с неподвижным слоем катализатора приведены в табл. 29. [c.245]

    В термических, а также каталитических процессах нефтепе — реработки одновременно и совместно протекают как эндотермические реакции крекинга (распад, дегидрирование, деалкилирова— ние, деполимеризация, дегидроциклизация), так и экзотермические реакции синтеза (гидрирование, алкилирование, полимеризация, конденсация) и частично реакции изомеризации с малым тепловым эффектом. Об этом свидетельствует то обстоятельство, что в про — дуктах термолиза (и катализа) нефтяного сырья всегда содержатся углеводороды от низкомолекулярных до самых высокомолекуляр — ных от водорода и сухих газов до смолы пиролиза, крекинг — остатка и кокса или дисперсного углерода (сажи). В зависимости от температуры, давления процесса, химического состава и молекулярной массы сырья возможен термолиз с преобладанием или реакций крекинга, как, например, при газофазном пиролизе низкомолеку — лярных углеводородов, или реакций синтеза как в жидкофазном процессе коксования тяжелых нефтяных остатков. Часто термические и каталитические процессы в нефте— и газопереработке проводят с подавлением нежелательных реакций, осложняющих нормальное и длительное функционирование технологического процесса. Так, гидрогенизационные процессы проводят в среде избытка водорода с целью подавления реакций коксообразования. [c.9]

    Следует, однако, отметить, что высказанные выше соображения и выводы относительно механизма ароматизации алканов на металлических и металлоксидных катализаторах нельзя считать окончательными. Результаты, приведенные в [143, 144], дают основание считать, что механизм Сб-дегидроциклизации алканов на различных Pt-катализаторах в большой мере зависит от условий проведения эксперимента и в значительной степени— от строения исходного углеводорода. Анализируя имеющиеся данные, можно сделать вывод, что ароматизация н-алканов проходит преимущественно через промежуточные стадии дегидрирования и Сб-дегидроциклизации. В то же время алканы, имеющие четвертичный атом углерода (например, 2,2- или 3,3-диметилгексаны), не могут в условиях реакции столь же легко дегидрироваться и их ароматизация хотя бы частично проходит, по-видимому, по другому механизму — через стадию образования геж-диметилциклогексана. [c.240]

    В работе [164] исследовано влияние добавки хрома к алюмоплатиновому катализатору [Pt r = 5 l (по массе)] на механизм дегидроциклизации н-гексана. Авторы пришли к заключению, что ароматизация н-гекса-на на алюмоплатиновом и алюмоплатинохромовом катализаторах протекает по сходному механизму. Основными направлениями превращений н-гексана на обоих катализаторах являются гидрокрекинг, дегидрирование, скелетная изомеризация, Сб-дегидроциклизация и ароматизация. На основании кинетических данных высказано предположение об образовании при введении добавки хрома в алюмоплатиновый катализатор большого числа слабоактивных центров. [c.247]

    Учитывая весьма широкий температурный интервал [59] и достаточно высокую температуру опытов, можно, по-видимому, действительно считать, что в описанных условиях образование индана, хотя бы частично, идет через стадию ненасыщенных л-адсорбированных соединений. Однако очевидно, что представленный выше механизм Сз-дегидроциклизации не является единственно возможным. Действительно, при более низкой температуре (280—310 °С) в присутствии Pt/ Сз-дегидроцик-лизация алкилбензолов успешно проходит, минуя стадию промежуточного дегидрирования, и, более того, алкенилбензолы в этих условиях тормозят циклизацию алкилбензолов [95]. Механизм Сз-дегидроциклизации углеводородов, рассматриваемый в [59, 82], не является единственно возможным и, по-видимому, наблюдается главным образом в присутствии бифункциональных катализаторов при относительно высоких температурах. [c.249]

    Несомненный интерес представляет цикл работ Со-морджая и сотр. [174—177] по исследованию кинетики различных реакций (в том числе дегидроциклизации) на монокристаллах металлов (Р1, 1г, N1, Ag) с одновременным определением структуры и состава поверхности методом дифракции медленных электронов и Оже-спект-роскопии. Показано, что атомные ступеньки на поверхности монокристалла Р1 являются активными центрами процессов разрыва связей С—Н и Н—Н. Зависимость скоростей реакций дегидрирования и гидрогенолиза циклогексана и циклогексена от структуры поверхности Р1 свидетельствует о существовании изломов и выступов на атомных ступеньках. Такие дефекты структуры являются особенно активными центрами процесса расщепления С—С-связей. Установлено, что активная поверхность Р1 в процессе реакции покрывается слоем углеродистых отложений свойства этого слоя существенно влияют на скорость и распределение продуктов каталитических реакций. Показано, что дегидрирование циклогексана до циклогексена не зависит от структуры поверхности (структурно-нечувствительная реакция). В то же время дегидрирование циклогексена и гидрогенолиз циклогексана являются структурно-чувствительными реакциями. Полученные результаты позволили расширить классификацию реакций, зависящих от первичной структуры поверхности катализатора и от вторичных изменений поверхности, возникающих в процессе реакции. При проведении реакций на монокристаллах 1г показано, что ступенчатая поверхность 1г в 3—5 раз более активна в [c.252]

    Таким образом, резюмируя исследования по превращениям углеводородов в присутствии бифункциональных катализаторов, можно условно разделить эти исследования на две группы. Авторы работ первой группы [59, 82, 159, 187] считают, что дегидроциклизация протекает исключительно на Pt-центрах с промежуточным образованием ненасышенных систем, в частности я-комплексов в работах второй группы [42, 43, 160] развивается схема первоначального дегидрирования на Pt алканов в алкены и дальнейшая циклизация последних под воздействием кислых центров носителя. В работах [167—169] обе эти концепции объединены. [c.255]

    В настоящее время в нефтепереработке существует целый ряд технологических каталитических процессов, в ходе которых в той или иной степени осуществляются различные превращения углеводородов. В качестве примера можно привести каталитический риформинг один из важнейших современных нефтехимических процессов, с помощью которого осуществляется глубокое изменение углеводородного состава бензинов. Каталитический риформинг позволяет получать в широких масштабах ароматические углеводороды — бензол, толуол, ксилолы. Они образуются в этом процессе путем нескольких реакций дегидрирования шестичленных нафтенов, Сз-дегидроциклизации алканов в алкилциклопентаны с последующей дегидроизомеризацией и, наконец, Се-де-гидроциклизации алканов. Этот и другие подобные производственные процессы возникли в результате чисто технологических разработок. Однако сейчас пути технологических и фундаментальных исследований постепенно сближаются. Эта тенденция дает определенный положительный эффект. Так, исследование механизма и кинетических закономерностей каталитических реакций углеводородов, а также использование опыта, накопленного при эксплуатации нескольких поколений моно- и биметаллических катализаторов риформинга, позволило создать ряд высокоэффективных и экономичных разновидностей процесса риформинга. [c.257]


Смотреть страницы где упоминается термин Дегидрирование с с дегидроциклизацией: [c.442]    [c.546]    [c.600]    [c.493]    [c.187]    [c.194]    [c.200]    [c.208]    [c.230]    [c.247]    [c.250]    [c.251]    [c.254]   
Каталитические свойства веществ том 1 (1968) -- [ c.611 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидроциклизация



© 2025 chem21.info Реклама на сайте