Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции химические гетерогенные Гетерогенные

    В гетерогенном катализе скорость химической реакции увеличивается под влиянием катализаторов, образующих отдельную фазу последние вместе с реагентами и продуктами реакции составляет гетерогенную систему. Это — обычно системы твердое тело — газ и твердое тело — жидкость. Реакция происходит на поверхности катализатора — твердого тела, а газ и жидкость могут рассматриваться в качестве резервуара частиц. Процесс в случае гетерогенного катализа включает в себя пять стадий подвод (транспорт) веществ к поверхности адсорбцию по крайней мере одного из реагентов собственно химическое превращение на поверхности десорбцию продуктов реакции отвод вешеств от поверхности. [c.764]


    Далее, поскольку глубокий механизм каталитических реакций — как гетерогенных, так и гомогенных — является электронным, то к их описанию можно приложить весь сегодняшний арсенал квантовой химии. Сюда относятся расчеты электронной структуры молекул, их реакционной способности, потенциальных поверхностей реакции и т. д. Специфика гетерогенного катализа, однако, состоит в том, что при контактных процессах в электронном механизме реакции непосредственное участие принимают твердые тела. Корректный учет взаимодействия субстрата с поверхностью катализатора значительно усложняет задачу, требует привлечения аппарата теории энергетической зонной структуры, теории поверхностных состояний и т. н. Несмотря на указанную трудность, число работ по квантовой химии гетерогенного катализа постоянно растет. И хотя в настоящее время такие работы чаще всего посвящены исследованию сравнительно небольших сорбционных комплексов или простейших модельных реакций, несомненно, что уже в недалеком будущем квантово-химические расчеты найдут широкое применение в прогнозировании гетерогенных катализаторов для процессов, представляющих практический интерес. На решение этой же задачи нацелены и широко развиваемые теперь методы корреляции кинетических и термодинамических параметров. К гетерогенно-каталитическим реакциям с учетом их некоторых особенностей уже применяют с определенным успехом уравнения линейных соотношений типа Бренстеда, Гаммета — Тафта, Воеводского — Семенова и аналогичные. Широко [c.5]

    Наклон прямой rip—Ig/ и отрезок, отсекаемый ею на оси токов (прп г]р = 0), позволяют найти порядок реакции и предельный реакционный ток гетерогенной реакции Порядок гетерогенной лимитирующей химической реакции можно найти по уравнению [c.328]

    Наряду с изменением скорости реакции, необходимо исследовать характер изменений, которые вносит сама реакция в состояние системы. Такого рода исследование проводится в главе, посвященной интегрированию кинетических уравнений при постоянной температуре там же описываются способы определения кинетических констант. Характерная черта, вносящая принципиальное различие между прикладной и чистой химической кинетикой, — это исследование взаимодействия химических и физических процессов. Этому вопросу посвящена глава VI, в которой проводится анализ различных стадий гетерогенно-каталитического процесса. [c.8]


    Метод подхода к основам химической технологии через рассмотрение работы отдельных установок в настоящее время в основном не практикуется в связи с переходом к более обобщенному направлению, в котором теория явлений переноса рассматривается в общем виде. В пределах этого направления могут быть рассмотрены многие классические теории химической технологии. Долгое время явления массопереноса в условиях протекания химической реакции, которые имеют огромное значение в широком многообразии химических процессов, практически не использовались. В последние пятнадцать лет в литературе появились важные работы по общему представлению одновременных процессов массопереноса и химической реакции. Сюда можно отнести теоретические и экспериментальные работы в таких промышленно важных областях, как химическая абсорбция, гетерогенный катализ, продольное перемешивание в химических реакторах и др. [c.7]

    Такое оиределение справедливо в основном для реакций, проводимых в гомогенной среде. Для реакций, протекающих на поверхности раздела фаз, скорость обычно относят к единице этой поверхности. Иногда для описания скорости химической реакции в гетерогенной системе изменение количества вещества относят также к объему одной из фаз. — Прим. ред. [c.196]

    Под химической коррозией подразумевается прямое взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента среды протекают в одном акте. Такая кор-ро ия протекает по реакциям, подчиняющимся законам химической кинетики гетерогенных реакций. Примерами химической коррозии являются газовая коррозия выпускного тракта двигателей внутреннего сгорания (под действием отработавших газов) и лопаток турбин газотурбинного двигателя, а также коррозия металлов в топливной системе двигателей (за счет взаимодействия с находящимися в топливах сероводородом и меркаптанами). В результате окисления масла в поршневых двигателях могут образовываться агрессивные органические вещества, вызывающие химическую коррозию вкладышей подшипников [291]. Можно привести и другие примеры. Однако доля химической коррозии в общем объеме коррозионного разрушения металлов относительно мала, основную роль играет электрохимическая коррозия, протекающая, как правило, со значительно большей скоростью, чем химическая. [c.279]

    Скорость химического превращения определяется скоростью транспорта вещества и теплоты к зоне реакции и скоростью реакции. Химические реакции могут протекать в объеме реакционной среды (гомогенные реакции) либо на поверхности раздела фаз (гетерогенные реакции). [c.259]

    Так как в процессах топливной промышленности практически не приходится иметь дело с гетерогенными реакциями, в которых участвует больше одной твердой фазы, то мы ограничимся приведенными здесь примерами. Читатель, интересующийся более глубокими сведениями в области химической термодинамики гетерогенных реакций, может обратиться к специальной литературе по этому вопросу [5, 6, 8]. [c.153]

Рис. 116. Схема установки для изучения химического равновесия гетерогенных реакций при высоких температурах Рис. 116. <a href="/info/13990">Схема установки</a> для изучения <a href="/info/1117330">химического равновесия гетерогенных реакций</a> при высоких температурах
Рис. 117, Схема установки для изучения химического равновесия гетерогенных реакций (разложение кристаллогидратов) нри средних температурах Рис. 117, <a href="/info/13990">Схема установки</a> для изучения <a href="/info/1117330">химического равновесия гетерогенных реакций</a> (<a href="/info/49043">разложение кристаллогидратов</a>) нри средних температурах
    Коррозионная активность характеризует скорость химического взаимодействия бензинов и продуктов их сгорания с материалами, из которых изготовлены средства транспортирования, хранения и перекачки горючего, а также агрегаты топливной системы, детали камеры сгорания, впускной и выпускной тракты двигателя. Процессы, обусловленные коррозионной активностью бензинов, подчиняются законам химической кинетики гетерогенных реакций и не связаны с электрохимическими взаимодействиями в тройной системе топливо-вода-металл. [c.46]

    Понятие химического потенциала и его аналитические выражения применяются для изучения равновесия в химических и гетерогенных системах. При этом определяют изменение химических процессов в ходе протекания соответствующего физикохимического процесса и по знаку изменения химических потен циалов А х определяют, в какую сторону смещено равновесие в изучаемой системе — в сторону исходных веществ или продуктов реакции. [c.146]


    В книге собраны и подробно изложены основные сведения, необходимые для оптимального проектирования химических реакторов и управления ими. В ней приведены основы расчетов и оптимизации химических реакторов рассмотрен вопрос о распределении времени контактирования и перемешивании в непрерывных проточных реакторах, описаны химические реакции в гетерогенных системах. [c.4]

    ХИМИЧЕСКИЕ РЕАКЦИИ В ГЕТЕРОГЕННЫХ СИСТЕМАХ [c.152]

    Во-первых, надо выделить некоторое свойство системы, которое обусловливает скорость превращения. Этот фактор называют движущей силой превращения и выбирают, исходя из термодинамических соображений, как отклонение от равновесия. Обычно используемой движущей силой является разность температур для теплопередачи, разность концентраций для массопередачи и удаление от равновесия для химической реакции. Следовательно, для гетерогенных процессов, включающих стадии массопередачи и последовательные химические реакции, можно написать  [c.325]

    Примечание. Сравнивая уравнения (г) и (е), можно видеть, что если различные движущие силы не являются линейными функциями параметра системы, то выражения для суммарной скорости процесса представляют собой не простые соотношения. Эта особенность влияет на методику нахождения скоростей реакций для гетерогенных систем. Когда химическая реакция протекает по первому порядку, общее выражение скорости, учитывающее массоперенос, может быть выведено без затруднений. Однако, если реакция имеет не первый порядок и необходимо получить уравнение скорости сложного процесса, то обычно выбирают такие экспериментальные условия, при которых химическую стадию без большой ошибки можно рассматривать, как реакцию первого порядка. [c.326]

    Каталитические реакции разделяются на два основных класса гомогенные и гетерогенные. Гетерогенным катализатором является химическое соединение, нерастворимое в реакционной среде. Катализатор может быть индивидуальным, смешанным с другими катализаторами или нанесенным на инертный носитель. Распространенные гетерогенные катализаторы — металлы и их оксиды. Преимущества гетерогенных катализаторов заключаются в их низкой стоимости, простоте регенерации и пригодности к использованию в реакторах как периодического, так и проточного типа. К недостаткам этих катализаторов относятся обычно невысокая специфичность действия и во многих случаях большие затраты энергии на обогрев реакторов и создание повышенного давления. [c.35]

    В главе IV химические реакции не рассматривались. Однако химическое равновесие является особым случаем внутреннего равновесия, так как оно устанавливается также в гомогенной системе. Так как в 27 для каждой фазы предполагалось существование внутреннего равновесия, то внутри фаз можно допустить протекание химических реакций, если предположить полное химическое равновесие и ввести в условия равновесия только числа молей независимых компонентов в смысле определения 2. Ранее полученные результаты останутся тогда неизменными, но, естественно, не будут содержать сведений об условиях химического равновесия. Реакции между фазами (гетерогенные реакции) можно допустить, предполагая равновесие и ограничиваясь независимыми компонентами  [c.161]

    Основы кинетики гетерогенных реакций. Теория кинетики гетерогенных реакций, осложненных массообменом, достаточно подробно освещена в литературе (4, 16, 20], поэтому здесь можно ограничить рассматриваемый вопрос только основными ее положениями, необходимыми в дальнейшем для анализа взаимосвязи гидродинамической обстановки в аппарате с кинематикой химического превращения. [c.31]

    Из представления о соответствии между гетерогенным зарождением и обрывом цепей [98] следует не только возможность вычисления скорости гетерогенного зарождения ради калов, если известны вероятность рекомбинации их на данной химически нереакционноспособной поверхности и равновесная концентрация радикалов при температуре стенок, но также независимость скорости радикально-цепной реакции от гетерогенного фактора [103, 98], несмотря на участие поверхности в процессе. Более того, скорость цепной реакции может даже оказаться не зависящей от свойств поверхности, так как равновесная концентрация радикалов возле стенки зависит только от температуры, а не от свойств стенок [98]. Возможно, что такого рода случай реализуется при термическом крекинге алканов [98, 104]. [c.47]

    Окислительно — восстановительные реакции. Из двух перечисленных выше типов реакций в гетерогенном катализе наиболее изучены окислительно — восстановительные. Они широко использовались как модельные реакции при разработке многих частных теорий катализа (промежуточных химических соединений Сабатье и В.Н. Ипатьева, мультиплетной теории A.A. Баландина, активных ансамблей Н.И. Кобозева, неоднородной поверхности Р.З. Рогин — ского, химической концепции катализа Г.К. Борескова и др.) и в особе нности при решении центральной проблемы в гетерогенном ката изе — проблемы предвидения каталитического действия. Успешное ее решение позволит создать научную основу подбора оптимальных катализаторов и разработать единую теорию катализа, обла/,,ающую главным достоинством — способностью предсказывать, а не только удовлетворительно объяснять наблюдаемые от — делььые факты. [c.159]

    Это типичный случай большинства простых реакций, протекающих в растворах. Если же реакция происходит только на поверхности между двумя фазами, то говорят, что такая реакция гетерогенна. Имеется очень много примеров реакций этого типа среди них можно отметить контактный процесс окисления ЗОг кислородом на поверхности платино-асбестового катализатора и гидрогенизацию ненасыщенных соединений в жидких суспен-гшях никелевого катализатора Ренея (N 02). Кроме этих двух категорий реакций, имеется группа реакций, так называемых цепных процессов, скорость которых может зависеть не только от химического состава, но также от размера и геометрии поверхности, ограничивающей реагирующую систему. Хотя такие реакции классифицировались как гетерогенные, это определение не точное, поскольку реакция не ограничивается поверхностными слоями скорее всего поверхность лишь способствует процессам, происходящим в объеме газовой фазы или изменяет их. Типичными примерами таких реакций являются цепное окисление водорода, окиси углерода, углеводородов и фосфора. Большинство изученных газофазных реакций относится к этой категории. [c.17]

    В данной работе нужно ознакомиться с одним нз фи ико-химнческих методов исследоиания химического равновесия гетерогенной реакции, изучить изменение констатт, равновесия в зависимости от температуры и вычислить средний тепловой эффект реакции. [c.261]

    Качественное исследование систем уравнений, оиисывающих стационарные режимы работы гетерогенных каталитических реакторов, свидетельствует о множестве стационарных состояний. Причинами множественности стационарных состояний являются нелинейности кинетики химических реакций, а также транспортные эффекты, среди которых наиболее существенны тепло- и массоперенос между поверхностью зерен катализатора и реакционным потоком, перемешивание потока в радиальном и осевом направлениях отвод (подвод) тепла, выделяющегося (поглощающегося) в ходе химических реакций [1, 2]. [c.281]

    Вопрос о соотношении скоростей массопередачи и химической реакции обычно рассматривают в связи с существующими представлениями об области протекания процесса. Понятие о кпнетичест ой, диффузионной и переходной областях протекания процесса было введено Франк-Каменецким [30] в 1947 г. В течение последующей четверти века эти представленпя переходили из одной монографии в другую и из одного учебника в другой. При этом в большинстве работ полностью игнорировался тот факт, что Франк-Каменецкий рассматривал конкретный случай реакции первого порядка в гетерогенно-каталитическом реакторе для системы газ — твердое тело [31]. Более того, даже применительно к этому случаю формулировки [c.14]

    В случае гетерогенно-каталитической реакции, протекающей на поверхности катализатора, скорость ее связывают не с мольно-объемными (С), а с поверхностными концентрациями компонентов реагирующей смеси с, обычно определяемыми степенью заполнения поверхности. Поскольку непосредственное измерение величины о во время химического процесса чрезвычайно затруднительно, а выражают через мольно-объемные концентрации С или через парциальные давления компонентов реакционной смеси Ра.- [c.170]

    В развитии термодинамической теории равновесий, в частности равновесий в химических реакциях (гомогенных и гетерогенных), выдающаяся роль принадлежит работам В. Гиббса (1873—1878) и Ле-П1ателье, который открыл (1885) общий принцип смещения равновесий при изменении внешних условий. Термодинамическая теория химических равновесий получила развитие в работах Вант-Гоффа. Им же была разработана количественная теория разбавленных растворов (1886). [c.17]

    К химической коррозии относятся процессы, протекающие при непосредственном химическом взаимодействии между мета, ь лом и агрессивной средой и не сопровождающиеся возникнове-пнем электрического тока. Этот вид коррозии является химической гетерогенной реакцией жидкой или газообразной среды с пов рхносило металла. По химическому механизму на металли- [c.5]

    В. тапной главе рассматриваются вопросы химической коррозии металлов. Процесс разрушения металлов и сплавов вследствие взапмоде11ствия их с внешней средой, не сопровождающийся возникновением электрических токов, называют химическо коррозией. Характерной особенностью процесса химической коррозии является, в отличие от электрохимической коррозии, образование продуктов коррозшт непосредственно в месте взаимодействия металла с агрессивной средой. Химическая коррозия подчиняется основным законам химической кинетики гетерогенных реакций и наблюдается ири действии на металл сухих газов или жидких неэлектролитов. [c.131]

    Для иыяснения механизма химической реакции и природы входящих в него отдельных элементарных процессов весьма существенное значение имеет вопрос о том, протекает ли данная реакция целиком в гомогенной (газовой) фазе и какое влияние на течение реакции оказывают гетерогенные факторы. В случае газофазных реакций таким фактором чаще всего является стенка реакционного сосуда. На значение степок реакционного сосуда (в частности, их материала и относительной величины поверхности) для кинетики химических газовых реакций впервые обратил внимание Вант-Гофф. [c.20]

    В главе V показано влияние процессов переноса массы на скорость превращения, селективность и выход для реакций, проводимых в гетерогенных системах. Так как круг вопросов, относящихся к одновременному протеканию химической реакции и явлений физического переноса, очень широк, авторы ограничились рассмотре-Hnejt лишь нескольких пз нпх, необходимых для дальнейшего изучения проблемы. [c.12]

    Химические реакции условно можно разделить на ряд групп, отличающихся какой-либо специфической особенностью. По агрегатному состоянию среды П реакции в газовой фазе 2) реакции в растворах 3) реакции в твердых средах. По агрегатному состоянию реагирующих веществ, продуктов реакции и среды химические реакции разбиваются на две группы 1) гомогенные химические реакции 2) гетерогенные химические реакции. В гомогенных химических реакциях исходные вещества, продукты реакции и среда образуют одну фазу. Химические реакции, в которых реагенты находятся в различных фазовых состояниях, а также реакции, протекающие на границе раздела фаз, называются гетерогенными реакциями. Например, Нг(г) + l2(r)-> 2Н1(г) —гомогенная реакция в газовой фазе, реакция взаимодействия СОг с СаО с образованием СаСОз, а также реакция синтеза NH3 на железных катализаторах Ыг-f-ЗН2 2ННз, протекающая на границе раздела фаз газ —твердый катализатор, являются гетерогенными реакциями. [c.531]

    Реакции в гетерогенных системах могут также применяться с целью удаления нежелательных веществ из газов. Так, для идтен-сификации абсорбции газа водой в нее добавляют какое-либо вещество, химически реагирующее с абсорбируемым газом. Некоторые подобные вещества перечислены в табл. 38, составленной по данным Теллера [c.369]

    При изучении скорости химических реакций необходимо различать реакции в гомог снных системах и в гетерогенных системах. Первые называются голюгенны.ми реакциями, вторые гетерогенными реакциями. [c.88]

    В данной работе сформулированы основные принципы моделирования циклических режимов в сложных реакторных системах. Целесообразность их применения демонстрируется на примере гетерогенного реактора низкотемпературного синтеза метанола. Модель базируется на серии допущений, которые определяют гидродинамическую обстановку в аппарате, постадийный механизм экзотермической реакции образования целевого продукта, адиабатичносгь условий проведения процесса, незначительность изменения активности катализатора, нулевой порядок реакции химического превращения, сложный состав объема катализатора. [c.64]

    Для реакций в гетерогенной системе общая скорость процесса является результатом скоростей химических реакций и скоростей массопередачи. Если массоиередача является определяющим этапом гетерогенного процесса, то зависимость от температуры очень мало заметна (рис. 1-3, 6). [c.26]

    Из-за высокой скорости газов в трубчатом реакторе следует ожидать и резкое повышение скорости химического превращения за счет перехода реакции на гетерогенно-гомогенный механизм [55, 56], поскольку в трубчатом вихревом реакторе имеются свободные объемы, необходимые для развития радикальноцепного процесса [57]. [c.126]

    При условии интенсивного перемешивания, турбулентности потоков и умеренной температуре реакции гидрирования на гетерогенном катализаторе, как правило, протекают в кинетической области. В общем случае кинетика описывается уравнением Лангмюра—Хиншельвуда для случая, когда лимитирующей стадией является химическая реакция на поверхности катализатора. Поскольку процессы гидрирования обычно осуществляются при больпюм избытке водорода, обратной реакцией можно пренебречь. Продукты реакции имеют значительно меньший адсорбционный коэ ициеят, чем сырье (А), поэтому обычно не учитываются в кинетическом уравнении. [c.11]

    Гетерогенная каталитическая реакция, осуществляемая в присутствии твердых пористых катализаторов, состоит из следующих стадий внешней диффузии реагирующих молекул из объема к частице катализатора, внутренней диффузии через норы к новерхности катализатора, адсорбции молекул поверхностью, химической реакции между адсорбированными молекулами, десорбции образующихся продуктов реакции и их диффузии в обратном направлении. Скорость всего ироцесса в целом зависит от наиболее медленной стадии, которая и является определяющей. Если определяющей стадией является сам акт химического взаимодействия между реагирующими молекулами, а процесс отвода и подвода компонентов практически ие влияет на ее скорость, то такая реакция протекает в кинетической области. Если определяющей стадией яиляется скорость подвода реагирующих веществ, то в этом случае реакция протекает в диффузионной области. Если скорости как самой реакции, так и процессов диффузии соизмеримы, то и этом случае скорость всего ироцесса является функцией кинетических и диффузионных явлений Рис. 22. 1. Занисимость коп- ц процесс протекает в переходной об-стапты скорости реакции от ттяр-гг, тсмператури. [c.596]


Смотреть страницы где упоминается термин Реакции химические гетерогенные Гетерогенные: [c.216]    [c.224]    [c.12]    [c.15]    [c.258]    [c.292]    [c.153]    [c.100]   
Учебник физической химии (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерогенная химическая реакция

Реакции гетерогенные

Химический ая гетерогенное



© 2025 chem21.info Реклама на сайте