Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина сульфиты

    Получение серной кислоты из 2% сернистого газа при 350° Платина Сульфит магния (гранулированный, зерна 2,5—3,5 мм) 299 [c.456]

    Применяют различные восстановители, такие, как натрий в спирте, сульфит натрия, водород в присутствии платины, алюмогидрид лития и амины, однако самым простым восстанавливающим агентом из всех является, по-видимому, раствор иодистого калия в метиловом спирте, эфире и уксусной кислоте [241. Гидроперекиси можно разлагать также путем нагревания с водным раствором щелочи. Выходы при этих реакциях высокие так, например, при реакции соединения I получают 80% соединения И наряду с некоторыми-кислыми продуктами [1]. [c.250]


    Выделение из аммиачного раствора, содержащего сульфит натрия [511]. К раствору, содержащему 0,02—0,16 г кобальта в виде хлорида или сульфата, прибавляют 0,3—0,4 г бисульфита натрия, 5 г хлорида аммония и 50 мл концентрированного раствора гидроокиси аммония и проводят электролиз, применяя сетчатый катод и вращающийся анод (800—1000 об/мин). Плотность тока 4—7 а на 100 см . Продолжительность электролиза — 30 мин. Осадок хорошо удерживается на электроде, но содержит следы серы (около 0,3 М2) и немного платины (0,2—0,5 мг). [c.92]

    Механизм отравления серой при концентрациях НаЗ от 1 до 100 млн , вероятно, сводится к конкуренции реагентов, адсорбирующихся на активных местах катализатора (см. разд. 6.2). На образование сульфида на поверхности может сильно влиять добавление к каталитическому металлу второго компонента. Образование прочного соединения может ингибировать сульфи-дацию поверхности. Наоборот, сильное удаление электронов из второго компонента может сделать активный металл более устойчивым к отравлению серой, например, как в случае катализаторов типа платины, нанесенной на цеолит [26]. Данные об активности и селективности для меди, сплавленной с другими активными металлами (например, никель) могут представлять большой интерес вследствие слабой тенденции меди к образованию сульфида в объеме. [c.267]

    В ряде работ, проведенных методом теории ансамблей, было выяснено, что элементарный акт каталитических окислительно-восстановительных процессов протекает на одноатомном активном центре. Этот факт был установлен для окисления сернистого газа на платине и палладии, нанесенных на силикагель и алюмогель [10] для окисления аммиака на платине, нанесенной на силикагель [И] и алюмогель [12] для окисления сульфит-ионов [13] для восстановления нитрофенола и пикриновой кислоты на платине на угле [14] для восстановления ацетона на никеле в смешанных катализаторах Ni/MgO [15] и, наконец, для разложения перекиси водорода на различных адсорбционных катализаторах [13, 14, 16—19]. В дальнейшем будет рассматриваться этот последний процесс при использовании платиновых адсорбционных катализаторов на угле [20], силикагеле [21], окиси кадмия [19] и кадмии [18]. [c.123]

    Если же элемент содержит неподеленные внешние электронные пары или неиспользованные валентные орбиты, то он может образовать поверхностное соединение с катализатором. Так, при каталитическом гидрировании на никеле, платине или палладии токсичны фосфин, сульфит-ион, органический тиол, органический сульфид [c.225]


    Можно предположить, что образующиеся на поверхности АПК во время окислительной регенерации сульфо-группы частично блокируют находящиеся рядом атомы платины. Это создает стерические затруднения при хемосорбции углеводородов и ведет к снижению каталитической активности. Показано, что сульфатная сера подавляет дегидрирующую активность моно- и полиметаллического контактов. В этом случае сульфогруппы могут уменьшать число атомов в мультиплете, необходимое для адсорбции молекулы циклогексана. [c.213]

    Сульфит-ионы можно также перевести в дитионат-ионы анодным окислением на электродах из платинированной платины [c.775]

    Медь определяется в растворе, не содержащем благородных металлов, таких как платиновые металлы, серебро, а также ртуть, висмут и других, и содержащем серную и азотную кислоты. Чтобы исключить влияние примесей азотистой кислоты, которая может окислить осадок — медь, иногда добавляют мочевину или сульф-аминовую кислоту. Для предотвращения возможного окисления осадка можно рекомендовать такл е проводить процесс при низкой температуре и малой плотности тока. Наличия хлорид-ионов следует избегать по двум причинам 1) если не добавить соответствующий анодный деполяризатор, например гидразин или гидроксиламин, то происходит анодное растворение платины и выделение ее на катоде 2) если не использовать метод регулируемого катодного потенциала [27], то Си стабилизируется в виде хлоро-комплекса, и таким образом медь(1) остается в растворе и вновь окисляется на аноде. Классическая методика [28] электроосаждения позволяет отделить медь от цинка, кадмия, кобальта, никеля, марганца и алюминия. [c.299]

    Муравьиная кислота — реактив для выделения платины и палладия, для отделения бериллия от алюминия и железа, для разделения вольфрама и молибдена уксусная кислота применяется для определения молекулярной массы веществ, для приготовления буферных растворов, как среда и ацетилирующее средство пропионовая кислота— для определения ароматических аминов антраниловая кислота — для обнаружения и гравиметрического определения кадмия, кобальта, меди, ртути, марганца, никеля, свинца и цинка бензойная кислота служит эталоном в колориметрии 2,4-диокси-бензойная кислота применяется для колориметрического определения железа, титана и других элементов лимонная кислота — в качестве сильного маскирующего комплексообразователя, для приготовления буферных смесей, определения белка в моче, как растворитель фосфатов при анализе удобрений молочная кислота — при полярографическом определении металлов, при электролитическом осаждении меди в присутствии железа, цинка и марганца нафтионовая кислота — для колориметрического определения нитрат иона, в качестве флуоресцирующего индикатора олеиновая кислота — для определения малых количеств кальция и магния, в титриметрическом анализе для определения жесткости воды пировиноградная кислота — для идентификации первичных и вторичных аминов, в микробиологии стеариновая кислота — для нефелометрического определения кальция, магния и лития сульфо-салициловая кислота — для колориметрического определения железа, в качестве комплексообразователя, для осаждения и нефелометрического определения белков трихлоруксусная кислота — как реактив на пигменты желчи и фиксатор в микроскопических исследованиях. [c.44]

    Серебро. Гидразин восстанавливает соли серебра в щелочных растворах с образованием металлического серебра [32]. Было найдено, что скорость восстановления ионов серебра сильно увеличивается в-присутствии следов коллоидных растворов золота, платины и серебра максимальное ускорение наблюдается в случае серебра, а минимальное — в случае золота [58]. Было показано также, что реакция восстановления ионов серебра гидразином крайне чувствительна к добавкам небольших количеств меди и ее солей. В растворе, содержаш,ем нитрат серебра, сульфит натрия и гидразин, через несколько минут после его приготовления нельзя обнаружить признаков присутствия восстановленного серебра. Однако если этот раствор просто перемешать чистым медным стержнем [58], то реакция восстановления происходит почти мгновенно. Добавление небольших количеств сульфата меди (II) также приводит к быстрому восстановлению. Каталитическое действие следов благородных металлов, даже в диспергированном коллоидном состоянии, свидетельствует о том, что образование кристаллических зародышей серебра происходит медленно. Если же такие зародыши имеются, то восстановление ионов серебра происходит легко. [c.131]


    Двуокись серы не применяют для осаждения золота в присутствии сопутствующих ему селена, теллура и свинца. В присутствии значительных количеств платины и палладия наблюдается их соосаждение. В этом случае необходимо переосаждение, для которого при содержании золота порядка 10 мг или более лучше всего подходит щавелевая кислота при меньшем содержании рекомендуется гидрохинон. В общем, двуокись серы наиболее удобна при осаждении больших количеств золота, так как при применении гидрохинона в фильтрате содержится много органических продуктов реакции. Источником двуокиси серы может служить сульфит натрия, но при дальнейшей обработке фильтрата присутствие натриевых солей в нем нежелательно. [c.83]

    Окраска развивается мгновенно и устойчива в водных растворах 15 дней (в неводных — 12 ч). В присутствии комплексона И не мешают определению стократные количества шестивалентных ионов вольфрама, молибдена и урана, четырехвалентных осмия, платины, тория и циркония, трехвалентных алюминия, золота, висмута, железа, лантана и родия, двухвалентных бария, кальция, кобальта, меди, железа, ртути, магния, марганца, никеля, свинца, стронция и цинка, одновалентных калия, лития и натрия, а также анионы — бромид, хлорид, ацетат, карбонат, оксалат, фторид, фосфат, иодид, нитрит, нитрат, сульфид, сульфит и сульфат. Сильно мешают цианид-ионы и ионы четырехвалентного иридия. Результаты, полученные авторами, говорят о том, что предлагаемая система весьма перспективна для фотометрического определения серебра. Недостатком системы является фотохимическая нестойкость реагента [29]. [c.50]

    При исследовании возможности селективного извлечения благородных металлов — платины, палладия, эолота, серебра, иридия — из их смесей диалкилсульфидами п продуктами их окисления (сульфоксидами и,сульфо-нами) было установлено, что эффективность экстракции уменьшается в ряду > сульфиды > сульфоксиды > > сульфоны. Палладий хорошо экстрагируется сульфидами иэ азотно-, соляно- и сернокислых растворов иридий извлекается хуже, чем палладий и платина. Золото эффективно экстрагируют из солянокислых растворов сульфидами и сульфоксидами, а серебро из азотнокислых растворов — только сульфидами [36]. [c.178]

    Титрование раствором иодида калия. Из неорганических реагентов чаще всего применяется ирдид калия. Титрование проводят в аммиачной [426, 481] или щелочной среде в присутствии 4-сульфо-амидобензойной кислоты [845]. В качестве индикаторных электродов служат серебряный или другие электроды. При анализе вторичных сплавов, содержащих палладий и платину, серебро вначале осаждают в виде хлорида, осадок растворяют в аммиаке (1 1) и титруют иодидом калия [426]. При анализе медицинских препаратов — протаргола и колларгола — железо, медь и свинец связывают винной кислотой [482]. Посредством иодида калия можно определять ультрамикроколичества серебра [755, 1141, 1445, 1669]. [c.96]

    Группа исследователей с Захтлером [389] изучала роль рения и серы при температурно-программирован-ной конверсии н. гексана в микрореакторе на платино-рениевом катализаторе (носители у-АЬОз и 5102). Сульфидирование проводили сероводородом в токе водорода с малым отношением Рнгз/Рнг Методами ИК-спектроскопии и РФЭС показано, что перед сульфи-дированием платина и рений на поверхности контакта существуют в виде сплава Р1—Ре—Ке—Р1—Ке—Р1, ведущего интенсивный гидрогенолиз н. гексана. Сульфидирование платины в составе катализатора не приводит к обычному увеличению энергии связи внутренних электронов металла Е Р14/7/з > авторы заключают, что менее 5% всей и 25% поверхностной платины превращается в сульфид. Для рения около 20% 4 5/2 сигнала сдвигается в область более высокой энергии связи, что свидетельствует об образовании сульфида рения. При сульфидировании платинорениевого катализатора гидрогенолиз н. гексана подавляется. Авторы предлагают модель поверхности сульфидированного платинорениевого катализатора  [c.142]

    X 10 Г коэфф. линейного расширения ромбической С. (а-10 град ) 4,567 (т-ра 0-13° С) 7,433 (т-ра 13-50° С) 8,633 (т-ра 50-78° С) 20,633 (т-ра 78-97° С) и 103,2 (т-ра 97—110° С) коэфф, теплопроводности (а-10 , кал/см-сек-град) 6,52 (т-ра 20° С) и 3,69 (т-ра 200° С). Электропроводность (ом -см ) 5,26-10- (т-ра 20° С) 2,08-10- 3 (т-ра 110° С) и 1,27.10- (т-ра 440° С). Твердая и жидкая С. диамагнитна. Парообразная сера (82) парамагнитна. Поверхностное натяжение (дин/см) 60,83 (т-ра 120° С) 57,67 (т-ра 150° С) и 39,4 (т-ра 445° С). Элементарная С. активно взаимодействует со многими металлами, неметаллами, неорганическими и органическими соединениями. С азотом, йодом, золотом, платиной и инертными газами непосредственно не взаимодействует. К числу важнейших относятся соединения С. с водородом, кислородом и галогенами. С водородом она образует сульфаны (сероводород HjS, двухсернистый водород HjSj, трехсернистый водород Н283 и т. д.). Водные растворы сульфанов обладают св-вами слабых двухосновных к-т. [c.364]

    Платину можно легко экстрагировать из 1—10,5 и. серной кислоты 0,01%-ным раствором дитизона в бензоле. Мешающие элементы можно устранить промыванием органического экстракта соляной кислотой или предварительной экстракцией насыщенным раствором дитизона в бензоле перед восстановлением платины(1У) двухлористым оловом. Избыток дитизона можно полностью удалить промыванием экстракта разбавленным раствором аммиака, содержащего сульфит натрия. Измеряя светопоглощение при 490 ммк (молярный коэффициент погашения s равен 26 ООО) или при 720 ммк (г = 27 ООО), можно определить содержание платины методом одноцветной окраски [494], Для определения следов платины можно применить также экстракционное титрование [1148]. [c.220]

    Бабаева с сотрудниками [228], исследуя инфракрасные спектры поглощения кристаллических комплексных соединений трехвалентного иридия и двухвалентной платины, содержащих сульфи-тогруппы, пришла к заключению, что связь металла с лигандом осуществляется через атом серы, а не через атом кислорода. Основанием для этого вывода послужило 1) установление количества частот в спектрах поглощения (количество их разное для структуры М—50з и М—ОЗОг) и 2) сравнение всех частот валентных колебаний связей 50 с колебаниями связей в некоординированном сульфит-ионе. Структуре М—ЗОд со связью М—5 соответствует увеличение всех частот валентных колебаний связей 80 по сравнению с некоординированным сульфит-ионом. [c.49]

    Аналогично сульфат-иону появлению люминесценции способствует фосфат-ион. Сульфит- и тиосульфит-ионы не образуют люминесцирующих соединений и, являясь энергичными комплексооб-разователями, мешают открытию платины в виде [Р1 ( SN2H4) 4]804 (если они присутствуют, их разрушают, подкисляя раствор сильными кислотами). Люминесцирующие комплексы с платиновыми соединениями образует и тиоацетамид, но свечение слабое и кристаллы более мелкие. [c.347]

    Т 6дйда приблизительно до 1% иодида калия и затем остается практически постоянной Окрашенные растворы подчиняются закону Бера. Реакция чувствительна, но ей мешают многие вещества. Платина, палладий и в меньшей степени сурьма и олово-дают с иодидами окрашенные соединения. Металлы, дающие нерастворимые иодиды, естественно, должны отсутствовать или присутствовать в количествах, не образующих осадка. Иодиды свинца и таллия захватывают много висмута, но иодиды меди и серебра значительно слабее окклюдируют висмут. Окислители, например железо (1П), выделяющие иод, следует восстановить или же связать выделенный ими иод,.-Для этого часто применяют сернистую кислоту или сульфит, но следует избегать большого избытка последних, так как при достаточной концентрации сам сульфит образует с иодом желтую окраску, вероятно вследствие образования иодосуль-финовой кислоты Л(Н50)2. [c.175]

    Палладий(П) и золото(1П) хорошо извлекаются сульф-оксидами из азотно- и солянокпслых растворов, причем из концентрированных растворов соляной кислоты они извлекаются диоктилсульфоксидом в виде галогенидных анионов с протонированными молекулами экстрагента [13]. Платина(1У) заметно экстрагируется Орх= =3,2) лишь при высоких концентрациях соляной кислоты, из азотнокислых растворов извлечение платины не превышает 40% [32]. С высокими коэффициентами распределения палладий извлекается диоктилсульфоксидом из растворов хлорной кислоты. Серебро и ртуть извлекаются сульфоксидами хуже, чем сульфидами [28]. Особенно резко снижается экстракция серебра, так что становится возможным разделение серебра и ртути. [c.20]

    Обычно в сернистых красителях в виде примеси или в виде добавок, введенных при установлении на тип, содержатся свободная сера, сульфид, сульфат, тиосульфат, хлорид и карбонат натрия, а также серусодержащие органические соединения, образующиеся в качестве промежуточных продуктов при осернении и отличающиеся от подлинных красящих веществ. Исходные продукты, совершенно не подвергшиеся осернению, едва ли могут присутствовать в готовом красителе. Содержание чистого красителя в продажных сернистых красителях определяется электролизом раствора красителя в водном сульфите натрия до полного окисления и взвешива нием осадка красителя для этой цели наиболее пригодны платино вые электроды и ток в 3 а, пропускаемый в течение 30—75 мин Предложено также осаждать краситель из водного раствора сер нистого натрия с помощью основного красителя, промывать осадот установленным способом и взвешивать его, а также применять колориметрические методы, основанные на окислении воздухом красителя в водном растворе сернистого натрия до достижения максимальной интенсивности цвета. [c.1241]

    Среди органических реагентов широко известны пирокатехин, 8-оксихинолин, роданин, тиороданин и др. В определенных условиях эти реагенты селективно взаимодействуют с различными ионами и поэтому используются в аналитической химии этих элементов. Недостатком некоторых реагентов по отношению к отдельным ионам является ступенчатость комплексообразования, одновременное суш,ествование в растворе нескольких комплексов различного состава, наличие максимума светопоглощения, используемого для фотометрического определения элемента, в коротковолновой области спектра. Использование арилазогруппы как аналитико-ак-тивной в большинстве случаев должно исключать ступенчатость комплексообразования из-за стерических препятствий, сдвигать максимум светопоглощения в длинноволновую область, увеличивать устойчивость комплексов и молярные коэффициенты погашения. Например, комплексы галлия и алюминия с пирокатехином бесцветны. 4 (2-Тиазолилазо)пирокатехин имеет максимум светопоглощения при 430 нм, его соединение с алюминием — при 520 нм (е = 2,3-10 ), с галлием— при 530 нм (г = 2,9-10 ) [305]. Рода-нин-(5-азо-1)-2-окси-3-сульфо-5-хлорбензол в 2 раза чувствительнее (е = 10°) на платину(П), чем известный до настоящего времени самый чувствительный реагент на платину — я-нитрозодиметил-анилин [43]. Соединения вольфрама с пирокатехином имеют е = = (6н-7)-10 и максимум светопоглощения при 295 нм, а соединение вольфрама с 4-фенил-5-бензоилтиазолилазопирокатехином имеет е = 7,1-10 и максимум светопоглощения при 540 нм [262]. В табл. 27 представлены основные типы азосоединений данного класса и указаны ионы, с которыми реагенты взаимодействуют. [c.80]

    По снижению каталитической волны водорода в системе N1 — цистеин в результате связывания цистеина другими металлами в каталитически неактивный комплекс предложено определять многие металлы [116]. Аналогичный прием был применен для определения 5Ь " с использованием в качестве каталитически активного комплекса 5-сульфо-8-меркапто-хинолината кобальта (II) [117]. Железо и хром определяли по каталитической волне водорода в системах Ре — а,а -дипиридил и Сг —а,а -дипиридил [118]. Диметилглиоксиматные комплексы N1 и Со , также катализирующие выделение водорода, были использованы для раздельного определения этих металлов [119—121]. Аналогичным образом ведут себя комплексы N1 и Со" с а-фурил-оксимом, ниоксимом, цистеином и тиогликолевой кислотой [122, 123]. Диэтилдитиокарбаминатный комплекс меди(II), дающий каталитическую волну водорода, применяли для определения Си [124]. Комплекс Р с ЭДТА катализирует выделение водорода, этот эффект был использован для определения платины в присутствии родия и иридия [125]. Родий определяли по каталитической волне водорода, вызванной комплексом этого металла с тиосемикарбазидом [126]. Каталитическую волну водорода в присутствии применили для определения этого металла [127]. [c.326]

    Соответствующим образом замещенные трехкоординационные соединения серы, например сульфинаты, сульфоксиды и сульфил-имины, а также соли сульфония, могут быть получены в оптически активной форме [1,2]. Стереохимия сульфинатов и в особенности сульфоксидов достаточно детально изучена. Прежние работы по разделению сульфоксидов [1,2], в которых использовались другие функциональные группы в молекуле [3], способные реагировать с такими разделяющими агентами, как алкалоиды или камфорсульфоновая кислота, были пополнены более общим методом разделения с использованием хирального комплекса платина (II) — а-метилбензиламин [4]. Кроме того, в настоящее время в таких исследованиях важную роль играет непосредственный стереоселективный синтез (подробно об этом см. в разд. 8-1.4) [5-101. [c.391]

    Например, при помощи радиосеры характеризующейся сравнительно медленным р-распадом (Г = 88 дн), удалось непосредственно доказать неравноценность обоих атомов серы в тиосульфат-ионе, отсутствие полной экранированности серы в сульфит-ионе, наличие такой экранированности в сульфат-ионе и т. д. Подобным же образом было непосредственно доказано наличие обмена ионными аддендами в комплексах платины. Интересно, что в ионах типа [Р1Х4]" параллельно с увеличением устойчивости внутренней сферы по ряду С1 —Вг —1 —СЫ скорость обмена не уменьшается, а возрастает. [c.570]

    Предложен метод определения родия в виде Rh l при этом платину переводят в бесцветное соединение Р1(50з) , добавляя сульфит Чувствительность этого метода невелика. [c.699]


Смотреть страницы где упоминается термин Платина сульфиты: [c.102]    [c.57]    [c.174]    [c.196]    [c.80]    [c.222]    [c.110]    [c.110]    [c.259]    [c.357]    [c.297]   
Руководство по химическому анализу платиновых металлов и золота (1965) -- [ c.45 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.398 , c.521 ]




ПОИСК





Смотрите так же термины и статьи:

Сульф

Сульфаны

Сульфиты

иод сульфо



© 2025 chem21.info Реклама на сайте