Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклогексан напряжение в цикле

    Термодинамические исследования и молекулярно-механические расчеты показывают, что средние циклы имеют более высокие энергии напряжения, чем циклогексан и кольца, большие, чем циклододекан [21 в, 33, 48]. Ранее мы видели, что главным источником напряжения в малых кольцах является искажение углов связей в пяти- и шестичленных кольцах, где углы почти нормальны, главные источники напряжения — взаимное положение связей, т. е. эффект заслонения. В средних кольцах увеличение напряжения связано с сочетанием обоих этих эффектов, а также с дополнительным фактором, обусловленным трансаннулярным взаимодействием метиленовых групп, находящихся на противоположных сторонах кольца в непосредственной близости друг к Другу. Рентгеноструктурные исследования показали, что валентные углы в восьми-, девяти- и десятичленных циклических соединениях больше тетраэдрических, и группы в 1,2-вицинальных положениях частично находятся в заслоненном положении [44]. Эти составляющие напряжения цикла зависят друг от друга, и молекула принимает ту равновесную конформацию, в которой суммарные дестабилизующие взаимодействия минимальны [51]. [c.94]


    Циклогексан. Шестичленный цикл не может быть плоским из-за наличия сильных углового и торсионного напряжений в плоском цикле внутренние валентные углы были бы равны 120°, а все атомы водорода находились бы в заслоненном положении. [c.63]

    На второй вопрос мы не имеем пока ответа, который казался бы нам удовлетворительным, и потому он здесь не обсуждается. Что касается первого вопроса, то он вызывает ряд соображений. Прежде всего, циклопентан едва ли следует считать наименее напряженным циклом, как это делалось до сих пор. Кистяковский впервые обратил внимание на то, что теплота гидрирования циклопентана меньше, чем циклогексана, хотя конечные продукты гидрирования — циклопентан и циклогексан — не должны были бы отличаться друг от друга каким-либо добавочным напряжением. Однако в молекуле циклопентана такое добавочное напряжение легко допустить, представив себе, что все атомы водорода в нем, расположенные по одну сторону кольца, смотрят в затылок друг другу, и благодаря этому между ними создается наибольшее отталкивательное [c.230]

    Известно, что в циклогексане за счет напряжения цикла становится невозможным плоскостное расположение атомов углерода. Поэтому молекула может существовать либо в форме ванны ( лодки ), либо в форме кресла  [c.212]

    Циклогексан является циклоалканом с наименьшим напряжением цикла (байеровским напряжением) тетраэдрический угол у него практически сохранен (111,5°), атомы углерода не лежат в одной плоскости. Циклогексан обычно существует в форме кресла (рис. 2.7), в которой все заместители находятся в заторможенных конформациях. При этом заместители разделяются на две группы шесть связей параллельны оси симметрии третьего порядка, соответствующие заместители располагаются по три ниже и выше плоскости их называют аксиальными и обозначают символом а. Остальные шесть заместителей лежат в плоскости, образующей как бы экватор молекулы их называют экваториальными и обозначают символом в. [c.122]

    Саксе и Мор высказали предположение о неплоскостном строении циклов с числом больше пяти. При таком расположении атомов углерода можно построить модели циклических соединений с числом членов, равным шести и более, без деформации валентных углов атома углерода. Однако впоследствии, при определении теплот сгорания цикланов, было установлено, что минимальной теплотой сгорания на группу СНг обладает циклогексан. С увеличением или уменьшением числа членов в цикле теплота сгорания на группу СНг возрастает. Соответственно изменяется и напряженность цикла, так как разность теплот сгорания циклического соединения и соответствующего ему соединения с открытой цепью является мерой напряженности циклов. Ниже приведены данные о напряженности некоторых циклов  [c.147]


    Судя по величинам байеровского напряжения, наименьшей энергией должен был обладать циклопентан, наибольшей — циклопропан и макроциклы. Это качественно более или менее согласовывалось с имевшимися в то время данными, поскольку макроциклы не были известны. Действительно, кольцо циклопропана способно размыкаться под действием галоидоводородов и брома, легко каталитически гидрируется циклобутан значительно устойчивее циклопентан, как и следовало ожидать, чрезвычайно устойчив, и прочность его цикла напоминает прочность обычной парафиновой цепи. Единственным исключением представлялся циклогексан этот цикл устойчив не менее циклопентанового и образуется он в реакциях циклизации, пожалуй, легче всех других. Синтезировать средние циклы (С —Си) оказалось довольно трудной задачей, только циклогептан был получен В. В. Марковниковым сравнительно рано — в 1893 г. Трудность их получения, казалось, подтверждала правильность теории Байера. [c.493]

    Различия в поведении первых двух представителей циклопарафинов от остальных их представителей объясняются теорией напряжения Байера (стр. 207). Угол между направлениями сил химического сродства в циклопропане равен 60° (как угол в равностороннем треугольнике), т. е. очень сильно отличается от обычного угла — 109°28. Валентные углы в циклобутане, если представить его молекулу лежащей в одной плоскости, равны 90° (как углы в квадрате). Большое отклонение от нормальных углов обусловливает напряжение циклов и легкость их разрыва. Валентные углы в циклопентане и циклогексане гораздо ближе к обычному углу — 109°28, вследствие чего здесь напряжение гораздо меньше и кольца циклопентана и циклогексана являются наиболее прочными. [c.495]

    Этот цикл очень сильно напряжен, энергия его напряжения вычислена и указана в табл. 15-2. Оптимальный угол между связями, образуемыми углеродом, равен 109" ( тетраэдрический угол), однако в данном трехчленном цикле углы между связями равны 60°. Циклобутан и циклопентан напряжены меньше, а шестичленные циклы со структурой циклогексана встречаются очень часто. Циклогексан может иметь две различные структуры, называемые конформациями (формами) ванны и кресла (рис. 21-9). Конформация ванны менее устойчива из-за того, что в ней сильно сближены два диаметрально расположенных атома водорода. Сахара и другие вешества, молекулы которых имеют фрагменты, подобные цикло-гексану, почти всегда включают их в форме кресла. [c.285]

    Однако, если бы циклогексан имел плоское строение, в нем должно было бы появиться напряжение, обусловленное на этот раз не уменьшением, а увеличением (по сравнению с тетраэдрическим) валентных углов у атомов углерода на 1Г (в циклогептане на 20°, в циклооктане на 26°). Такое напряжение должно было бы возрастать с увеличением размера цикла. [c.478]

    Еще более прочен циклогексан. В нем кольцо образовано без всякого напряжения. Это объясняется тем, что в шестичленном цикле атомы могут свободно располагаться не в одной, а в разных плоскостях в пространстве. На рис. 28 представлена модель углеродного цикла молекулы циклогексана в двух возможных пространственных состояниях (конформациях). В обоих случаях в шести- [c.311]

    Нормальный угол между двумя валентностями насыщенного атома углерода (с гибридизацией зр ) равен 109°28. Как установлено Байером в 1885 г., в циклоалканах валентности углерода отклоняются от их нормальной ориентации, вследствие чего возникает напряжение в цикле, энергия молекулы возрастает. В трехчленном кольце циклопропана каждая валентность имеет отклонение от нормального направления на 24°44, в четырехчленном-на 9°44, в циклопентане-на 0°44, в циклогексане-на 5° 16, но молекула циклогексана не является плоской, и в ней отсутствует напряжение. [c.51]

    Устойчивость различных циклов видна из сравнения теплот сгорания (табл. 1.67). Так, теплота сгорания наиболее устойчивого циклоалкана — циклогексана в расчете на группу СН2 (659,03 кДж/моль) почти совпадает с теплотой сгорания группы СН2 алифатических углеводородов. Циклопентан менее устойчив, чем циклогексан. Кроме байеровского в ряде случаев проявляется напряжение заслонения (торсионное, или питцеровское), обусловленное вынужденным отклонением от наиболее выгодной нечетной конформации. [c.135]

    Во-вторых, хотя и сообщалось об образовании диметилциклобутанов при действии влажного бромистого алюминия на циклогексан [318], однако есть основания сомневаться в правильности идентификации этих соединений. Рассмотрение энергий напряжения в циклических углеводородах вместе с приблизительной оценкой изменения энтропии привело к заключению, что количество циклопропановых и циклобутановых изомеров цикло-гексана в равновесной смеси не может превышать 0,01% [266]. Следовательно, мало вероятно, что присутствие этих изомеров является источником ошибок в определении равновесия метилциклопентан — циклогексан. Наиболее правдоподобно, что неточно калориметрическое определение изменения энтропии. [c.146]

    Теория напряжения Байера в применении к большим циклам неверна поскольку циклогексан и высшие циклоалканы представляют собой складчатые циклы, в которых валентные углы имеют нормальные или близкие к нормальным значения. Трудности, возникающие при синтезе больших циклов из соединений с открытой цепью, обусловлены главным образом малой вероятностью того, что реакционноспособные группы на значительно удаленных концах длинной углеводородной цепи сблизятся, сделав, таким образом, циклизацию возможной (такие реакции сопровождаются значительным уменьшением энтропии, стр. 84—85). Как правило, взаимодействуют реакционноспособные группы, находящиеся на концах различных молекул, несмотря на 1 0 что реакции проводятся в очень разбавленных растворах. [c.110]


    Циклопентан и циклогексан вполне устойчивы и похожи друг на друга и на соответствующие алифатические предельные углеводороды. Сравнительная прочность циклов объясняется теорией напряжения Байера. [c.122]

    Циклогексан. Для объяснения устойчивости циклогексана (и больших циклов) было высказано предположение об их неплоскостном строении (X. Закс и Е. Мор), при котором в циклогексане четыре атома углерода расположены в одной плоскости, а два атома — в другой. В этом случае для циклогексана возможны формы кресла и ванны (рис. 63), в которых сохраняется тетраэдрическое расположение атомов углерода и отсутствует напряжение. [c.381]

    Более сложные циклы, как и циклогексан, образуются бр существенного искажения направлений валентностей (без байеров-ского напряжения) и обладают высокой устойчивостью. [c.279]

    Обычное напряжение цикла в циклогексане почти отсутствует. Распространение подхода по схеме ЭНОЦ на тракс-декалин и тракс,1<ггс,транс-пергидроантрацен приводит к отрицательным энергиям напряжения —2,7 и —8,0 кДж/моль, соответственно. На примере этих молекул были получены, таким образом, первые указания на то, что подход ЭНОЦ недостаточен для конденсированных и мостиковых циклогексановых систем. В случае адамантана Шлейер объяснил напряжение в молекуле стерическими затруднениями и напряжением углов, хотя углы ССС близки к идеальному значению, которое не встречается в ненапряженных алканах. Подход на основе рассмотрения единственной конформации не приводит к отрицательным напряжениям в трокс-декалине и оанс,1 ггс,транс-пергидроантрацене, однако с его помощью нельзя бъяснить значения энергии напряжения в адамантане и его производных. Чтобы полностью понять происхождение напряжения в [c.119]

    Важные данные о зависимости прочности комплексов р. з. э. от состава и строения комплексообразующего реагента вытекают из количественного физико-химического изучения равновесий, характеризуемых константами устойчивости комплексов. Для этой цели в наших исследованиях с А. М. Со-рочан были использованы методы [8—10] потенциометрии, растворимости, статического ионного обмена и ионообменной хроматографии. Результаты этих работ в сочетании с литературными данными по константам устойчивости не только полностью согласуются с ранее сформулированными закономерностями, но и позволяют получить новый дополнительный материал. Заслуживают упоминания особо высокая прочность комплексов р. з. э. с пятичленными циклами, что имеет место у многоосновных карбоновых кислот с карбоксильными группами, расположенными у соседних атомов углерода (например, лимонная кислота), и у комплексонов — соединений с ими-ноуксусными группировками — N — СНз — СООН, в которых атомы р. з. э. вступают в координационную связь с атомами кислорода и азота. Этим, а также значительным числом пятичленных циклов объясняется, в частности, предельно высокая устойчивость комплексов р. з. э. с этилен- и циклогексан-диаминтетрауксусными кислотами. Уместно отметить, что тонкие геометрические различия комплексонатов р. з. э. объясняют ход зависимости устойчивости их от порядкового номера элемента. По-видимому, геометрия комплексов р. 3. э. с ЭДТА и ЦДТА такова, что от лантана к лютецию в связи с лантанидным сжатием монотонно падает напряженность пятичленных колец, что и объясняет монотонное возрастание прочности соответствующих комплексов. Наоборот, у соединений, например, с оксиэтилиминодиуксус-ной кислотой минимальное напряжение цикла падает на средние элементы (иттрий, диспрозий и пр.), вследствие чего прочность комплексонатов тяжелых иттриевых и особенно легких цериевых элементов оказывается более низкой. [c.277]

    Изменение валентных углов лишь одна из причин, обусловливающих нена-пряженность или напряженность циклов. Последняя связана и с различным пространственным (конформационным) состоянием молекул, присущим не только циклогексану, ни и другим, в том числе цяги- и четырехчленным, циклам. Раздел органической химии, в котором изучается пространственное состояние молекул, называется конформационным анализом. Развитие его позволило объяснить свойства многих соединений, особенно биологически активных. Это вопросы выходят за пределы данного курса. [c.98]

    Одним из первых успехов только что нарождавшейся стереохимии Циклических соединений явилось создание теории напряжения Байера, успешно и красиво объяснившей неустойчивость циклопропана и циклобутана и высокую стабильность соединений ряда цикло-пентана. Байер обратил внимание на то, что в трехчленных и четырехчленных кольцах по очевидным геометрическим причинам валентные углы углерода (109°28 ) должны уменьшиться до 60 и 90°, соответственно, создавая в результате значительное напряжение молекул. Наоборот, в пятичленном кольце циклопентана по той же причине углы почти точно соответствуют валентному углу. Однако дальнейшее развитие теории встретилось с неожиданными трудностями. Плоские, по представлениям Байера, кольца циклогексана, циклогептана и т. д. должны были бы характеризоваться растущим с увеличением кольца напряжением, но оказалось, что они весьма устойчивы. Особенно устойчивыми оказались циклогексан и его производные, а также синтезированные Ружичкой соединения с числом атомов С в цикле от 15 до нескольких десятков. По теории напряжения существование таких соединений вообще считалось невозможным. Правда, в дальнейшем Заксе и Мор показали, что циклогексан может быть свободен от байеровското напряжения, если его атомы углерода расположены не в плоскости, а в пространстве. Они предложили две такие пространственные модели, получившие названия кресла XI и ванны, или лодки, XII. Казалось бы, эти формы совершенно равноценны и должны отвечать двум изомерным цик-логексанам, которые, возможно, трудно или совсем неразделимы. Однако в дальнейшем различными физическими методами (с помощью спектров комбинационного рассеяния [571, ИК-спектроскопин [c.37]

    Аналогично этому можно построить также неплоские ненапряженные шестичленные циклы, однако они будут более изогнуты, чем циклогексан. Это ведет к возникновению добавочного фактора нестабильности комплексных соединений с такими циклами. Аксиальные лиганды, расположенные перпендикулярно к той части цикла, которая содержит донорные атомы, препятствуют выходу цикла из экваториальной плоскости, т. е. его изгибанию. Из-за этого эффекта, который называют / -напряжением, шестичленные несопряженные циКлы менее устойчивы, чем пятичленные. Это можно показать, сравнив константы образования KOMnjieK oB и с этилендиамином (еп) и триметилендиамином (trim), в которых реализуются соответственно пяти- и шестичленный циклы  [c.69]

    ЦИКЛОАЛКАНЫ (циклопарафины, иолиметилепы, цик-ланы), насыщенные алициклич. углеводороды общей ф-лы СпНгп, где к > 3. Плохо раств. в воде, легко — в орг. р-рителях. Обладают наркотич. действием. Устойчивость циклов возрастает от Сз к Сб, затем до i2 несколько понижается (см. Напряжение молекул). По хим. св-вам Ц. начиная от s подобны предельным алиф. углеводородам циклопропан по склонности к электроф. присоединению напоминает непредельные углеводороды, но пассивнее их. Ц. вступают также в р-ции с изменением величины цикла, раскрытием цикла и трансаннуляриой циклизации. Получ. циклизация дигалогенидов гидрирование циклоалкенов или аром, соед. из функционально замещенных Ц. Пяти- и шестичленные Ц. содержатся в иефти. См. также Циклопропан, Циклопентан, Циклогексан. [c.679]

    Применение такого подхода к циклогексану требует, чтобы внутренпий угол между связями в этом соединении составлял 120° (внутренний угол шестиугольника), и предполагает, что циклогексан будет обладать большим напряжением, чем циклопентан. Однако экспериментальные данные, приведенные в табл. 7-2, не согласуются с этим выводом. Возникшее противоречие является следствием того, что теория Байера базируется на допущении о плоском строении всех циклических систем. На самом деле только циклопентан и циклы с меньшим числом атомов можно рассматривать в нервом приближении как плоские поэтому трудно ожидать, чтобы циклогексан и большие циклы следовали предсказаниям, сделанным па основе теории [c.268]

    Ц. менее устойчивы, чем их ациклич. аналоги. Мерой относит, устойчивости Ц. служит энергия напряжения (см. Напряжение молекул), значения к-рой приведены в табл. в расчете на одну связь С — С. Устойчивость Ц. увеличивается от циклопропана к циклогексану (последний - полностыо ненапряженное соед.), затем падает к циклононану и снова возрастает от циклодекана и далее в область больших циклов. [c.365]

    В 1890 г. Саксе впервые обратил внимание на то, что циклогексан необязательно должен иметь плоское расположешхе атомов цикла. Однако большинство ученых продолжало придерживаться прежних взглядов, до тех пор пока в 1919 г. Мор не обосновал пространственное расположение атомов в циклогексане и пе предложил для этого соединения две возможные модели форму кресла и форму ванны , свободные от байеровского углового напряжения. [c.526]

    Как уже говорилось, термодинамическая устойчивость циклов различна. Об этом можно судить до теплотам сгорания (АЯ), рассчитанным на одну метиленовую группу (табл. 53). Наибольшие теплоты соответствуют циклопропану, затем циклобутану, в которых велики искажения валентных углов (угловое напряжение) и торсионное напряжение (стр. 527). Большие циклы обладают довольно близкими значениями АЯ. Однако и здесь имеются довольно характерные отличия. Наименьшим запасом энергии из первых де< яти членов ряда обладает циклогексан. Более высокая энергия циклопентана объясняется торсионным напряжением, возникающим, как уже говорилось, в результате пространственного взаимодействия атомов водорода, которые находятся в невыгодных, заслоненных, положениях. В средних циклах (Се—С ) теплота сгорания на метиленовую группу немного больше, чем в циклогексане, вследствие другого типа напряжения, небайеровокого (взаимодействие атомов водорода, находящихся по разным сторонам кольца) с этим эффектом мы встретимся еще в разделе, специально посвященном большим и средним циклам. Наконец, энергия макроциклов наименьшая и близка к энергетическому уровню нециклических парафинов с нормальной цепью. [c.534]

    Горб напряжения в средних циклах. Из табл. 2.10 видно, что значения ЭНЕК быстро уменьшаются от циклопропана к циклогексану, затем опять возрастают, достигая максимума для циклононана и циклодекана, после чего снижаются почти до постоянного значения. Энергии напряжения и энтальпии циклизации для циклоалканов Сд—С13 фактически являются приближенными, поскольку величины АЯ (газ.) рассчитаны, исходя из теплот испарения или сублимации, ошибка в определении которых может достигать 10 кДж/моль и более. Тем не менее, нет никаких сомнений, что средние циклоалканы являются более напряженными, чем циклогексан и циклодекан. Причины этого были обсуждены выше. [c.118]

    Аналогичная, но менее резко выраженная картина напряжения С-С-связей наблюдается в щпслобутане. Разница между линиями перекрывания (см. рис. 10.1) 5р -орбиталей соседних атомов (пунктирные линии) и линиями, соединяющими ядра атомов (сплошные линии), составляет только 19°. Поэтому из-за напряжения ст-связей циклобутан менее устойчив, чем циклопентан и циклогексан, в которых ст-связи не напряжены. Но он намного устойчивее циклопропана, если речь идет о римыкании цикла. В связи с пониженным перекрыванием связывающих орбиталей в циклопропане и циклобутане энергия С-С-связи в них на 50—40 кДж/моль ниже, чем в алканах, тогда как энергия С-Н-связей такая же, как вторичная С-Н-связь в алканах. [c.324]

    Из данных табл. 2.1.7 можно заключить, что прп переходе от циклопропана к циклогексану стабильность циклоалканов вначале увеличивается, затем к циклононану надает и в области больших циклов снова достигает максимума. Особенно высоки энергии напряження у малых и средних циклов. [c.208]

    Углы между С—С связями в н-алканах составляют 109°28, и понятно, что в циклических структурах углы не должны сильно отличаться от этого значения. Ближе всего к этому значению они в пяти- и шестичленных циклах, поэтому такие структуры более распространены, например, циклогексан aHij является одним из наиболее часто используемых инертных растворителей (см. разд. 7.3). В трех- и четырехчленных циклах углы существенно меньше, такие молекулы излишне напряжены, поэтому при многих реакциях циклы раскрываются, переходя в линейные структуры. Начиная с циклогексана, циклы становятся неплоскими, и это снимает напряжение структур. [c.405]

    Трех- и четырехчленные циклы сильно напряжены (энергия напряжения для циклопропана 27,6 ккал-моль", циклобутана 26,4 ккал-моль ", циклопентана 6,5 ккал-моль" и циклогексана — 0). У средних циклов напряжение возрастает, не достигая, однако, величины, характерной для циклопропана. Циклопентан и циклогексан не напряжены вследствие неплоского строения. Реакционная способность средних циклов не отличается от реакционной способности соединений с пяти- и щестичленными циклами (теория Ззксе — Мора). [c.199]

    Что касается механизма размыкания пентаметиленового- цикла, то в нашей интерпретации, как и в интерпретации, основанной на секстетно-дублетной модели, имеются существенные затруднения. Принятие сек-стетно-дублетной модели никак не объясняет образования продуктов размыкания разветвленного строения. Мы воздерживаемся от ответа на вопрос о том, почему ненапряженные системы, как циклогексан и другие, не размыкаются с такой же легкостью, как циклопентан, в котором напряжения связей также невелики. Однако в пятичленном цикле, как и в напряженных системах цИклобутана и циклопропана, отсутствует свободное вращение около углеродных связей, и, вследствие этого, ему приписывается дополнительная к байеровскому натяжению энергия противостояния водородных атомов . Мы не вникаем пока в существо и характер этого эффекта и в его влияние на свойства молекул, но отмечаем еще один признак сходства пентаметиленового цикла с напряженными системами циклобутана и циклопропана. [c.260]

    Среди ароматических соединений, присутствуюш,их в реактивных топливах, особое место занимают нафтено-ароматические углеводороды. Особенность химических и физических свойств этих углеводородов заложена в их строении. Например, с помощью рентгенографического метода Китайгородскому удалось установить межатомные расстояния в аценафтене [102]. Оказалось,что длина алифатической связи С—С в этом соединении доходит до 1,64 0,04 А, т. е. на 0,10 А больше обычной. Это удлинение объясняется напряжением если бы расстояние между двумя метиленовыми группами в аценафтене было меньще, деформировались бы другие углы и связи. Поэтому следовало ожидать, что именно здесь нафтеновый цикл при окислении разрушится. Однако, как показали исследования автора, разрушение цикланового кольца происходит в другом месте. Напряжено циклановое кольцо и в тетралине, поскольку длина С=С связи в ароматических структурах равна 1,39 А, а в циклогексане — 1,53 А. [c.28]

    Хотя делать заключения на основании столь малых различий представляется занятием опасным, особенно если принять во внимание ошибки эксперимента, меньшее значение АО -тв для гетероцикла может найти объяснение с привлечением данных по внутренним барьерам вращения в аналогичных ациклических соединениях [14]. Барьер конформационных взаимопереходов в циклогексане является преимущественно результатом торсионного напряжения в переходном состоянии (5), имеющем конформацию полукресла, где имеет место заслоненное расположение около связи С-2,С-3, а торсионные углы у связей С-1,С-2 и С-3,С-4 малы. Напротив, торсионные углы у связи С-5,С-6 близки к 60°. Замещение б-СНз-группы на 0-атом оказывает лишь малое влияние на величину энтальпии образования формы полукресла, однако в случае замещения на 0-атом 2-СН2-группы (или, в меньшей степени, 1-СНг-группы) наблюдается сильный эффект. Так, барьер инверсии кольца в тетрагидропиране может быть существенно понижен по сравнению с циклогексаном, особенно в случае переходного состояния (6). Сходный подход показал, что барьер инверсии для 1,4-диоксана примерно на 3,8 кДж-моль ниже, чем для циклогексана, причем интересно отметить, что спектроскопия Н-ЯМР при изменяющейся температуре дает значение свободной энергии активации взаимопревращения кресло — искаженная ван-триоксане инверсия цикла протекает с очень большой скоростью на (твыст-конформация), равное 39,3 кДж-моль [15]. В 1,3,5,  [c.368]


Смотреть страницы где упоминается термин Циклогексан напряжение в цикле: [c.104]    [c.110]    [c.96]    [c.454]    [c.89]    [c.321]    [c.1793]    [c.162]    [c.103]    [c.110]    [c.55]   
Основы органической химии (1968) -- [ c.110 ]

Основы органической химии 1 Издание 2 (1978) -- [ c.132 ]

Основы органической химии Часть 1 (1968) -- [ c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Напряжение в цикле

Циклогексан



© 2025 chem21.info Реклама на сайте