Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Винные кислоты оптически активные

    Кроме пары антиподов, оптически активных винных кислот, существует еще третий пространственный изомер — мезовинная кислота. Ее пространственное строение выражается формулой  [c.266]

    Объяснить причину возникновения изомерии только с помощью структурных формул Кекуле невозможно. Первый шаг в этом направлении был сделан в 1848 г. французским химиком Луи Пастером (1822—1895). Кристаллизуя из водного раствора винограднокислый натрий-аммоний при комнатной температуре, Пастер обнаружил, что образованные в этих условиях кристаллы асимметричны. Причем наблюдаются две формы кристаллов правая и левая (при одинаковой ориентации кристаллов небольшая характерная грань у одних кристаллов находилась слева, а у других — справа). Пастер сумел под увеличительным стеклом при помощи пинцета тщательно разделить оба типа кристаллов. Свойства растворов этих кристаллов оказались полностью идентичными исключение составляла только их оптическая активность — растворы обладали противоположным вращением. Превратив кристаллы, обладающие в растворе правым вращением, в кислоту, Пастер обнаружил, что получил известную ранее природную правовращающую винную кислоту, из кристаллов другого типа получался ее оптический изомер — ранее не известная левовращающая винная кислота. Отсюда Пастер сделал вывод, что в кристаллах виноградной кислоты содержится равное количество молекул право- и левовращающих винных кислот и именно поэтому виноградная кислота оптически неактивна. Соединения, подобные виноградной кислоте, стали называть рацемическими (от латинского названия виноградной кислоты). [c.87]


    Кроме мезовинной кислоты, существует и вторая оптически неактивная модификация — рацемическая винная кислота, обычно называемая виноградной. Как видно из таблицы 13, свойства рацемата заметно отличаются от свойств составляющих его компонентов. Это доказывает, что рацемат является не простой смесью оптически активных форм, а их молекулярным соединением. [c.267]

    Для расщепления рацемических аминов нужны асимметрические реактивы кислотного характера. Выбор таких реактивов меиее богат по сравнению с используемыми для расщепления рацемических кислот (с помощью алкалоидов и синтетических оснований). Наиболее часто применяемым реактивом кислотного характера является (- -)-винная кислота. Типичный пример ее использования — получение оптически активного а-фенилэтиламина. Если смешать рацемический амин с (-4-)-винной кислотой в теплом метанольном растворе, то выпадает почти чистая диастереомерная соль, содержащая (—)-амин [38]. Если же вместо метанола в качестве растворителя использовать воду, то удается получить амин лишь незначительной оптической чистоты. Перед нами наглядный [c.98]

    Оптически активные вещества подразделяют на два типа 1) твердые вещества—кристаллы (кварц, хлорат калия) 2) растворы (глюкоза, морфин, винная кислота). Вещества первого типа используют в микроскопической технике. Вещества второго типа являются предметом поляриметрического анализа (поляриметрии). [c.258]

    Сравнительно недавно обратили внимание на особенности симметрии оптически активных веществ, остававшиеся без внимания в течение почти целого столетия. Понятие асимметрический вполне точно описывает атом углерода с четырьмя разными заместителями здесь действительно нет ни одного элемента симметрии — ни центров, ни осей, ни плоскостей симметрии. По аналогии привыкли считать лишенным элементов симметрии любое оптически активное соединение, однако более внимательное рассмотрение показывает, что это не так. Все асимметрические молекулы могут существовать в оптически активных формах, но, оказывается, есть среди оптически активных веществ и такие, молекулы которых... не асимметричны Рассмотрим в качестве примера проекционную формулу оптически активной винной кислоты в ней есть один элемент симметрии — ось в центре молекулы, проходящая перпендикулярно к плоскости чертежа (в формуле эта ось отмечена красной точкой)  [c.57]

    Структуры I и II (Д-винная и -винная кислоты) являются зеркальными изображениями друг друга, а значит — оптическими антиподами. Структуры III и IV при повороте на 180° в плоскости листа совпадают, т, е. они идентичны и повторяют друг друга. Таким образом, это одна и та же кислота. Верхняя и нижняя части этой молекулы содержат совершенно одинаковые группы. Асимметрический атом углерода верхней части молекулы обеспечивает вращение вправо, а такой же углеродный атом нижней части молекулы — влево. Очевидно, в результате таких одинаковых по величине, 110 противоположных по направлению вращений отдельных частей молекулы произойдет внутримолекулярная компенсация. Поэтому эта кислота, которая называется мезовинной, хотя и содержит два асимметрических атома углерода, не обладает оптической активностью. Мезовинная кислота не может быть разделена на оптически активные изомеры. [c.220]


    Если соединение состоит из хиральных молекул, то в чистом виде оно всегда оптически активно однако смесь равных количеств энантиомеров оптически неактивна, так как одинаковое по величине, но противоположное по знаку вращение взаимно компенсируется. Такие смеси называют рацемическими смесями [5] или рацематами [6]. Их свойства не всегда полностью совпадают со свойствами индивидуальных энантиомеров. В газообразном или жидком состоянии, а также в растворах их свойства обычно одинаковы, так как в этих случаях смеси почти идеальны, однако в твердом состоянии [7] такие свойства, как температура плавления, теплота плавления, растворимость, часто отличаются. Так, рацемическая винная кислота плавится при температуре 204—206 °С, а ее растворимость в воде при 20 °С составляет 206 г/л, в то же время температура плавления ( + )-или (—)-энантиомера равна 170 °С, а растворимость— 1390 г/л. Процесс выделения двух оптически активных компонентов из рацемической смеси называют разделением. [c.131]

    Равномолекулярная смесь право- и левовращающего антиподов образует рацемическую винную кислоту, называемую также виноградной-, мезовинная кислота — оптически недеятельна вследствие внутримолекулярной компенсации вращения асимметрических центров. Легко увидеть, что в формуле мезовинной кислоты верхний асимметрический центр имеет конфигурацию (+)-винной кислоты, а нижний (—)-винной. Обе оптически активные винные кислоты образуют пару оптических антиподов все их физические свойства одинаковы, за исключением знака оптического вращения. По отношению к мезовинной кислоте (—)-винная и (Н-)-винная кислоты являются диастереомерами. Так называют группы стереоизомеров с несколькими асимметрическими центрами, конфигурация части которых совпадает, а части — различается. Главная особенность диастереомеров в том, что физические свойства у них в каждой паре различны. [c.324]

    Этиловый эфир атролактиновой кислоты (оптически активной) Продукт восстановления, Н2О Ni (скелетный), модифицированный оптически активной винной кислотой. Стереоспецифичность катализатора выше, чем стереоспецифичность немодифицированного Ni и Ni, модифицированного L-винной кислотой [1078] [c.671]

    Реакция проводилась при 16—23° С в течение 25 часов. Полученный амин в водном растворе имел [а]в 0,90° (степень асимметрического синтеза 9,22%). Восстановление в тех же условиях, но в присутствии (Ч-)-винной кислоты дало активный солянокислый амин с [а]в -Ь 1,1° (24,7% оптической чистоты). [c.190]

    Создание бутлеровской теории химического строения органических соединений позволило объяснить большинство случаев изомерии. Стало ясно, что они являются результатом различий в химическом строении при одинаковом составе молекул. Однако все же встречались случаи изомерии, которые не поддавались истолкованию и с этих позиций. Это было известное еще с начала XIX в. существование пар оптических антиподов — веществ, полностью совпадающих друг с другом по всем физико-химическим свойствам, но имеющих противоположный знак вращения плоскости поляризации света. Из числа таких оптически активных веществ в то время были известны, например, винная и молочная кислоты, амиловый спирт, терпены, сахара и др. Не находили объяснения также и различия физико-химических свойств у некоторых пар непредельных соединений, которые, по всем данным, имели одинаковое химиче- [c.33]

    Они имеют по два одинаковых асимметрических С-атома, вследствие чего можно ожидать существования двух оптически активных форм и одной лезо-формы (как у винной кислоты). Соединения типа А и соединения типа Б не имеют плоскости симметрии, но тип А содержит центр симметрии. Плоскость а,а делит молекулу на две половины, из которых одна при повороте на 180° превращается в зеркальное изображение второй (Л1). Поэтому соединення типа А оптически неактивны оба их асимметрических атома имеют противоположные конфигурации (Ладенбург). Соединения типа Б не содержат центра симметрии и являются оптически активными. [c.799]

    Сопоставим проекционные формулы мезовинной и оптически активных винных кислот  [c.266]

    В природе широко распространена правовращающая винная кислота. Ее левовращающий антипод впервые получил в 1848 г. Л. Пастер в своих классических исследованиях, заложивших основы стереохимии оптически активных веществ. [c.264]

    Винная кислота была также первым оптически активным веществом, для которого в 50-х годах нашего столетия с помощью специального рентгенографического метода была определена абсолютная конфигурация, т. е. установлено соответствие между знаком оптического вращения и пространственной моделью (а также, условно выражающей эту модель проекционной формулой)  [c.265]

    Недавно в группе Шенвэ путем сочетания принципов донорно-акцепторного комплексообразования и селективной функционализации создана интересная модель фермента десатуразы. Был синтезирован краун-эфир, имеющий боковые цепи с бензофеноновым остатком. Исходным соединением служила оптически активная форма винной кислоты. [c.324]


    Казалось бы, все обстоит очень просто не мудрствуя лукаво, можно различать антиподы оптически активных веществ по их знаку вращения. Сто лет назад и поступали именно так, говоря правовращающая винная кислота , декстроза , левулеза (нынешняя фруктоза), левовращающая молочная кислота . Для сокращенной записи вместо слов левовращающий и правовращающий стали использовать обозначение I и так появились названия вроде /-яблочная кислота, -винная кислота. [c.295]

    Экпимолярная смесь D(—)- и L(-j-)-изомеров (рацемат) называется виноградной кислотой. Оптически активный (-f)-H30Mep винной кислоты содержится D0 многих фруктах. Мезонинная кислота оптически неактивна. Винная цислота применяется при крашении, в светокопировании, для приготовления лекарских порошков (искусственные дрожжи), в производстве зеркал и при консервировании пищевых продуктов. [c.490]

    Метиловый или этиловый эфир ацето-уксусной кислоты Оптически активный метиловый или этиловый эфир Р-окси-масляной кислоты Ni-Ренея, модифицированный оптически активными оксикислотами [2309, 2310] Ni (скелетный), модифицированный оптически активными амино- или оксикислотами 90 бар, 60° С [2311, 2312] Никелевый катализатор, модифицированиы ) D-винной кислотой. Выход 16% [2313]. См. также [2329] [c.126]

    Дайте определение, что такое асимметрический атом углерода. Отметьте звездочками такие атомы в структурных формулах молочной, а-оксимасляной и винной кислот. Укажите, какие формы винной кислоты возможны. Напишите проекционные формулы двух оптических антиподов молочной кислоты, Ь- и 1--винных кислот, мезонинной кислоты. Является ли последняя кислота оптически активной  [c.59]

    Второй и третий углеродные атомы связаны своими четырьмя валентностями с различными атомами или группами атомов и, следовательно, асимметричны. Однако замещение при обоих атомах абсолютно одинаково, за исключением пространственного расположения заместителей. Это расположение может быть или положительным (- -), или отрицательным (—). Кислота, включающая асимметрические центры с противоположными вкладами ( или +), оптически неактивна и известна как ме-зовинная кислота. Кислота с центрами одинаковой конфигурации ( + ) или ( I) оптически активна и существует в виде двух энантиомеров, известных как право- и левовращающие винные кислоты. Соединение, образованное эквимолекулярными количествами правовращающей и левовращающей винных кислот, оптически неактивно подобно мезовинной кислоте однако оно может быть расщеплено на два энантиомера. Это соединение известно как рацемическая кислота. [c.18]

    Винная кислота еще много раз служила объектом изучения для ученых, занимавшихся вопросами оптической активности. На ее примере, в частности, Л. Пастер разработал еще два метода получения оптически активных веществ из рацематов. Один из этих методов — биохимический — основан на том, что микроорганизмы (например, бактерии плесени Реп1с111ит glau um) потребляют из рацемата только один антипод для своей жизнедеятельности второй антипод остается незатронутым и может быть выделен. Другой метод—химический — основан на превращении оптических антиподов в пару диастереомеров (см. ниже) при реакции с оптически активными реагентами. Диастереомеры в отличие от оптических антиподов различаются по физико-химическим свойствам, а поэтому могут быть отделены друг от друга. Весь процесс можно иллюстрировать схемой  [c.265]

    Со временем выяснилось, что некоторые соединения отличаются друг от друга только своими оптическими свойствами. Одно из таких одинаковых по всем другим свойствам соединений вращает плоскость поляризации поляризованного света по часовой стрелке, другое — против часовой стрелки. Обычно имеется еще и третье соединение, которое вообще не вызывает вращения плоскости поляризации поляризованного света (оптически неактивно). Примером изомерных веществ, различающихся по оптической активности, могут служить открытые Берцелиусом (см. гл. 6) винсградная и винная кислоты. Виноградная кислота оптически неактивна, а винная кислота обладает в растворе правым вращением. Позднее была открыта винная кислота, обладавшая в растворе в тех же условиях равным по величине, но противоположным, левым вращением [c.86]

    Рацемат представляет собой наиболее часто встречающуюся систему, состоящую из й- и /-форм. Это название было предложено Пастером, который впервые наблюдал такое явление на виноградной кислоте ( рацемической кислоте ), состоящей из лево- и правовращающей винных кислот. Рацемические молекулярные соединения, насколько известно в настоящее время, устойчивы только в твердом состоянии. В рас-1воре и в парах они распадаются на отдельные компоненты, как показывают их криоскопические свойства, электропроводность, удельный вес и химическая реакционная способность, всегда тождественные свойствам оптически активных веществ. Поэтому различия между рацематами и оптически активными формами ограничиваются, помимо действия на поляризованный свет и взаимодействия с другими несимметричными системами, теми свойствами, которые наблюдаются лишь у твердых фаз. Так, они могут различаться по температурам плавления, плотности, растворимости их кристаллическая форма также может быть различна, причем кристаллы рацематов, часто обладают голоэдрическим, а активные формы — гемиэдрическим строением. Отклонения наблюдаются также и в содержании кристаллизационной воды рацемическая винная кислота кристаллизуется с одной молекулой НгО, активная — без воды кальциевая соль неактивной маиноновой кислоты безводна, а соль активной формы содержит две молекулы Н2О и т. д. [c.134]

    Биохимическое расщепление основано на наблюдении Пастера, что грибки или бактерии, растущие в растворах рацемических соединений и питающиеся ими, почти всегда потребляют и разрушают лишь одну из обеих энантиоморфных форм, оставляя другую нетронутой. Таким образом, оказывается возможным выделение последней формы в чистом виде. Например, Peni illium glau um ассимилирует в растворе аммониевой соли d,/-винной кислоты только -форму и оставляет /-форму тот же грибок разрушает /-молочную, /-миндальную и /-аспарагиновую кислоты, а также /-лейцин. По-видимому, для того чтобы определенный микроорганизм мог ассимилировать какое-либо соединение, последнее должно обладать определенной пространственной конфигурацией представляется далее, что один и тот же грибок при одинаковых внешних условиях разрушает оптически активные формы с одинаковой конфигурацией. Однако грибок постепенно можно заставить ассимилировать и второй антипод. [c.135]

    Простейшими оптически активными альдозами являются глицериновые альдегиды. Из них )-форма иутел циангидринного синтеза может быть превращена в -винную кислоту, откуда следует, что D-глицериновый альдегид обладает конфи1 урацией III  [c.428]

    Гомоцинхолойпон, использованный Рабе, был предварительно прн помощи винной кислоты разделен на оптические антиподы. Поэтому синтез привел к оптически активному дигидрохинину. [а]р —140.4° (в спирте), который по своему углу вращения и всем остальным свойствам оказался идентичным дигидрохинину, полученному из природного хинина. [c.1090]

    Другой вариант использования оптически активного растворителя — распределение расщепляемого рацемата между ним и оптически неактивной фазой. Так, распределением между водой и эфирами (+)-винной кислоты удалось расщепить 2,3-дибромбутандиол-1,4 [9]. В качестве оптически активной фазы использованы также растворы оптически активных вторичных аминов IX и X в хлороформе. Встряхивая с ними водный раствор натриевых солей рацемической миндальной кислоты или рацемического N-ацетилаланина, удается получить эти последние в оптически активном виде. Любопытно и практически важно, что используемые амины IX и X могут и не иметь 1007о-иой оптической чистоты это не препятствует полному расщеплению миндальной кислоты [10]. [c.93]

    Синхронность гидроксилирования обоих атомов углерода алкена подтверждается также тем, что при окислении по Вагнеру малеиновой кислоты (40) образуется оптически неактивная мезовинная кислота (41), а при окислении фумаровой кислоты (42)—рацемическая смесь оптически активных винных кислот-/ -( + )-винной (43) и 5-(—)-винной (44)  [c.37]

    Гидроксилирование малеиновой и фумаровой кислот по Прилежаеву приводит к результатам, противоположным тем, которые были получены при гидроксилировании этих кислот по Вагнеру. В данном случае из малеиновой кислоты образуется рацемическая смесь оптически активных винных кислот, а из фумаровой кислоты — мезовинная кислота. [c.39]

    Решающим событием для определения пространственной конфигурации молекулы явилось открытие оптической изомерии. В 1848 г. Пастер разложил винную кислоту на лево-и правовращающие формы. Позже Вислиценус обнаружил различие оптической активности между молочной кислотой брожения и кислотой, выделенной из мяса, хотя порядок взаимодействия атомов, т. е. химическое строение оказалось для них тождественным. В 1874 г. Вант-Гофф и Ле-Бель высказали гипотезу пространственного размещения групп вокруг атома углерода по углам тетраэдра. Ими были рассмотрены возможные модели атома углерода с четырьмя разными заместителями КЬМН. При этом пришлось отвергнуть плоскую и пирамидальную модели, дающие избыточное число изомеров для указанных моделей они должны появиться уже у соединений типа СККММ, что, как известно, не наблюдается. Нельзя сказать, что такая модель вообще невозможна, она реализуется, в частности для комплексов платины Р1С12(ННз)2. Но только тетраэдрическая [c.103]

    Для разделения используют практически все виды хроматографии. Чаще всего применяют колонки с А Оз или ионообменными смолами. Так, при помощи хроматографии были разделены цис-и транс-изомеры [(N143)гВгг] и [Р1(Г Нз)212]- Для разделения оптических изомеров применяют наполнитель из оптически активного вещества. Из водных растворов сорбируют на О- или А-кварце или на ионообменной целлюлозе, из неводных — на О-вин-ной кислоте, О-лактозе (в воде эти наполнители растворяются). [c.418]

    Механическое разделение [87]. Именно этим методом Пастер доказал, что рацемическая винная кислота в действительности представляла собой смесь ( + )- и (—)-изомеров [88]. В случае рацемической натрийаммониевой соли винной кислоты энантиомеры кристаллизуются раздельно — в одном кристалле собираются (-1-)-изомеры, в другом— (—)-изомеры. Такие кристаллы отличаются по внешнему виду, так как каждый кристалл несовместим со своим зеркальным изображением поэтому опытный кристаллограф может разделить их пинцетом [89]. Однако такого рода кристаллизация свойственна лишь некоторым соединениям, так что практически метод механического разделения используется редко. Даже натрийаммониевая соль винной кислоты кристаллизуется раздельно только при температуре ниже 27 °С. Более удобной разновидностью этого метода, хотя и не ставшей еще общепринятой, является посев рацемического раствора вместе с затравкой, вызывающей кристаллизацию только одного энантиомера [90]. Интересным примером механического разделения явилось выделение гептагелицена (разд. 4.2). Один из энантиомеров этого соединения, который, как оказалось, имеет необычно высокую величину вращения ([a]D =+6200°), спонтанно кристаллизуется из бензола [91]. В случае 1,Г-динаф-тила оптически активные кристаллы можно получить просто при нагревании поликристаллического рацемического образца соединения при 76—150 °С. При этом происходит фазовое изменение с переходом одной кристаллической формы в другую [92]. Следует отметить, что 1,1 -динафтил — одно из немногих соединений, которое можно разделить пинцетом по методу Пастера. В некоторых случаях разделение удается осуществить энантио- [c.160]

    Поворачивая пространственную (1а) или проекционнук> (16) формулу на 180°, получим формулу Па или Пб. Это означает, что формулы 1а (16) и Иа (Пб) описывают одно и то же соединение, которое называется мезовинной кислотой. Эта кислота не проявляет оптической активности (хотя и содержит два хиральных атома углерода), поскольку обладает плоскостью симметрии (перпендикулярной центральной связи С—С). Этот факт свидетельствует о том, что наличие хиральных атомов углерода не обязательно означает хиральность всей молекулы полная симметрия молекулы определяет, будет соединение оптически активным или нет. Другие два стереоизомера винной кислоты (1П и IV) представляют собой пару антиподов и являются хиральными. Если не ограничиваться рацемической модификацией [т. е. эквимолярной смесью ( + )-и (—)-винных кислот], то винная кислота существует не в четырех, а в трех стереоизомерных формах. Еще более сложная ситуация возникает в тех случаях, когда в молекуле имеется больше двух хиральных атомов углерода с одинаковыми заместителями. [c.93]

    DL-Винная (виноградная) кислота (стр. 209, 210). Как уже указано, она представляет собой оптически неактивное молекулярное соединение D- и L-винных кислот. Впервые была разделена на оптически активные компоненты в 1848 г. Пастером, который таким образом открыл правовращающую, т. е. D-винную кислоту. Виноградная кислота плавится при 206° С, т. е. отличается по температуре плавления от D- и L-винных кислот последние при смешении превращаются в виноградную кислоту с выделением тепла. Все это подтверждает, что виноградная кислота является соединением, а не смесью оптически активных винных кислот. От латинского названия этой кислоты (a idum ra emi um) происходит название — рацемические соединения, которым обозначают молекулярные соединения оптических антиподов. [c.213]

    Внимательно изучая форму кристаллов натриевоаммониевой соли виноградной (оптически неактивной винной) кислоты, Л. Пастер заметил, что встречаются кристаллы двух зеркальных форм (отличающихся друг от друга, как несимметричный предмет от своего изображения в зеркале). Отделив эти кристаллы и растворив их раздельно в воде, Л. Пастер обнаружил, что получились оптически активные растворы — правовращающий и левовращающий. Этот опыт был первым примером расщепления рацемата на оптические антиподы, т. е. отделения левовращающего антипода от правовращающего. [c.264]

    Довольно доступный асимметрический реагент кислотного характера — пироглутаминовая кислота XVI, которая легко получается при нагревании природной глутаминовой кислоты. Другие природные оптически активные кислоты — миндальная, яблочная, камфарная — гораздо менее доступны. В связи с недостатком природных асимметрических реагентов кислотного характера создано немало синтетических реагентов такого типа не только путем упомянутого выше модифицирования (+)-винной кислоты, но и на основе других оптически активных веществ. [c.99]

    Аминокислоты можно получить в оптически активном виде и через соответствующие аминонитрилы с последующим гидролизом аминонитрилы, не имея кислотной функции, нормально образуют диастереомерные соли с асимметрическими реагентами кислотного характера. Таким путем, через соль а-аминофенилацетонитрила с (+)-винной кислотой, была получена а-аминофенилуксусная кислота [55]. [c.103]


Смотреть страницы где упоминается термин Винные кислоты оптически активные: [c.947]    [c.29]    [c.29]    [c.84]    [c.295]    [c.136]    [c.219]    [c.66]    [c.75]    [c.105]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.84 , c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Винная Винная кислота

Винная кислота

Оптическая активность

активное оптически активное



© 2024 chem21.info Реклама на сайте