Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптическое вращение дисперсия простая

    При рассмотрении способности полипептидов вращать плоскость поляризации интересно знать не только [а] или [т ], но и вращательную дисперсию полипептидов (т. е. зависимость способности вращать плоскость поляризации от длины волны). Наиболее простым уравнением, описывающим дисперсию оптического вращения, является простое уравнение Друде, которое имеет следующую форму  [c.143]


    Сравнение оптической активности аминокислот проводят обычно в кислых растворах, поскольку в этом случае оно облегчается тем, что все карбоксильные группы в равной мере про-тонизированы. Кривые дисперсии оптического вращения аминокислот сохраняют плавный характер при уменьшении длин волн приблизительно до 250 ммк, т. е. при .>250 ммк они описываются простым уравнением Друде. Величина константы дисперсии Хс, вычисленная на основании этих кривых, согласуется [c.17]

    Обычно удельное или молекулярное вращение определяют для желтой линии натрия. Именно для этой линии производится, как правило сравнение оптической активности различных веществ и делаются обобщения опытного материала. Но важны также закономерности и для зависимости между величиной вращения и длиной волны поляризованного света—так называемая дисперсия оптического вращения. Она определяется ныне при помощи приборов — спектрополяриметров, которые дают кривые, именуемые кривыми дисперсии оптического вращения, или просто кривыми дисперсии. [c.89]

    Два основных типа кривых вращательной дисперсии приведены на рис. 130. Если вещество поглощает только в далекой ультрафиолетовой области, то измерять оптическое вращение в этой области может оказаться неудобным или даже невозможным. В этом случае на кривой дисперсии вращения в области, которая кончается около вертикальной штриховой линии, нет ни пиков, ни провалов. Такая кривая называется простой или нормальной [c.387]

    В заключение следовало бы заметить, что обозначение оптических изомеров с1 и / имеет смысл, только если известна длина волны использованного света. На рис. 24 ясно показано, что оптический изомер может вращать плоскость поляризации света вправо при одной длине волны и влево при другой. Наличие зеркального изображения для изомера обусловливает и зеркальную кривую. Графически выраженная зависимость оптического вращения от длины волны света называется кривой вращательной дисперсии. Она имеет большее значение и более полезна, чем данные просто об оптическом вращении для одной длины волны. Точную конфигурацию (+)ка — [Со(еп)з1 + определили, изучая дифракцию им рентгеновских лучей. Затем, применяя ее в качестве стандарта, можно было определить точ- [c.88]

    Кривая простого эффекта Коттона дает один максимум и один минимум (например, кривая в на рис. 50 и кривая а на рис. 51). Область волны более или менее точно соответствует полосе поглощения. Чтобы избежать путаницы с терминологией, используемой в абсорбционной спектроскопии, для максимума па кривой дисперсии оптического вращения применяют термин пик , а для минимума — термин впадина . Часто вместо выражений пик или впадина пользуются общим термином экстремум. [c.422]


    В тех случаях, когда правило октантов неприменимо (а также в дополнение к правилу октантов), кривые дисперсии оптического вращения исследуемого соединения сравнивают с кривыми модельных соединений. Вполне очевидно, что выводы относительно конфигурации, основанные на идентичности или значительной близости сложных кривых эффекта Коттона, более надежны, чем простые аналогии между плавными кривыми. Последние дают в сущности не намного больше структурной информации, чем аналогии, полученные при монохроматических измерениях. [c.439]

    Величина, характеризующая вращение монохроматического света, является просто точкой на кривой дисперсии оптического вращения. Поэтому казалось бы, что отдельное обсуждение вопроса о монохроматическом вращении не имеет смысла. Тем не менее в настоящее время накоплено еще недостаточно экспериментальных данных по дисперсии оптического вращения, что затрудняет общее рассмотрение вопроса. В то же время в химической литературе накопилось много данных по монохроматическому вращению, и измерение вращения с использованием /)-линии натрия не представляет трудности, поскольку для лаборатории вполне доступны простые в обращении приборы. [c.446]

    Простую поляриметрию заменили методы дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД), которые позволили изучать более полно оптические характеристики оптически активных веществ как функции длины волны излучения. Современные методики ДОВ и КД позволяют определять абсолютную конфигурацию молекул (правда, на полузмпирической основе), химическое строение, конформации и некоторые спектральные характеристики молекул. [c.167]

    Оптическое вращение обычно измеряется только лри одной длине волны (5893 А) по той простой причине, что лампы с парами натрия Служат наиболее удобным источником монохроматического света. Измерения нри других длинах волн без специальных приборов произвести значительно труднее. В настоящее время такими приборами оборудовано сравнительно небольшое число лабораторий, однако есть все основания полагать, что такое положение изменится, поскольку измерения оптического вращения как функции длины волны (т. е. дисперсии оптического вращения) уже дали к настоящему времени и обещают дать в будущем много информации относительно структуры, конформаций и конфигураций органических соединений. [c.527]

    Различие в поляризуемости связей С — Н и С — В неизбежно приводит к появлению оптической асимметрии центрального атома углерода в соединениях типа КК СНВ. Вслед за первыми работами Александера и Пинкуса [44], а также Илиела [45] Стрейтвизер с сотрудниками [46] собрал и обобщил данные по оптической активности подобных соединений. Наиболее убедительным доводом в пользу того, что влияние изотопа на оптическую активность можно рассматривать просто как э( )фект другого заместителя, отвлекаясь при этом от его колебательной природы, является работа, на которую ссылается Стрейтвизер [13]. В этой работе было показано, что кривые дисперсии оптического вращения бутанола-1-й( и этанола-1-о чрезвычайно похожи на подобную же кривую для октанола-2. [c.105]

    Кроме этого термина, используются также термины дисперсия оптического вращения , циркулярная дисперсия или просто дисперсия вращения . — Прим. перев. [c.12]

    Для определения вторичной структуры белков используются в основном оптические методы. Конечно, более надежным является рентгеноструктурный метод, однако его применение сопряжено с определенными трудностями и требует значительного времени. Такие оптические методы, как дисперсия оптического вращения и круговой дихроизм, являются более простыми и, что весьма важно, позволяют определять изменений вторичной структуры белка в растворах. При помощи дисперсии оптического вращения можно получить информацию о степени спирализации белковой макромолекулы. Несмотря на то что метод является приближенным, достаточно отчетливо просматриваются переходы типа спираль—клубок. Что касается метода кругового дихроизма, то его спектр определяется набором углов ф и у, свойственных тому или иному типу вторичной структуры. Оба метода можно расценивать как скриннинго-вые, и для полной идентификации вторичной структуры их надо комбинировать с рентгеноструктурным анализом белков. [c.43]

    Смысл уравнения (9.58) для случая / = 1, соответствующего простейшей форме дисперсии оптического вращения, иллюстрируется рис. 9-22. Спектр дисперсии оптического вращения реального вещества определяется многими го/ и имеет сложную форму во многих случаях. Такие спектры могут быть получены для многочисленных химических соединений и широко используются при проведении структурного анализа вещества по эмпирическим правилам [2]. Однако этот вопрос выходит за рамки настоящей книги, и мы хотели здесь просто показать, исходя из спиральной модели, как возникает дисперсия оптического вращения. [c.326]


    Во многих случаях мономеры, димеры и тримеры можно идентифицировать без деградации, просто по их положению на хроматограммах, по УФ-спектрам или спектрам дисперсии оптического вращения. Однако для более длинных олигонуклеотидов необходимо использовать методы, подобные описанным в настоящем разделе. [c.59]

    Дпспсрсня оптического вращения (ДОВ). Кривая, выражающая зависимость онти-ческого вращения вещества от длины волпы проходящего через пего поляризованного света. Простую кривую дисперсии оптического вращения можно разбить па два участка. В одном нз них вращение лишь незначительно изменяется с изиепеппем длины волпы, в другом — очень резко. Форма всей кривой дисперсип оптического вращения зависит от абсолютной конфигурации соединения. Кривые ДОВ двух энантиомеров представндют собой зеркальные изображения друг друга. [c.90]

    В работах Лоури дисперсия оптического вращения изучалась не только в видимой, но и в ближней ультрафиолетовой области (фотографическим методом до 350—300 ммк). Результаты определений подвергались математической обработке для большинства веществ приведены уравнения, выражающие зависимость вращения от длины волны. В работах Лоури введено понятие о простой и сложной дисперсии оптического вращения (эти понятия отличны от понятий нормальной и аномальной дисперсии ). [c.541]

    Целлюлоза, полимер с 1,4 -Р,0-глюкозидными связями, нерастворима в воде и поэтому непригодна для измерений оптического вращения. Нили [129], однако, изучил частично метилированную целлюлозу в водных растворах и обнаружил, что неполностью диспергированная метилцеллюлоза имеет сложную ДОВ, но после продолжительного стояния таких систем сложная дисперсия превращается в простую, описываемую уравнением Друде. Он объяснил это явление постепенным растворением агрегатов метилцеллюлозы. Эти растворы очень чувствительны к изменениям температуры и при высокой температуре становятся мутными. Однако при добавлении 8 М раствора мочевины вращение растворов снова подчиняется простому уравнению Друде, что, вероятно, обусловлено разрушением агрегатов мочевиной. Нили проводил измерения в области длин волн выше 400 мц, но для более полного изучения полимера целесообразно расширить диапазон длин волн. [c.122]

    В этой главе кратко описаны различные определения и уравнения дисперсии оптического вращения, а также показано различие в оптических свойствах олигомеров и полимеров. Для того чтобы проиллюстрировать применение и ограничения метода ДОВ, были выбраны несколько природных и синтетических полимеров. Большинство дисперсионных кривых почти не имеет особенностей и фактически монотонно, причем величина оптического вращения (по модулю) возрастает с уменьшением длины волны падающего света исключение составляет область оптически активной полосы поглощения, в которой проявляется эффект Коттона. При обработке экспериментальных данных важную роль играют два выведенных теоретически уравнения. Большую часть экспериментальных данных, относящихся к области спектра, удаленной от оптически активной полосы поглощения, можно описать простым уравнением Друде с двумя параметрами Яс и к. Это позволяет сравнивать или количественно различать конформации или конформационные переходы, скажем, одних белков от других. Теория Моффита, первоначально развитая для дисперсии а-спирали, позволяет описать сложную дисперсию при помощи трех параметров А-о, о и Ьо- Хотя уравнение Моффита неспецифично, несомненно, установлено, что спиральная конформация вносит свой вклад во вращение. [c.126]

    Данный обзор в значительной части посвящен проведенному в самое последнее время комплексу работ [1—31] с целью выяснения зависимости между дисперсией оптического вращения и строением соединений нескольких строго определенных классов. Более ранние работы рассматриваются менее подробно по той простой причине, что большие экспериментальные трудности не позволили сделать широких обобщений. Однако это ни в коей мере не умаляет заслуг ученых, которые провели трудоемкие и тщательные исследования (подробные обзоры этих работ даны Лоури [178], Левеном и Роте-ном [174]). [c.262]

    В отдельных случаях для определения конформации моносахаридных звеньев в полимерной цепи может быть применена дисперсия оптического вращения. Так, на основании сходства кривых дисперсии оптического вращения хондроитинсульфата В и получаемых из него олигосахаридов, а также простейших производных L-идуроновой кислоты для остатка L-идуроновой кислоты в составе этого полисахарида была установлена конформация кресла F . [c.516]

    Исследования влияния углеводородов на конформационное состояние макромолекул глобулярных белков проводились методами оптического вращения и его дисперсии, вискозиметрически, спектрофотометрически и по изучению кинетических параметров ферментативной активности, Вращение плоскости поляризации чрезвычайно чувствительно к изменению конформации белковых молекул. Правда, между оптической активностью и структурой белка нет простой и ясной зависимости, но значение оптической активности как характеристики степени конформационного изменения белков общеизвестно и играет большую роль при изучении процессов денатурации. [c.29]

    Дисперсия оптического вращения АФА и ЦФЦ при 25° С значительно отличается от ДОВ составляющих компонентов. В случае УФУ и УФЦ не наблюдается зтого эффекта. Есть два возможных объяснения или, как считают Варшау и Тиноко [82, 85], в этом случае основания не так близко расположены друг к другу и, следовательно, не обладают столь сильным осевым взаимодействием, как АФА, или просто оптические свойства полностью упорядоченной структуры УФУ и УФЦ примерно таковы, как и для составляющих их нуклеозидов и нуклеотидов [97]. [c.190]

    Нет необходимости рассматривать имеющиеся в продаже обычные поляриметры [115]. Существенным развитием экспериментальной техники является измерение оптического вращения с помощью фотоэлектрических приборов вместо визуальных наблюдений, что особенно полезно в случае интенсивно окрашенных растворов. Использование спектропо-ляриметров позволяет производить измерения кривых вращательной дисперсии, передающих оптическое вращение при разных длинах волн источника света. Источником света могут служить натриевые или ртутные лампы или угольные дуги белого света в сочетании с соответствующими интерференционными фильтрами и стеклянными окрашенными фильтрами. Этим методом можно измерять оптическое вращение в интервале 250—750 л и [210]. Джерасси и Клайн [82] рассмотрели три типа кривых вращательной дисперсии, возможных у оптически активных веществ, и предложили номенклатуру для их описания в научной литературе. Три типа это 1) простые кривые, без максимумов и минимумов на кривой дисперсии, 2) кривые с одним эффектом Коттона только с одним максимумом или минимумом (обычно вблизи полосы поглощения) и 3) кривые с несколькими эффектами Коттона с двумя или более пиками и канавками . Простейшее поведение соответствует соотношению [c.192]

    Доказательство наличия оптической активности. Наиболее простое использование спектрополяриметра состоит, вероятно, в проверке наличия или отсутствия оптической активности у соединений, обладающих незначительным вращением при длине волны линии D, поскольку соединения с плавными кривыми дисперсии оптического вращения обнаруживают более сильное вращенпе в ультрафиолетовой области спектра, чем при 589 ммк. Так, тетрагидроионандиолы X I, выделенные из мочи беременных кобыл [297], не обнаруживают оптической активности прл 589 ммк, [c.433]

    Наиболее простое объяснение ошибки в трактовке данных по дисперсии оптического вращения состоит в том, что циклогексаноно-вое кольцо эремофилона в действительности существует в кон- [c.441]

    Электронные спектры поглощения [171] простейших эфиров и лактонов характеризуются слабым поглощением, соответствующим л -переходам, около 210 нм, однако эти данные не находят столь широкого применения для исследований с помощью методов дисперсии оптического вращения и кругового дихроизма [172], как данные длинноволнового поглощения кетонов, связанного с 7г->л -переходами. Тем не менее установлены общие закояомер-ности, касающиеся взаимоотношения между абсолютной конфигурацией и конформацией лактонов, с одной стороны, и знаком и величиной наблюдаемого эффекта Коттона, с другой. Изучены и другие данные по сложным эфирам [172]. а,Р-Ненасыщенные эфиры дают сильную я-> л -полосу около 210 им по мере увеличения ненасыщенности наблюдается сдвиг полосы в длинноволновую область. Ароматические эфиры также дают характеристические электронные спектры поглощения, связываемые с я->л -пе-реходами. В целом, однако, ИК- и ЯМР-спектроскопия оказались более ценными методами идентификации сложных эфиров. [c.336]

    Все нуклеотиды имеют асимметрические атомы и поэтому оптически активны. Однако в настоящее время интерес к ДОВ нуклеиновых кислот вызван попытками проникнуть в их вторичную структуру [107—114), аналогично тому как изучались полипептиды и белки (см. раздел Г). Известно, что в видимой области спектра ДНК и РНК имеют простую дисперсию оптического вращения друдевского типа [110, 111, 114). Фреско [ПО], однако, сообщил о сложной дисперсии ДНК, но он проводил измерения в ультрафиолетовой области спектра ниже 360 мц. По-видимому, целесообразно с помощью доступных в настоящее время приборов высокого класса вновь исследовать ДОВ этих природных полимеров. В табл. 17 приведены недавно опубликованные (требующие в будущем уточнения) параметры ДОВ нуклеиновых кислот и некоторых синтетических полипептидов. В отличие от ДОВ синтетических полипептидов ДОВ полинуклеотидов обрабатывали только с помощью уравнения Друде и никакими другими уравнениями не пользовались в этой области нет также ни одной удовлетворительно развитой теории. Оптическое вращение этих [c.118]

    Исходя из соотношений Кронига — Крамерса, Московии, [29J разработал методы расчета циркулярного дихроизма (ЦД) по дисперсии оптического вращения (ДОВ). Более простые полуэмпири-ческие соотношения между ЦД и ДОВ были предложены Куном [30] они имеют следующий вид  [c.158]

    Измерение кругового дихроизма свободно от многих недостатков, свойственных методу дисперсии оптического вращения. Это явление Коттон [15] изучал в то же самое время, когда появились работы по вращательной дисперсии. Коттон показал, что любое оптически активное вещество по-разному поглощает левый и правый циркулярно-поляризованный свет. Если щ и 8г— коэффициенты поглощения соответственно для левого и правого циркулярно-поляризованного света, то разность 8(—гг является мерой кругового дихроизма. Эта разность , которую мы обозначим Ар., изменяется в зависимости от длины волны света и может быть как положительной, так и отрицательной. Кривая Де=[(>,) для простого оптического перехода имеет колоколообразную форму, совершенно аналогичную форме известных в спектроскопии кривых поглонгения обычного света. Этого есте- [c.15]

    Другой метод, позволяющий получить сведения о конфигурациях и конформациях молекул и существенно дополняющий метод Брюстера, был развит в конце 50-х годов на основе интенсивных экспериментальных исследований Джерасси и его сотрудников. Джерасси использовал не просто величину оптического вращения, а его зависимость от д.лины волны, так называемую дисперсию оптического вращения (ДОВ) [159а, 160] .  [c.199]

    При измерении оптического вращения денатурированных белков в определенном диапазоне длин волн получаются плавные кривые дисперсии онтическог-о вращения, описываемые одночленным уравнением Друде (1.2), причем Яс 210 ммк. Хотя эта длина волны близка к области поглощения пептидной группы, нельзя считать, что оптическое вращение обязательно связано только с одной полосой поглощения. Кривая дисперсии оптического вращения для нативных белков носит плавный характер вплоть до 300 ммк, а значение Хе, рассчитанное с помощью простого уравнения Друде, может иметь значение до 250 ммк. При таких значениях Яс не имеет уже первоначального смысла, поскольку для полосы поглощения пептидной группы в нативных белках не наблюдается смещения в ту же сторону. Кроме того, для нативных белков значения Кс зависят от природы растворителя и от температуры, даже если конформация белка не изменяется. Количественное описание изменений оптического вращения таких разнообразных молекул, как белковые, представляет со бой очень трудную задачу. Поэтому первые исследования про водились на синтетических полипептидах однородного состава [c.287]

    Уже давно известно, что оптическое вращение изменяется в зависимости от длины волны света, и Био [14] отметил, что вращательная дисперсия является более интересной характеристикой вещества, чем простое измерение вращения для данной длины волны. Коттон [15] в 1896 г. первым стал детально изучать вращательную дисперсию в пределах полос поглощения хромофоров. Как известно, в области поглощепия при данной длине волны кривая оптического вращения как функция X имеет 5-образную форму, причем ее знак, амплитуда и внешний вид являются характеристиками хромофора и его асимметрии. Каждый хромофор (и, следовательно, все связи в молекуле) должен дать такую 8-кривую в области своей полосы поглощения, если он асимметричен. Вне этой области поглощения оптическое вращение изменяется равномерно и непрерывно уменьшается по абсолютной величине при удалении от полосы поглощения. [c.12]

    Успех работы с новыми приборами превзошел все ожидания. Это объясняется тем, что, хотя структурный анализ проводился с помощью того же самого принципа аналогий, который применяли и тогда, когда оптическое вращение ограничивалось измерением при О-линии натрия, метод вращательной дисперсии давал значительно большие преимущества по сравнению с монохроматической поляриметрией. Прежде всего непосредственное окружение хромофора играет основную роль в возникновении наблюдаемой оптической активности, обусловленной этим хромофором (вицинальный эффект Фрейденберга), сводя, таким образом, всю проблему определения структуры молекул к изучению структуры разнообразных асимметрических центров, таких, например, которые существуют в стероидах и терпенах. Последовательное присоединение хромофора к соответствующим частям скелета иолициклической молекулы путем простых химических реакций позволяет исследовать структуру участков сочленения колец. Помимо этого, знание кривой эффекта Коттона, включая его амплитуду, знак и тонкую структуру, дает более полную характеристику асимметрии, создаваемой окружением около данного хромофора. Например, довольно легко отличить 3-А/В-гранс-кетон от 11-кетона по кривым вращательной дисперсии этих соединений, тогда как инкремент оптического вращения при О-линии натрия относительно исходного стероида без кетогруппы практически был бы одним и тем же в обоих случаях. Более того, если считать, что такие аналогии установлены, то исследования кривой вращательной дисперсии обычно достаточно для решения вопроса о структуре молекулы. Иначе обстоит дело в случае использования только вращения на О-линии натрия здесь приходится вычислять разность между оптическим вращением исследуемого вещества и вращением родственного соединения без хромофора. Последнее соединение, однако, часто нельзя получить из-за отсутствия необходимых исходных веществ или из-за трудностей его синтеза. Таким образом, вращательная дисперсия является более привлекательным методом для химика по сравнению с обычным поляримет- [c.14]

    Подобно величинам п и и, коэффициенты ni, Пг, Х( и х,- также изменяются при изменении К. Таким образом, для того чтобы наиболее полно охарактеризовать активное вещество, надо давать кривые оптического вращения а и дихроичного поглощения Де в виде функций длины волны. Первая называется кривой вращательной дисперсии, вторая — кривой циркулярно-дихроич-ного поглощения (рис. 6, а и б) . Для одного перехода эти кривые-НО форме очень похожи на кривые рис. 1 этого и следовало ожидать, так как кривые для а и Ае соответствуют простой комбинации величин той же самой природы. [c.23]

    Другие оценки сниральности основаны на измерениях дисперсии оптического вращения, которая совершенно различна у спиральных и клубковых полипептидов. По константам дисперсии также может быть рассчитана степень спиральности. Мы не имели возможности останавливаться на этих вопросах под робно и привели лишь простейший метод оценок степени спи-ральпости, на который еще несколько раз сошлемся. Подробно [c.82]

    Хотя большинство изученных спиральных Ь-полипептидов имеет стандартную дисперсию оптического вращения, характеризующуюся величиной Ьо, приближенно равной —630 ко = 212 м 1), некоторые Ь-полипептиды ведут себя аномально , и характерные для них величины Ьо отличаются от нормального значения не только по абсолютной величине, но и по знаку (табл. 15). Тогда сразу же возникает вопрос, отражает ли такое необычное поведение различие в направлении спиралей, различие в конформации или оно обусловлено сильными взаимодействиями боковых групп В настоящее время такие отклонения обнаружены для нескольких полипептидов. Данные, полученные при исследовании таких полипептидов, хотя и отрывочные, убедительно свидетельствуют о том, что необычные оптические свойства могут быть объяснены или сильными взаимодействиями между спиральным остовом и боковыми группами, под влиянием которых может изменяться, а может и не изменяться направление закручивания спирали, или образованием структурных элементов, отличных от а-спирали. Один из простых способов решения этого спорного вопроса заключается в изучении сополимеров, состоящих из остатков аминокислот, имеющих нормальные и аномальные свойства. Например, величина Ьо Для сополимеров р-бензил-Ь-аспартата и убензил-О-глутамата в растворителе, способствующем образованию спирали, лишь слегка отличается от Ьо для поли-у-бензил-О-глутамата, который имеет левую спираль [53—55]. Однако при включении в цепь поли-р-бензил-Ь-аспартата даже небольших количеств у-бензил-Ь-глутамата Ьо резко изменяет знак на противоположный, соответствующий правой спирали. Это свидетельствует о неустойчивости левой спирали Ь-аспартата. (Совсем недавно появилось сообщение о том, что направление спирали поли-р-бензил-Ь-аспартата можно изменить на противоположное введением нитрогрупны в пара-положение в бензольное кольцо боковой цепи [5, 6].) С другой стороны, у сополимеров Ь-тирозина и Ь-глутаминоБой кислоты наблюдается линейное изменение оптических свойств с изменением состава сополимера. Полагают, что оба гомополипептида имеют спирали одного и того же направления [57 ]. То же самое справедливо для поли-Ь-гистидина и поли-Ь-триптофана (табл. 15). Полагают, что поли-Ь-серин в водных растворах находится в виде Р-агрегатов, а не в форме а-спирали [58]. Существуют две уникальные аминокислоты — [c.106]


Смотреть страницы где упоминается термин Оптическое вращение дисперсия простая: [c.157]    [c.79]    [c.40]    [c.439]    [c.288]    [c.258]   
Новейшие методы исследования полимеров (1966) -- [ c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсия вращения оптического

Простая кривая в дисперсии оптического вращения



© 2025 chem21.info Реклама на сайте